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Inelastic collision rates between two very cold ground-state atoms can be strongly decreased by
using an optical shielding laser to repel the colliding atoms at very large internuclear separation
so that they never get close to each other. This can be achieved by using a sufBciently intense
laser to excite a repulsive state of the quasimolecule formed by the two colliding atoms. We study
a simple two-state model and compare the predictions of fully quantum-mechanical close coupling
and time-dependent wave packet methods with semiclassical approximations based on the concept
of a Landau-Zener curve crossing of field-dressed states. The efFect of spontaneous emission in the
excited state is treated by the Monte Carlo wave-function method. Calculations are given for a
model sodium system at 250 pK. Strong optical shielding, without significant heating due to the
quasimolecular excitation, can be achieved at relatively modest laser power. We 6nd that Landau-
Zener models give near quantitative agreement with the fully quantum calculations in spite of the
extremely low temperature.

PACS number(s): 32.80.Pj, 42.50.Vk, 03.65.—w

I. INTRODUCTION

Studies of cold collisions of neutral atoms with T (( 1
mK in the presence of light fields have recently become
important because of the advances in laser cooling and
trapping [1]. Such collisions can lead to the loss of atoms
from a magneto-optical trap [2—9] or a far-off-resonance
optical trap [10,11]. Ground-state collisions that change
the hyperfine state can also lead to the loss of magnet-
ically trapped atoms [12—14]. The densities that can be
obtained currently in atom traps are large enough for col-
lisions to have an important role. They can, for instance,
strongly diminish the possibilities to prepare and ob-
serve a Bose-Einstein condensate of trapped and cooled
atoins [15]. The suppression of inelastic collisional efFects

is, therefore, a necessary condition for reaching low tem-
peratures and high densities simultaneously. One method
for producing such suppression is to prevent the colliding
atoms from reaching the relatively small interatomic dis-
tances where the inelastic processes take place. This can
be achieved by using optical shielding, i.e. , laser-induced
excitation of the collisional diatomic quasimolecule to
a repulsive potential curve, thereby forcing the collid-
ing atoms to separate. The effect has very recently
been studied experimentally by several groups [16—19].
Marcassa et al. [16] have reported suppression of probe
laser absorption by adding a blue-detuned laser to defI.ect
the approaching atoms, and we presented accompanying
quantum and semiclassical calculations to account for the
efFect. Bali et al. [17] observed the enhancement of trap
loss by exciting a repulsive state and gave a Landau-Zener

*Present address: JILA, University of Colorado, Boulder,
CO 80309.

curve crossing model to explain their observations. Tan
et al. [18] obtained preliminary evidence of shielding of
ground-state hyperfine changing collisions and used semi-
classical optical Bloch equation calculations to study the
magnitude of the expected effect. Recent experimental
studies have clearly demonstrated the existence of optical
shielding of Penning ionization collisions of metastable
xenon [19] and krypton [20].

In this article we present a detailed theoretical study
of optical shielding and an extension of the short discus-
sion provided in Ref. [16]. Our fully quantum-mechanical
analysis includes the effect of light shifts, saturation, and
population recycling due to an intense light field, and the
effect of spontaneous decay during the slow collision. A
robust conclusion of this analysis is the striking success
of some simple Landau-Zener models, which agree rather
well with the time-consuming and complicated quantum
calculations. We consider only the case where the de-
tuning from atomic resonance is large compared to the
natural linewidth of the cooling transition. The choice
of our model parameters was dictated by two consider-
ations: (1) our initial inotivation to show that optical
shielding can have a role in interpreting ionization rates
in two-color experiments, such as the one presented in
Ref. [21] and (2) the desire to keep detuning fairly small
(five linewidths in our model) so as to test the disrup-
tion of the shielding mechanism by spontaneous decay.
However, we expect our results to represent most of the
essential physics of the process and our conclusions to
be generally applicable to other cases. The main sim-
plifying assumptions of our collision model are that only
one of the excited-states of the quasimolecule participate
in the laser-induced. processes and that spherically av-
eraged Rabi coupling can be used. This two-state ap-
proach can be questioned, because both the alkali-atom
and metastable rare-gas species, which are the main tar-
get of laser cooling and trapping, have extensive multi-
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FIG. 1. The schematic model for optical shielding in a
two-state system. The ground- and excited-state potential
curves are U~(R) and U, (R), respectively. The external laser
field brings these curves to resonance at the interatomic dis-
tance R = R&. In the absence of weak decay we have situ-
ation (a) the system approaching from large B is excited at
B&, then slows down and is eventually reQected on the ex-
cited state at the turning point R~~. It can then remain in
this state or return to ground state as it passes R~ again.
Ei,;„marks the initial kinetic energy of the system, and E
is the asymptotic increase in kinetic energy In (h) we. show
how spontaneous decay can affect the process: the system
may decay back to ground state before it reaches R&~ and
can then continue its motion to the inner region located at
R && Rc-

level molecular structure due to the high spin degeneracy.
This is certainly true for sodium [22], which we have cho-
sen as our study case. However, an adequate quantum-
mechanical theoretical treatment of the collisions in the
presence of a strong light Geld is simply impossible for
the moment unless such a simplification is assumed, and
some insight into the physics of shielding collisions is pro-
vided by the two-state models, as well as testable pre-
dictions. As demonstrated in Ref. [17], the multistate
problem may in some cases be regarded as a group of
independent two-state processes. The most important
support for tw'o-state shielding studies, however, comes
from the experiments that have demonstrated the useful-
ness of the simple two-state Landau-Zener model [23,24]
in the description of the observed data [16,17].

