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Effective stimulated laser cooling of atoms with a three-level h configuration

by two negatively detuned standing light waves
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A laser cooling scheme for atoms with an effective three-level A configuration is presented. The cool-

ing force is obtained by using two standing light waves, each interacting only with one of the two atomic

transitions and both detuned red with respect to the transition. For a given laser power, the force

exceeds the largest force on a two-level atom by a factor of 2 or more and the atomic velocity capture

range is at the same time significantly increased. The spatially averaged force as well as the spatially

averaged momentum diffusion coefficient, as a function of the atomic velocity, is calculated. The semi-

classical steady-state momentum distributions are presented for some specific cases and an experimental

realization of the cooling scheme is proposed for the case of metastable helium.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

Manipulation of multilevel atoms by laser light has
been studied both theoretically and experimentally dur-
ing the past decade [1—7]. The qualitative new physics
that is generally connected with these multilevel systems
as compared to two-level situations has o6'ered many new
possibilities in laser cooling. For low laser intensities, po-
larization gradient laser cooling [1] has made it possible
to reach temperatures much below the Doppler limit [g],
which is the temperature limit for two-level atoms in op-
tical molasses. Laser cooling of three-level atoms by
standing light waves has recently also produced tempera-
tures below the Doppler limit [2,3]. Coherent population
trapping [4], where atoms in a random walk by chance
fall into a coherent superposition state that does not in-
teract with the light field, can give rise to very narrow
structures in the atomic momentum distribution. For
high laser intensities, nonzero forces on stationary three-
level atoms in standing light waves have been suggested
and observed [5]. Also coherent atomic beam splitters
utilizing three-level atoms have been considered lately
[6].

In the present paper, the situation of a three-level atom
with a A configuration moving in two standing light
waves, each interacting only with one of the two transi-
tions, will be discussed. The general formalism given in

[9] is applied to calculate the force acting on the atom
and the momentum diffusion coefticient for such a three-
level case. The emphasis will be on situations where
strong cooling forces and large velocity capture ranges
can be obtained at the same time. Such schemes could
represent alternatives to proposed laser-cooling schemes
with the same characteristics [10,11],when an effective A
configuration is present in the atoms of interest.

II. THE FORCE
AND THE MOMENTUM DIFFUSION COEFFICIENT

a&
ic&

The general character of the discussion in [9] makes it
straightforward in principle to calculate the force F and
the momentum dN'usion coe%cient D for multilevel
atoms moving in light fields. The main difference from
the two-level case discussed in [9] lies in the differences in
the equation of motion of the internal-state density ma-
trix and hence in the operators used for calculating I and
D.

In Fig. 1 a three-level A system is shown where I,b

and I,b represent the decay rates of the excited state ~b )
toward the stable states ~a ) and ~c ), respectively. If the
atom is assumed to interact with two standing waves
along the z axis which have a relative displacement of the
nodes of hz with respect to each other and where the one
wave only couples the ~a ) and ~b ) states with a max-
imum Rabi frequency of ~,b, while the other only couples
the

~
c ) and

~
b ) states with a maximum Rabi frequency

of ~,b, then the interaction part of the Hamiltonian in the
rotating-wave approximation (RWA) reads
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FIG. 1. Sketch of a three-level A system. I b and I,b

represent the decay rate of the state ~b ) to the states ~a ) and

~c ), respectively.
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and

F(v)= JF(z, v)dz

D(v)= fD(z, v)dz

(2)

(3)

will only be considered in the following. By varying the
Rabi frequencies x.,b and v,&, the phase P, the detunings
5,& and 5,b (defined as the laser frequency minus the tran-
sition frequencies) as well as the ratio between the decay
rates, a variety of different shapes of F and D as a func-
tion of velocity can be obtained. In the following a spe-
cial situation, which is very interesting for laser cooling
of atoms from both a theoretical and an experimental
point of view, will be considered.

A. The mean force F

In Fig. 2 the force F is shown (solid curve) for the A
system with I,b =l,~ =I, K b =40I, K g =4I,
5,b= —21, 5,b= —20I, and /=0. The force exhibits
several important features for laser cooling. First, the
force is an odd function of v, as needed for cooling to-
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FICz. 2. Spatially averaged force acting on an atom in stand-

ing light 6elds. Solid curve: the force E for a A-system case with

r.„=r,„=r,~.,=4or, ~,„=4r, s.b= —2I, 5,b= —201, and
/=0. Dashed curve: dressed-state Monte Carlo simulations in-

cluding diabatic transitions for the same A system. Dotted
curve: the force F calculated for the two-level case with

~o =40I and 5= —2I . Dash-dotted curve: dressed-state
Monte Carlo simulations including diabatic transitions for the
same two-level case.