In Fig. 1(a) we show the basic system for optical
shielding. The collision process is described in the time-
dependent picture. As the two atoms approach each
other the interatomic distance B diminishes and at the
Condon point Rc the blue-detuned laser field becomes
resonant with the transition from the ground state of
the quasimolecule to one of the excited states, which is
represented by a repulsive potential curve U (B). In the
absence of the laser field the undisturbed atoms reach the
inner region of the collisional ground-state quasimolecule,
where R &( R~ and various processes can take place.
Examples of such inner region processes are probe laser
absorption [11,16], inelastic hyperfine changing collisions
due to spin-dipole or exchange interactions [13,14], or
Penning ionization of rare-gas metastables [19,20]. How-
ever, with the blue-detuned laser we can transfer the
quasimolecule to an excited state, as described schemat-
ically in Fig. 1(a). The repulsive potential slows the

relative motion down and eventually the two atoms are
reflected. Classically the reflection takes place at the
turning point Rt~ where the potential-energy di6'erence
U, (Bt~) —U, (Ac ) equals E&,„, th. e initial relative kinetic
energy. Therefore, reaching the inner region is forbid-
den and the collision becomes shielded. Alternatively,
we can say that the inner region inelastic processes are
suppressed, which is the terminology adopted in Ref. [16].
We define the shielding measure Ps as a probability for
the quasimolecule to reach the inner region on the ini-
tial ground-state channel. The probability of inner zone
ground-state processes are decreased by this factor. For
efIicient shielding we need Pg (( 1.

The nature of the shielding process, however, depends
on the time scale for spontaneous decay. If the decay is
weak and we can ignore it, then the shielding model of
Fig. 1(a) is valid. When the time it takes for the sys-
tem to move on the excited state from R~ to Rt~ is large
compared to the average lifetime of the excited-state pop-
ulation, the efficiency of the shielding process may be re-
duced. The excited-state population can decay back to
the ground state before it has reached Rt~, as demon-
strated in Fig. 1(b). Even if the approaching atoms have
lost some kinetic energy during the stay on the excited
state they can still possess negative relative momentum
p = p, (dR/dt) (negative for approaching atoms, positive
for reQected ones; p is the reduced mass of the two-atom
system) and, therefore, reach the inner region. How-
ever, for suitably strong fields studies of radiative heat-
ing [25,26] and small-distance excited-state survival [27]
have shown that re-excitation of the decayed population
(recycling) mixes this simple picture, and we show that
the shielding is preserved by this recycling mechanism,
at least for our study case, and this is in fact predicted
by a simple semiclassical model.

It should be noted that the shielding process itself has
an inelastic character. After the atoms have been re-
jected on the excited-state the quasimolecule re-enters
the resonance region at R~ and stimulated population
transfer back to the ground state can then take place.
However, some population may survive on the excited
state to large R )) R~. The asymptotic potential-energy
difference E = U, (Bc) —U (B M oo) becomes an in-

crease in the final kinetic energy: EQy EQ + E~7
E is equal to hL, where 4 is the laser detuning from
the atomic transition. Therefore, at large 4 notable sur-
vival on the excited state at R )) R~ can lead to trap
loss, and at small 4 it contributes to the heating of the
atomic cloud. In fact;, the trap loss observed for rubid-
ium in Ref. [17] arises from this process and serves as a
measure of validity for the Landau-Zener approach to be
discussed in Sec. II. In the presence of strong spontaneous
decay the above picture for kinetic-energy exchange as-
sociated with the shielding becomes more complicated.
The clear exchange of energy is then turned into a radia-
tive process. One expects this process to create a final
ground-state kinetic-energy distribution, which has a tail
that extends from E&,„to Ek,.„+E . In Sec. III we show
that this is indeed the case.

A third aspect of the optical shielding is the role of
the processes taking place in the inner region. We can
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describe the problem with probability flux and scatter-
ing amplitudes. The incoming initial flux is affected by
the shielding, which turns some part of the flux into an
outgoing contribution. When some of the unshielded flux
is reflected in the inner region and returns to the region
R R~, the interference between the two outgoing flux
contributions can take place. This is because in the ab-
sence of strong spontaneous decay the contributions re-
tain their phase coherence (unless it is totally destroyed
in the inner region by some process). The interference
affects the distribution of the outgoing flux between the
ground and excited states at R~. Generally such phase
efFects are expected to be wiped out in most experiments,
but we shall give them some attention in Sec. II.

We use different methods for studying the optical
shielding. In the absence of spontaneous decay we es-
timate the efIiciency of the shielding process using the
Landau-Zener model with classical trajectories. We
shall discuss this semiclassical method and its limita-
tions. Furthermore, we shall combine the Landau-Zener
approach with exponential decay and recycling, and
produce semiclassical models for the shielding measure
Ps. A test of accuracy for the semiclassical methods
is provided by time-independent quantum close-coupling
calculations [28], time-dependent wave-packet dynamics
simulations [29—31], and, in the case of spontaneous decay
by the Monte Carlo wave-function technique [26,32,33].

This paper is organized as follows. In Sec. II we con-
centrate on situations where spontaneous decay is weak,
i.e., practically absent. We present the basics for the
quantal approaches in this limit. Then we describe the
semiclassical Landau-Zener model and its validity condi-
tions. The results from different methods are compared
in order to verify these conditions. In Sec. III we deter-
mine the cases when spontaneous decay can be important
with a study of time scales, and present extended semi-
classical Landau-Zener models for the shielding measure
Ps. We also show results from the Monte Carlo approach
for Pg and for the shielding-induced radiative heating,
and show how well the extended Landau-Zener models
describe the strong decay case. In Sec. IV we discuss the
implications of our results for optical shielding and cold
collisions.

where 4(R, t) is simply the quantum-mechanical two-
component state vector for the system. The ground- and
excited-state components of this wave packet, Pg (R, t) =
~@g(R, t)~ and P, (R, t) = ~4, (R, t)~, respectively, be
come after an integration over R the occupation prob-
abilities, i.e., populations of these states. The dynam-
ics of this wave packet is obtained by solving the time-
dependent coupled Schrodinger equation for @(R,t),

where the 2 x 2 Hamiltonian and the two-component state
vector are

& T(R) + Ug(R) hA
50 T(R) + U, (R)

(3)

hO: (JMgR~Eq ' dI J M eR)
= (Jl J'IMqM') hOg, (JJ'R).

(4)

Here T(R) is the kinetic-energy operator and Ug(R) and
U, (R) are the ground- and excited-state potential curves,
respectively. One should note that we have used the ro-
tating wave approximation and shifted the excited state
down in energy by one laser photon, Ru (now included
in U, ). This eliminates the oscillatory terms from the
laser coupling and the Hamiltonian becomes time inde-
pendent. Then the Schrodinger equation (1) is numeri-
cally more accessible. The shift in excited-state energy
also transfers the problem into a picture where the res-
onance points appear as curve crossings. We show the
shielding model in this picture in Fig. 2.

The complete quantum-mechanical problem should
treat the three-dimensional aspects of the collision, ac-
counting for the direction of laser polarization and the
relative angular momentum of the two atoms. If molecu-
lar total angular momentum basis states, I JMnR), n = g
or e, are used for the two-channel wave function in
Eq. (3), the radiative coupling matrix element hA in
Eq. (2) is [34]

II. WEAK SPONTANEOUS DECAY

We call spontaneous decay weak when it can be ig-
nored in calculations for the shielding measure. Then
we can use the methods presented in this section. . Our
approach is mainly based on the time-dependent view,
although some concepts of time-independent scattering
theory are employed in interference studies (the quan-
tum close-coupling method).
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In the full quantum description the probability to find

the two colliding atoms at the relative interatomic dis-
tance R is given by the wave packet P(R, t) = ~4(R, t)

~

FIG. 2. The shielding model in the curve crossing picture.
The notation is same as in Fig. 1. The tangent of the ex-
cited-state potential curve at B~ is shovrn as a dashed line.



OPTICAL SHIELDING OF COLD COLLISIONS

Here q = 0, +1 gives the polarization of the electric vec-
tor Eq of the light, M, M' are the projection quantum
numbers on the space-fixed quantization axis, and the
reduced Rabi matrix element Og, (JJ'R) is proportional
to ~I, where I is the laser intensity. The specific relation
is

Og, /2vr = (17.35 MHz) I (W/cm )dg„

where I is the power in W/cm2 and dg, is the reduced
transition dipole in atomic units of eao (e = electron
charge, ao ——5.2918 x 10 m). The second line of
Eq. (4) follows from the Wigner-Eckart theorem. Com-
plete quantum calculations must account for the break-
ing of spherical symmetry by the field (expressed by
the fact that J and J' can diff'er by one unit) and the
range of hO due to the spread in iMi between 0 and
min(J, J') [34]. In the present model calculation we ig-
nore the dependence of hO on J, J', M, M', and assume
that the Clebsh-Gordan coefficient in Eq. (4) can be re-
placed by 1/~3, which is the square root of the spher-
ical average of (Jl J'iMqM') 2. This is a standard ap-
proximation for describing collisions in a strong radia-
tion field [34,35]. The use of a root-mean-square ap-
proximation for the Rabi coupling matrix element elimi-
nates the geometry f'rom the problem and is the essential
step that permits us to use a two-state approximation for
the shielding. Previous calculations [34] of cross section
saturation due to intense light interactions for repulsive
curve crossings for room temperature conditions indicate
that such an approximation should be adequate for our
present purposes. Although we can expect to get a rea-
sonable qualitative description of the physics of shield-
ing, getting the quantitative details of saturation correct
will require a full multichannel quantum treatment of the
three-dimensional problem.

The wave packet has a momentum distribution
W(p, t), which can be obtained from 4 with a Fourier
traiisform (X) with respect to R,

Changes in the kinetic energy of the system can be seen
as changes in W(p, t) via the relation

(7)

The latter relation connects the kinetic energy of the rel-
ative motion with effective temperature T.

The calculation of the shielding measure with wave
packet dynamics is straightforward. We place the ini-
tial (t = 0) Gaussian wave packet Pg(R, 0) = i@g(R, O) i

at some appropriate distance that is much larger than
Rc Then, using E. q. (1) we propagate the wave packet
until t = T. The wave packet is given a negative ini-
tial momentum so that it moves towards smaller values
of R and eventually reaches the interaction region near
R~. The propagation time T is chosen such that the
shielding process is clearly ever at the end of the calcu-
lation. The portion of the wave packet that remained

on the ground state and reached eventually R = 0 gives
the shielding measure Ps directly. Similarly we can de-
termine the ground- and excited-state components of the
wave packet that eventually returned to large distances.
Fourier transforms of these components provide the en-
ergy exchange information [Eq. (6)].