+AL [Ir bcos(kz)( l~ & & bI+ Ib ) & ~l)

+K cos(kz+y)([c)&b)+ )$7)&c[)] .

Here k is the norm of the wave vectors (assumed to be
the same for both standing waves) and P—:kb,z. The
equations necessary for calculating the spatial and the
velocity-dependent force F(z, v ) and the momentum
diffusion coefficient D (z, v) are, for this situation,
presented in the Appendix.

To limit the discussion, the spatially averaged values of
the force F and the momentum diffusion coeScient D
given by

ward zero velocity. Second, it has a constant sign in the
entire positive velocity range, i.e., the velocity range from
which this force can capture atoms is in principle infinite,
in contrast to stimulated cooling of two-level atoms [12].
Third, the range where the force exceeds the maximum
Doppler-cooling force ( —

—,'Akl ) is nearly an order of
magnitude larger than for the best two-level case with the
same laser intensity. Fourth, the maximum force is near-

ly twice as large as the maximum obtainable one with the
same laser intensity in a two-level situation. The last two
features wi11 reduce the cooling time needed in experi-
ments.

From the calculations of the force, it is clear that the
part of the force originating from transitions between the
states ~a ) and ~b ) dominates in the whole velocity range.
The force has, however, for small velocities the opposite
sign of the force for the two-level case with ~o=40I and
5= —21 (see the dotted curve in Fig. 2). Hence, the
third level that has been introduced makes a sigmficant
difference, even though the part of the force directly con-
nected with the transition between

~
b ) and

~
c ) is negligi-

ble.
The physics behind the new stronger force can best be

discussed in the dressed-state basis of a stationary atom,
which in the RWA and in the [ ~a ), ~b ), ~c ) ] basis is
given as the eigenvectors of the matrix

0 Ir,b(z) Ir,b(z)

Ir,b(z) 5,b 0

Irb (z) 0 5b

Kgg (z) =Kag cos( kz), Kqb (z) =Kqb cos( kz +P )

The admixture of the three states ~a ), ~b ), and ~c ) in the
dressed states is shown together with the corresponding
dressed-state energies in Fig. 3 for /=0 as a function of
position in the standard waves. At the nodes of the elec-
tric fields the dressed states correspond just to the three
bare atomic states, while in the antinodes, they corre-
spond to highly mixed atomic states.

A naive calculation of the force by Monte Carlo simu-
lations similar to the ones discussed in [13], involving
only the radiation transition rates between the dressed
states and with the instantaneous forces defined as minus
the gradient of the dressed-energy curve the atom stays
on, results in a spatially averaged force that is essentially
zero for all velocities. This failure to reproduce the mean
force F given in Fig. 2 must be due to the neglect of dia-
batic transitions between the dressed states (which espe-
cially occur at the avoided crossings) and the disregard of
coherences. It is known that when diabatic transitions
are taken into account, the equation of motion for the
populations and coherences no longer separate [12] and
Monte Carlo simulations dealing only with populations
cannot be expected to be correct. In order to understand
the physical mechanisms behind the force for the A sys-
tem, we have, however, made Monte Carlo simulations
based on the populations along, but introducing reason-
able diabatic transition probabilities. The avoided cross-
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ing between the dressed states ~2) and ~3) involves essen-
tially only the two atomic states ~a ) and ~b ) and hence
the formalism of Ref. [14] can be applied. In Ref. [14]
the diabatic transitions were considered as Landau-Zener
transitions [15] and the Landau-Zener factor P„z going
into the S matrix for the diabatic transitions is given by

5b
PLz(v) =exp[ —2frg(v)], g(v) =

4kKgb V

in our notation. If coherences are disregarded, PLz
would be the transition probability between the two
dressed states. In the Monte Carlo simulations, we have
heuristically used this probability to decide whether the
atom should change from one of the two involved dressed
states to the other when the atom is just at the middle of
the avoided crossing.