Wave packet dynamics is limited by the Heisenberg
uncertainty principle. For our studies we need a wave
packet that at least initially is relatively well localized
(b,R small), but does not spread too fast (Ap small) and
has a well-defined absolute initial mean momentum po
(Ap/po (( 1) which we can relate to the temperature T
using Eq. (7). For the Gaussian minimum uncertainty
wave packet b Rb,p = 5/2, so we can obtain the above
situation only approximately. If we express the momen-
tum p in units of the laser photon momentum hko (the re-
coil momentum), and the distance R in units of A = 1/A'o,
then the spatial and momentum widths of the Gaussian
wave packet are related by AR = 1/(2Ap).

The shielding measure, as well as the probability for
excited-state production, can also be calculated using the
standard quantum close-coupling method [28], in which
one solves the time-independent Schrodinger equation
with the Hamiltoniaii H &om Eq. (2) using appropriate
asymptotic boundary conditions,

H@(R, E) = EC (R, E). (8)

Additional insights about the shielding process are pro-
vided by the close-coupling inethod, since solving Eq. (8)
provides the full scattering matrix S for the problem in
the absence of decay, and. can also handle with relative
ease both the ingoing and outcoming probability Quxes
simultaneously. The S matrix is calculated for a sin-
gle collision energy E, and must be averaged over the
distribution of E for a particular experiment. The heat-
ing due to the process discussed in Sec. I that produces
excited-state atoms is proportional to the probability of
excited-state production, iS&,(E, I)i

Reference [28] used the close-coupled method to calcu-
late trap loss probabilities due to exciting an attractive
excited-state potential for the case of red. detuning &om
resonance. This was done in a three-channel calcula-
tion containing the ground-state g, the attractive excited
state e, and an extra artificial channel a. The potential
for the artificial channel was selected to cross the excited-
state potential at small internuclear separation R, where
it could serve as a probe ef the scattering current reach-
ing this small distance on the excited state. Similarly,
our present close-coupled. calculation uses three channels:
the ground state g, the repulsive excited state e, and an
artificial probe channel a. In this case, the artificial po-
tential is chosen to cross the ground-state potential at
small R, characteristic of the inner zone process that is
being suppressed. The matrix eleinent iS~ (E, I)i mea-
sures the probability of starting with unit probability on
the ground entrance channel and ending on the probe
exit channel. Therefore, the shielding measure for light
intensity I is given by the ratio

iS (E, I)i'
ISg-(E I = o)I'
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This quantity is independent of the specific form of the
artificial channel and the magnitude of the g-a coupling.
Equation (9) was used to calculate the shielding measure
shown in Ref. [16].

B. The semiclassical Landau-Zener approach

where

( 2~M'l
!P, = 1 —exp!—

~I~I/s &
' (10)

B[U (R) —Ug(R)]
BB R=Rc

The shielding is, in this case, only partial as the proba-
bility to reach the inner region is

( 2~an'l
Pg =1 —P, =exp!—

~lpl/~)
(12)

Hence in the absence of spontaneous decay the shield-
ing measure Pg is equal to Pg. Usually for quantal wave
packets with nonzero Lp one should average Pg and P,
over the initial momentum distribution W(p, 0) as dis-
cussed in Refs. [26,31].

After the excited-state component of the wave packet
has been reflected, it passes the curve crossing for a sec-
ond time. We can again apply the Landau-Zener ap-
proach for the stimulated population transfer back to the
ground-state. Then we have a probability P to remain
on the excited-state asymptotically,

In the semiclassical approach one can ignore the
Heisenberg uncertainty principle, and assume a well lo-
calized (AR = 0) initial wave packet with W(p, 0)
8(p —po). This bridges the gap between the time-
dependent and time-independent scattering theory by in-
troducing a single initial momentum and hence a single
energy wave packet. The next step is then to assume that
this wave packet follows classical trajectories: its motion
on each state (a) takes place under the force exerted by
the potential curve of that particular state and (b) obeys
the laws of Newton.

When the wave packet reaches the curve crossing at B~
and passes it with the momentum p, part of it will enter
the excited state and the rest will remain on the ground
state. The semiclassical approach is simple: we assume
that the interaction region where the potential curves are
strongly coupled (!U, —Ug! + hB/2) is narrow and inside
it the potential surfaces can be replaced by their tangents
at R~, see Fig. 2. Tgen w'e assume that the wave packet
moves through this region with a constant momentum p
and any acceleration on either potential curve remains
negligible during this passage. Under these conditions
the classical trajectory becomes simply dR/dt = p/p,
and we can put it into the Landau-Zener model [23,24]
to replace the linear time dependence in the energy level
structure with linear spatial dependence. According to
this model the excited portion of a wave packet going
through such a linear level crossing is [29—31]

P = P, (1 —P,).

This is the probability for the two atoms to emerge kom
the collision with the shared increase of kinetic energy
equal to AE as explained in Sec. I. Of course, compo-
nents that remained on the ground state and got eventu-
ally reflected can also contribute to P, which leads to an
increase of P by a factor of 2; we shall discuss this later
in this article when we present some results. The quan-
tum close-coupling method calculates P =

! Sg, (E, I)!
which includes the contributions &om both the direct and
reflected paths and their interferences.

Certain conditions of validity need to be satisfied when
the Landau-Zener approach is used. If the turning point
for the incoming wave packet on the excited-state po-
tential curve is within the interaction region around B~
(E&,„+ hO/2) the linearization of the classical trajec-
tory (dR/dt = const) breaks down. Such situations
have been analyzed in the collision literature [36—39] with
great care. The spatial linearization can be violated espe-
cially for strong fields and small detunings, as the ground
and excited states can remain coupled even for large B.
In the original Landau-Zener theory the initial and fi-
nal states are defined as asymptotically decoupled; this
requirement is usually fulfilled automatically when both
the spatial and temporal linearization conditions apply.
These restrictions imply that the semiclassical picture is
good only for weak fields (small 0) and for high-energy
collisions (large p), in which case the shielding is negligi-
ble, as Eq. (12) shows. However, our experience is that
the above restrictions can be softened to some extent,
allowing a reasonable description of the process with the
Landau-Zener theory even for low energies, small detun-
ings and strong fields [26,27,29].

C. Results

Our choice of a model system was initially motivated
by the experiment of Ref. [21] in a sodium magneto-
optical trap. In one configuration a probe laser was ab-
sorbed during the collision of two ground-state sodium S
atoms in their E = 2 hyperfine substate. Absorption of
the probe photon caused the appearance of an ionization
signal due to the presence of a second photoionization
laser. It was found that the ionization signal disappeared
when a cooling laser was present and tuned 10 MHz to the
red of the S(E = 2) -+ Psy2(E = 3) transition. This
observation could be explained if shielding is provided
when the cooling laser excites a repulsive molecular hy-
perfine state correlating with S(P = 2)+ P3/2(E —3)
separated atoms. The cooling laser is tuned 50 MHz to
the blue of this lower separated atom asymptote. Cal-
culations of the Na2 molecular hyperfine potentials show
that such repulsive potential curves exist [22].

More recent experiments on trapped sodium have
demonstrated the existence of shielding at 4/2z 600
MHz blue detuning with an observed magnitude of shield-
ing measure that is consistent with our calculations [16].
As we shall show below, spontaneous decay has little ef-
fect at such large values of L. Our model calculations for
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the much smaller detuning of 50 MHz provide a much
more stringent test of the dynamical effects of excited-
state spontaneous decay. We have chosen as a study
case a sodium system with initial relative kinetic energy
Ei,;„/k~ = 250 pK. This corresponds to pp = 10hko. The
wavelength of the atomic cooling transition is A = 589
nm, so kp = 1.067 x 10~ m . When expressed in re-
coil units, the momentum p gives the kinetic energy:
Eg;„/k~ = p x 2.5 pK. The excited-state potential curve
in the crossing picture is

U, (R) = —M, . (14)

The parameters are Cs ——10(eao)2 in atomic units and
A/2vr = 50 MHz (equal to 5 atomic linewidths). For
this choice, R~ 1100 ap, where ap ——5.29 x 10
m is the Bohr radius and e is the electron charge. The
coupling between the levels is simply hO, where we take
the Rabi frequency 0/2vr to be in the range 0—20 MHz.
The flat ground state is assumed to have zero energy. The
potential configuration is shown in Fig. 2. With Eq. (14)
we have then

n=3/ (15)

For the quantum close-coupling calculation we have used

12 6

U (R) =P qR) i Ry (16)

where P = 4 x 10 cm and Rg = 4.49ao in atomic units,
in order to produce a realistic inner turning point for the
ground state.

In Fig. 3 we see that the shielding measure provided
by wave packet dynamics (WPD), the quantum close-
coupling method (QMCC) and the Landau-Zener ap-
proach (LZ) with and without average over the momen-
tum distribution W(p, 0) agree reasonably well even for
large 0, where the linearization arguments are assumed
to break down (Eg;„of250 pK corresponds to 0/2m = 5
MHz). One has to use the logarithmic scale in order
to see any differences between the various results. This
is just an example of how versatile the Landau-Zener
approach is, despite the validity conditions that arise
&om quite legitimate physical arguments based on the
original derivation of the time-dependent model. The
proximity of the two Landau-Zener curves in Fig. 3 sug-
gest that our initial wave packet with pp

——10hkp and
Lp = 2hkp is a reasonable approximation for a single
momentum state. In a wave packet with large Ap/po
one expects the Landau-Zener excitation probability P
to favor the slower components, and then the average
(Ps)~ = (Ps(p)W(p, 0))„should difFer from P~(po) [31].

The shielding becomes complete as P~ m 0 and the
shielding-induced kinetic-energy exchange vanishes as
P ~ 0 (because P, -+ 1 and the stimulated popula-
tion transfer back to the ground state becomes complete).
This is where the main practical problem for shielding
steps in. As Eqs. (10) and (15) predict, with large de-
tunings the Geld intensity I needed for complete shielding

is large (0 oc ~I). However, if we decrease the detuning
too much, the blue-detuned laser starts to interfere with
the cooling process itself. Moreover, the role of sponta-
neous decay increases as the detuning decreases, as the
time it takes to reflect the wave packet increases with
decreasing n (see the discussion in subsection III A). In
the experiment of Ref. [21] this problem does not arise
since the cooling laser itself provides the shielding effect.