The other avoided crossing between the dressed states
~1) and ~2) cannot be treated in the Landau-Zener pic-
ture since if the coupling between the two dressed states
is neglected, the potential curves would be two crossing
curves: one constant and one with a parabolic shape in
the region of interest instead of a single linear crossing, as
needed in the Landau-Zener model. Simple analytical

V„al
P (v)=sin

II
(6)

where V,2 is the interaction energy matrix element be-
tween the two dressed states and Al is the effective spatial
extension of the interaction. V,2hl can be estimated by
considering the dressed-state levels with and without the
interaction present. In such a way we found that
V,2b, l/ffi-srl /k. The probability given by Eq. (6) with
V,2b, l/1/l=frl /(2/c) has been introduced in the Monte
Carlo simulations. In Fig. 2 the force calculated by this
Monte Carlo method (dashed curve) is shown. The shape
as well as the magnitude of the Monte Carlo force is very
similar to I if the smaller structures are neglected. The

models for such a crossing as given in Ref. [16]cannot be
applied in our case, due to the complicated spatial depen-
dence of the interaction. However, to also include dia-
batic transition between ~1) and ~2) in the Monte Carlo
simulations, we approximated the broad avoided crossing
by a model with two initially degenerate curves coupled
by a constant interaction matrix element. This model
gives the following probability for an atom to change
curve along the crossing [17]:
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FIG. 3. (a) The probability of finding an atom in each of the three atomic states
~
a ), ~

b ), and ~c ) as a function of position in the
standing wave when it is known that it is in the dressed-state ~1). (b) Same as (a), but for the dressed state ~2). (c) Same as (a), but
for the dressed state ~3). (d) The dressed-state energies. The standing-wave parameters are the same as in Fig. 2.
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agreement is actually better than could be expected, since
in the Monte Carlo approach the treatment of the diabat-
ic transitions is nonexact and the coherences is disregard-
ed. The fourth curve in Fig. 2 represents the two-level
force calculated by Monte Carlo simulations, including
the Landau-Zener probability given by Eq. (5) for the dia-
batic transitions. Here again the simplified model can ex-
plain most of the physics, but the magnitude of the force
is, in this case, slightly below the spatial averaged force
calculated by using the optical Bloch equations.

For an atomic velocity equal to I /k, both the diabatic
transition probabilities are close to unity. The large de-
celerating force for velocities around this value can be
understood by the following argument. Assume that the
atom starts in the ~1) state at the node of the standing
wave. In this state, the force on the atom is small due to
the nearly constant energy of the state. Furthermore, it
is a relatively stable state since it is nearly the pure
ground state ~c ) in the atomic basis. When the atom ar-
rives at the antinode, it will jump (according to our mod-
el) to the ~2) state and start losing kinetic energy as it
climbs the potential for this state on its way toward the
next node of the field. If a radiative decay occurs, the
atom will preferentially fall back into the

~
1 ) state where

the force is small. Otherwise, it will continue on the l2 )-
state potential until the node and then make a diabatic
transition to the ~3) state, where it will continue to lose
kinetic energy. In the ~3) state, the atom still prefers to
decay to the 1) state, where it will probably stay until
the next antinode. By introducing a third level, one then
partly avoids the problem in the two-level case with radi-
ative decays to an accelerating potential.

The maximum spatially averaged force, which could
hypothetically be obtained with the dressed states shown
in Fig. 3(d), would arise if the atom between the antinode
and node stayed in the ~2) state and from the node to an-
tinode would stay in the ~3 ) state where it then decays
radiatively back to the ~2) state. This force is = 13 irikI,
which is only a factor of -5 larger than the maximum of
F for the three-level case in Fig. 2, but about ten times
higher than the maximum spatially averaged force ob-
tainable for two-level atoms with the same laser intensity.
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FIG. 4. The spatially averaged atomic momentum diffusion
coefficient as a function of velocity. Solid curve: the A-system
case with the standing wave parameters is the same as in Fig. 2
(see also the inset). Dashed curve: two-level case with Kp 40r
and 6= —2I .

ing two-level case. The effect of the special shape of the
momentum diffusion coefficient on the steady-state
momentum distribution will be discussed further in Sec.
IV.