Our standard shielding picture becomes a bit different
if we allow the escaped component Ps to return after be-
ing reflected at the inner region R. This may happen if
the transition at Rc is not saturated (weak Beld), i.e. ,

Ps g 0. The returning ground-state component can in-
terfere at R~ with the reflected excited-state component
after the latter has partly returned to the ground state
at R~ by stimulated population transfer. As a result
one has to add a phase factor Py ——4 sin (P) into P in
Eq. (13). The phase P depends on the potential structure
and Rabi coupling 0 as described, e.g. , in Refs. [40,41]
(this process is well studied in the literature for slow
atomic collisions [39,42—45] and, therefore, we shall not
dwell too much on the subject). Occasionally this double
crossing model is also called the Landau-Zener model,
although the term Landau-Zener-Stuckelberg model is
more appropriate (the phase term Py is the origin of the
Stiickelberg oscillations [46]). In Fig. 4 we show using
the quantum close-coupling method how these oscilla-
tions modify P . However, thermal and Geld averages
are usually assumed to wipe out such phase effects, and
then P = (4P, (1 —P, ) sin (P)) 2P, (1 —P, ), i.e. ,
the two wave packet components can be added incoher-
ently. It is sometimes possible to observe experimentally

100, —

10 2

Ps

103

10-4—

10-5

10 15 20

0/2n (MHz)

FIG. 3. The shielding measure Ps for weak spontaneous
decay as a function of the Rabi coupling for Na atom collisions
at 250 pK for a blue detuning of 50 MHz. We show the results
from wave packet dynamics (WPD), quantum-mechanical
close coupling (QMCC), and the Landau-Zener (LZ) model
with and without averaging over the initial momentum dis-
tribution.
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TABLE I. The different cases in the semiclassical ap-
proach. The time scales appear in the order of decreasing
length. The Landau-Zener theory is denoted by LZ and its
extensions with LZD and LZDD.

of the validity conditions for the Landau-Zener model
are clearly violated, but as the studies for weak decay in
Sec. II show, these conditions can be softened to some
extent.

Case
I
II
III
IV
V
VI

Relations
&~ )) «p )) 7n
&~ )) 7n )) «p
«p )) &p )) 7n

«p )) &n )) 7~
7n )) «p )) 7~
&n )) 7~ )) «p

Description
no decay effect, LZ works
no decay effect, LZ dubious
no recycling, LZD works
recycling present, LZDD works
recycling dominates, LZDD dubious
no decay effect, LZ dubious

B. Dissipative +rave packet dynamics

When the spontaneous decay is strongly present one
has to solve the Liouville-von Neumann equation

Ps = P + P, [1 —exp( —p7& )] = 1 —P, exp( —pe& ).
(20)

p, i, (R—, R') Hg, (R')]

i h) I,—, i,( pi, ((R, R')
kl

(24)

( C.
~gM. + 50/2)~

to the classical turning point Bpp,

(22)

Rtp

7gp ri = dR', (23)
R Qp' —2p[U (R') —U (R )]

where po is the momentum of the wave packet at B~.
The above model clearly decreases the time for decay
and hence increases the excited-state survival. This then
leads to a decrease in the shielding measure Pg. For
comparisons with wave packet results both Eqs. (20) and
(21) can be averaged over W(p, 0) when needed.

For very strong fields vari is the largest time scale (re-
gions V and VI). Then we have wave packet reflection
and clear decay well within the interaction region. Some

We call this a Landau-Zener model with decay (LZD),
and it has been successfully employed in trap loss stud-
ies [28,48,49]. Since wii oc 0, LZD is basically a weak field
approach. We shall compare it with the quantum results
in the subsection III C. For the experimental setup of
Ref. [16] we have 1 —exp( —pwq&) 0.0213, which obvi-
ously cannot cause any detectable deviation of Pp from
P~ for any P, .

If v&z )) vari )) r~ (region IV) then necessarily strong
decay takes place within the interaction region, where
the wave packet can be re-excited and the recycling be-
comes an important efFect. Otherwise the basic validity
conditions for the Landau-Zener theory are fulfilled. Re-
sults from our other studies [26,27] have suggested that
in the presence of recycling the exponential decay starts
only after the wave packet has reached the edge of the
interaction region where recycling stops. Although the
excitation process is clearly mixing with the decay in or-
der to produce recycling, the Landau-Zener character of
the process seems to prevail. Assuming that during the
recycling the excited-state wave packet was also decel-
erated, we can update the LZD model of Eq. (20) to a
LZDD model (Landau-Zener model with delayed decay):

Ps = 1 —P, exp( —pwq~ ri).

Here 7&p Q—:7 &p 7 Q ls simply the time it takes to move
&om the inner edge of the interaction region, located at

for the density matrix p(R, R', t), instead of the
Schrodinger equation (1). Here the Hamiltonian is the
same as in Eq. (2), and the operator I' represents the
decay. Unfortunately, the problem cannot be treated by
solving Eq. (24) because of limitations on current com-
puters [33], although some limited studies can be made
[31]. Hence we need an alternative method.

We apply the Monte Carlo wave function method, in
the form derived in Ref. [32], to wave packet dynamics.
Our numerical quantum approach has been discussed in
detail in Refs. [26,33]. We add an optical potential to
the system Hamiltonian H of Eq. (2) and solve the cor-
responding time-dependent Schrodinger equation (1) in
one spatial dimension (R) only. Despite the optical po-
tential the system remains closed, however, because af-
ter each time step the state vector (3) is renormalized to
unity. The evolution process is disturbed by randomly
selected quantum jumps which provide a unique wave
packet history. This history is supposed to correspond to
an observed evolution of a single system, with detection
of the spontaneously emitted photons. A set of these his-
tories are then combined into an ensemble that forms an
adequate approximation to the full density matrix, i.e. ,

the solution of Eq. (24).
In our shielding study the portion of the Monte Carlo

wave packet that has reached. B = 0 before the end of
the integration, when t = T, is taken to correspond to
Pg. Integration times T are chosen such that at t = T
we have wave packet components at B &( B~ and at
B )) B~ only. The kinetic-energy exchange is deter-
mined by forming an ensemble of Fourier-transformed
wave packets [Eq. (6)] alongside the ensemble for spa-
tial evolution. Then we obtain W(p, T) which can be
matched against W(p, 0). Our model is a one-way study
as we do not allow wave packet reflections at B 0,
but otherwise determining Pg from wave packet studies
would be diKcult since LB tends to be large and the
incoming components mix with the outgoing ones.

C. Results

We have tested the Landau-Zener approaches pre-
sented in Secs. II and III, i.e. , Eqs. (12), (20), and (21).
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The results for Ps are shown in Fig. 5. The solid line
stands for the Landau-Zener prediction of Eq. (12), af-
ter a momentum average over W(p, 0). The solid circles
show the results obtained with the Monte Carlo simula-
tions, i.e., with decay. The dotted line is the LZD pre-
diction of Eq. (20) with a momentum average. It sat-
urates to the value 1 —exp( —p7t, ~) when P, ~ 1 (and
Pg ~ 0). The simulation results show that Eq. (20)
works for roughly 0 + 2.5 MHz, but then fails. However,
the LZDD method of Eq. (21) with a momentum average
(dashed line) gives a nice agreement with the simulation
results.

The results conGrm the assumptions we made when
studying the time scales in the subsection III A. Inter-
estingly, for 0 & 10 MHz we have w~ ) et~ which means
we are moving Rom region IV to region V, where the
wave packet refIection takes place during recycling. But
the LZDD model shows no indication of deviating from
the wave packet results. The region of validity for LZD,
i.e. , region III, is very narrow for our particular study
case, because E1,y„ is small. But there may be other
systems where the validity conditions for Eq. (20) are
fulfilled in a region where P is large. In any case the
LZDD model converges to the LZD model in the weak
Geld limit, so one can use LZDD in general. It is interest-
ing to note that our model seems to work well for clearly
nonzero widths of the interaction region, although we as-
sume that the Landau-Zener excitation and the change
from the ground-state classical trajectory to the excited-
state classical trajectory takes place at a single point,
namely B = Bc.

As mentioned before, the shielding produces an in-
crease in kinetic energy as a side product. For weak
spontaneous decay this is seen as a clear increase of Ek;„
equal to LE . For strong decay, like in our study case,
this increase is turned into a radiative heating, which
disappears in the strong field limit. During the passage

1

from B to B ~ oo the excited-state wave packet decays
exponentially, and the gain in kinetic energy sweeps over
the local energy differences U, (B) —U, (B ~ oo). This
is seen in Fig. 6 where we show the momentum distribu-
tions Ws(p, T) for the ground-state wave packet compo-
nent at the end of the simulation (t = T). The part of the
wave packet that has remained unshielded (Pg) has neg-
ative momentum, and the shielded part has positive mo-
mentum. We can see in each distribution a tail towards
large positive momentum; these tails are clearly visible
in the selected positive momentum close-ups of Fig. 7.
They arise from the spontaneous decay at B & R~, as
mentioned earlier, and disappear when P, becomes close
to unity and the stimulated decay is practically com-
plete. Then very little excited-state population survives
to B ) B~ and contributes to the radiative energy ex-
change.

When considering the radiative heating one has to take
into account the fact that decay takes place when the
quasimolecule after reBection moves through the region
between Bq& and B~. Then we have decay-produced
ground-state components with small positive momentum.
They can either remain on the ground state or enter the
excited state as they pass B~. They may contribute to
the lower end of the momentum distribution. However,
this effect is not strong, as the peak positions in the close-
ups shown in Fig. 7 are shifted only slightly below po. In
our case the nonzero width of the wave packet masks this
efI'ect to some extent. The role of these decayed compo-
nents may not necessarily be small for other systems, in
which case they should be accounted for.

In the case of an attractive potential in our previous
study [261, the recycling enhanced the kinetic-energy ex-
change and hence the heating associated with the shield-
ing was large when P 1. However, in our shield-
ing model the stimulated population transfer co-operates
with spontaneous decay in shifting the refiected wave

PD
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ps part hielded Part Q = 10.0 MHz
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I
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FIG. 5. The shielding measure I~ for strong spontaneous
decay as a function of the Rabi coupling. The benchmark
quantum results are from the Monte Carlo wave packet
dynamics (MCWPD) calculations. Three different Lan-
dau-Zener models are applied (LZ, LZD, and LZDD).
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FIG. 6. The Gnal ground-state wave packet momentum dis-
tributions. For brevity the 2' factor has been dropped froze~

0 in the curve labels.
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FIG. 7. The 6nal ground-state wave packet momentum dis-
tributions for the shielded part. The radiative structure of ki-
netic-energy exchange produces the difFusive tails right of the
main peak located near the initial momentum distribution,
which is a Gaussian with (p) = 105ko and Ap = 2hko. For
brevity the 2' factor has been dropped again from 0 in the
curve labels.