III. DEPENDENCE ON THE RELATIVE
DISPLACEMENT OF THE TWO STANDING WAVES

0.50

In order to optimize the cooling scheme, the relative
displacement of the two standing waves, or, equivalently,
the phase P defined in Sec. II, has also been varied. In
Fig. 5 the force at zero velocity Fo is shown as a function
of the phase P for the same Rabi frequencies and laser de-
tunings as in the A-system case discussed above. Only
when /= nor/2, where n is an integer, the force vanishes
at zero velocity. For all other phases, a finite force is
present, as has been discussed theoretically and observed

B. The momentum di8'usion coefBcient D

The momentum diffusion coefficient D is shown in Fig.
4 for the same A system as considered above (solid curve)
and for the two-level case with ~0=40I and 5= —2I
(dashed curve). The velocity dependence of the momen-
tum diffusion coefficient for the A system is very different
from the two-level atom situation. First, D peaks at a
nonzero velocity and has a local minimum at zero veloci-
ty. This is in contrast to the normal two-level situation
(see Fig. 4, dashed curve), where the spatially averaged
momentum diffusion coefficient is roughly a monotonical-
ly decreasing function of v. Calculations show that the
reason for this low diffusion coefficient at low velocities is
that the atom stays in the dressed state ~1) most of the
time and hence only feels a small nonfiuctuating force
(see Fig. 3). Second, the diffusion coefficient D is seen to
be an order of magnitude smaller than in the correspond-
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FIG. 5. The spatially averaged force I'p at zero velocity as a
function of the phase P =knez, where k is the norm of the wave
vectors and hz is the relative displacement of the nodes of the
two standing waves. The Rabi frequencies and detunings are
the same as in Fig. 2.
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in experiments [6]. We have, for a set of phases, calculat-
ed the force and the momentum diffusion coefficient as a
function of velocity, but even though cooling toward a
finite velocity is possible for t|I+nm/2, the best cooling
condition is obtained when ttl=nm F. or p=(n +TI)n, the
force is significantly smaller than for /t/=no, which can
be seen in Fig. 6, where the spatially averaged force F for
/t/=n. /2 is shown (solid curve) as a function of velocity.
The corresponding dressed-state energies are shown in
Fig. 7, where it should be noted that the coupling be-
tween the states

~

1 ) and ~2 ) is much weaker than in Fig.
3. Hence we have performed a Monte Carlo simulation
where the diabatic transition between the states

~

1 ) and
~

2 ) was neglected to calculate the force. This force is
represented by the dashed curve in Fig. 6. Again the sim-
ple physical picture gives reasonable results. The struc-
tures in the Monte Carlo are due to the statistical nature
of the calculations and have no physical significance.

IV. THE MOMENTUM DISTRIBUTION

In the case of two-level atoms moving in strong stand-
ing light waves, it has been found that the steady-state
momentum distribution can be reasonably well expressed
by [9,10,18,19]
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FIG. 7. Dressed-state energies for standing waves with a rel-
ative phase of m/2.

Q'F VI (v)=
1+(v/vF)

(8)

steady-state distributions depend only weakly on the
atomic mass as for two-level atoms.

For a two-level atom moving in a standing light wave,
the spatially averaged force can be approximated by

I

f(p)=f(0)exp m f dv'
D(v')

if the adiabatic condition

kv«(2mtl //tel)' (9)

In Fig. 8 this steady-state momentum distribution is
shown for the helium case considered in Sec. V below, to-
gether with distributions for fictitious atoms which have
the same atomic properties as helium, except for the
mass. Note that the scale on the horizontal axis is the
atomic momentum divided by the square root of the
mass. This means that atomic samples having the same
steady-state energy distribution would have coinciding
curves in Fig. 8. Even though the mean force and the
momentum diffusion coefBcient are quite different from
those in the two-level atom case for low velocities, the

Do
D(v)

1+(v/vD )
(10)

where Do is the diffusion coe%cient at zero velocity and

vD is a constant. calculations show that vF = vD for near-

ly all combinations of detunings and Rabi frequencies

is fulfilled [12]. Here aF is the friction coefficient and vF
a constant. In the same limit, the momentum diffusion
coefficient can be written [9]
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FIG. 8. Calculated atomic distributions from Eq. (7) with
F(v) and D(v) given in Figs. 2 and 4. p is the momentum of the
atom in the direction of the laser beams and m indicates the
mass of the atom relative to helium. All other parameters -re
assumed to be like those for the 1s2s 3 S& to 1s2p P& transition
in helium (see Sec. V).