IV. CONCLUSIONS

Our model for optical shielding follows &om many sim-
plifying assumptions and. approximations. However, we
believe that it contains some aspects that are also present
in the actual experimental situation. In a wider per-
spective the surprising usefulness of the Landau-Zener
model with and without spontaneous decay is very im-
pressive. We would hope that this result would extend to
the multichannel case needed to describe the alkali-atom
and metastable rare-gas systems for which real experi-
ments are being done. The model can be used as the
basic tool for qualitative and even quantitative semiclas-
sical description of processes related to cold collisions.
This diminishes the need for time-consuming and tedious
simulations, which in any case, because of the simplicity
of the model, can in practice have only a qualitative role
in comparisons with actual experiments. The key point
in the use of the Landau-Zener model and its extensions
is the time-dependent view of the process: the validity
of semiclassical models can be determined by studying
the relevant time scales. Our previous studies [25—28,31]
support this approach to the cold collision problems.

With suitably strong fields one obtains, within the lim-

packets back to the ground state. Hence there is no re-
cycling effect which would force survival on the excited
state at B ) B~, and the subsequent enhancement of
kinetic-energy exchange is absent. Therefore, the shield-
ing picture at large 0 with decay resembles very well the
situation without decay and we can have complete elastic
shielding in the presence of spontaneous decay.

its of our model, practically complete shielding, and si-
multaneously avoids the creation of additional heating or
trap loss by the shielding process itself. This is due to
the adiabatic nature of the excitation process and the re-
cycling effect, upon which our semiclassical approach is
based. The results &om this approach are verified by the
Monte Carlo simulation results surprisingly well. At large
d.etunings, which is the usual case in experiments, the
spontaneous decay can be ignored and the semiclassical
description of shielding is reduced to the basic Landau-
Zener model, which explicitly tells how the Geld detun-
ing and intensity, and the trap temperature determine
the excitation probability and hence the shielding efB-
ciency. It should be pointed out, however, that we have
not truly explored the region of strong saturation, which
with large detunings is an unlikely situation to occur. In
the presence of strong spontaneous decay and a laser cou-
pling which can saturate the molecular transition even at
large distances one can expect the recycling to turn into
strong steady-state formation, which may well have an
effect on the Landau-Zener view of the excitation pro-
cess. Since such situations are more common in trap loss
models, we are currently studying this particular param-
eter region (corresponding mainly to regions V and VI
in Table I) in the context of attractive excited-state po-
tentials. Also, for the shielding case one may then have
to take into account the presence of other states, such as
the attractive counterpart of the repulsive excited. state
used in this paper.

A complete quantum-mechanical treatment of the
shielding process for realistic atoms must also take into
account the role of atomic and, molecular degeneracy and
the selection rules for radiative transitions contained in
Eq. (4). Even the simplest system for laser cooling, a
S ~ P transition without nuclear or electron spin,

such as provided by Ca or Mg atoms, has the possibil-
ity of J' = J + 1 transitions as well as a range of M
projection quantum numbers. This is because a strong
radiation field breaks the spherical symmetry of the field-
&ee quasimolecular system, thereby giving rise to an in-
finite set of coupled Schrodinger equations instead of the
two coupled ones in Eq. (8) [34]. In practice such equa-
tion sets can be truncated. for very low energy collisions
after a relatively few angular momenta are included in
the hierarchy. For normal temperature collisions, solving
a truncated set of equations leads to slower saturation
with laser power I than predicted by two-state models of
the type we have employed here. It is now important to
construct more realistic quantum-mechanical models of
shielding in the low T limit, in order to test the limita-
tions of the two-state model.

Our purpose in this paper has not been to describe spe-
cific experiments but to develop some general concepts
about the physics of optical shielding of collisions. We de-
scribe in a separate publication [16] the good agreement
between quantum and LZ model calculations and the ob-
served shielding in a Na magneto-optical trap at 600 MHz
= 60 p blue detuning. Another recent publication [17]
also suggests that an LZ model can account for the ex-
perimentally observed saturation of repulsive state exci-
tation in a Rb magneto-optical trap. On the other hand,
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Ref. [19] has reported a saturation of shielding measure
for Penning ionization collisions of trapped metastable
Xe(j = 2) atoms at a magnitude of Ps —0.2 as the power
of the shielding laser increased. This saturation limit cor-
responds to much less e6'ective shielding than would be
predicted by a two-level model. This discrepancy demon-
strates the necessity of developing more realistic three-
dimensional multichannel quantum-mechanical models of
the shielding process. We are currently working on im-
proved models. In any case, we expect that much of
the qualitative physics contained in the two-state models
will carry over to the general case, even if some revision
of quantitative predictions concerning saturation should
be necessary.

Finally, there is one other avenue that should be ex-
plored in the context of achieving the high atomic den-
sity and low temperature needed to achieve Bose-Einstein
condensation. In addition to lowering the ground-state

inelastic collision rate without necessarily introducing
signiGcant additional inelastic processes, the ground-
state elastic scattering rate can be strongly increased by
the strong radiative interactions at long range near B~.
This prospect could lead to improved evaporative cooling
rates, if evaporative cooling proves to be a viable scheme
for cooling species other than hydrogen [50]. A careful
study of the low T behavior of the elastic scattering prop-
erties of the ground state in a shielding laser Geld needs
to be carried. out.
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