1412 MICHAEL DREWSEN 51

[20], so the steady-state momentum distribution can be
found from Eq. (7) to be

f (p) =f (0)exp
+F P
Do 2m

Equation (11) corresponds to a thermal distribution with
kii T =Do/a~, where k~ is Boltzmann's constant and T
the temperature. Plotted as a function of p/m'~, this
distribution is clearly independent of the mass of the
atoms.

V. EXPERIMENTAL REALIZATION

In this section, a realistic experimental realization of
the A-system laser-cooling scheme considered above will
be proposed. In helium, a closed cooling transition be-
tween the levels 1s2s S, and 1s2p I'& exists at a wave-
length of 1083 nm. Since the total quantum number J= 1

for both states, transitions between the Zeeman sublevels
with MJ =0 are forbidden. By applying two near-
resonant standing waves, which are right and left circu-
larly polarized, respectively, one can, after a short period
of optical pumping, obtain an effective A system consist-
ing of the Zeeman substates with MJ=+1 of the lower-
lying state and the substate with MJ=O of the upper
state. The decay rate of the upper state is the same for
both states MJ =+1 and will be denoted I . If a single el-
liptically polarized standing wave is created with the ra-
tio of the intensity of the o.+ and o. components given
by (K,b/K, & ) and a magnetic field is applied in the direc-
tion of the standing wave such that the Zeeman splitting
between the two substates with MJ=+1 is equal to
5,b

—5,b=18I, then if the laser frequency is detuned
—11I with respect to the field-free transition, the laser-
cooling situation discussed above can be obtained with
the right choice of laser power. The Clebsch-Gordan
coefficient of the two involved transitions differs by a
sign, but the force and the momentum diffusion
coefficient do not depend on the sign of the Rabi frequen-
cies.

The present cooling scheme should also be applicable
for A systems where bichromatic standing waves are
needed as long as the relative frequency difference be-
tween the two laser frequencies is small and the atomic
beam interacts with the light beams at a position where
the relative node separation of the beams is close to zero.
In a11 the calculations presented, spatially averaged quan-
tities have been used and hence possible localization
effects have been disregarded. Calculations have shown
that the atom, when the velocity is low, stays most of the
time in the dressed state ~1) [see Fig. 3(d)]. The energy
level of the

~
1) state changes only slightly as a function

of position, which means that localization will only occur
at very low velocities.

cooling situation with two-level atoms as well as from re-
cently proposed cooling schemes of three-level atoms
[2,3], where positively detuned light is used. The aim of
the work presented in [2,3] has been to study the possibil-
ity of creating sub-Doppler cooled atomic samples, while
the purpose of the present work has been to find good
cooling conditions for large velocity ranges.

The laser-field intensities chosen above are somewhat
arbitrary. Similar improvements in the cooling force
compared to the two-level situation can be found for both
higher and lower Rabi frequencies. The optirnurn choice
of the Rabi frequencies and detunings is not easy to give.
However, from our discussion in the dressed-state basis,
it is clear that the main idea is to choose the detuning of
the strong field small compared to the Rabi frequency in
order to have high probabilities for Landau-Zener diabat-
ic transitions. At the same time, the detuning of the
weak laser beam should be negative with a size of the or-
der of half the maximum Rabi frequency of the strong
standing wave so the two lower-lying dressed states cou-
ple effectively at the antinodes of the standing waves.
Generally, the ratio a,b/a, & can be small, which means
that the additional power needed, compared to the two-
level case, is not significant. We have also made calcula-
tions for three-level V systems, but if both a strong cool-
ing force and a large velocity capture range are sought, a
A system, as the one discussed above, seems to be the
more favorable case.

VII. CONCLUSION

Laser cooling of atoms with three-level A
configurations by using two negatively detuned standing
light waves has been investigated. The basic physics
behind the force acting on the atoms can be understood
by using the dressed-atom picture. The strong obtainable
force and the low momentum diffusion coefficient near
zero velocity can be seen as the results of favorable dia-
batic transition between the dressed states as certain posi-
tions in space. The cooling scheme seems to be superior
to the two-level stimulated-cooling situation with the
same total laser intensity. It was found that the achieve-
ment of the cooling scheme depends on the relative phase
between the two standing waves involved. Finally, a fair-
ly simple irnp1ementation of the cooling scheme for the
case of metastable helium atoms was proposed.
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APPENDIX

VI. DISCUSSION

In the presented laser-cooling scheme both laser beams
were negatively detuned with respect to the involved
transitions. This is different from the normal stimulated

In this appendix the equations necessary for calculat-
ing the force F(z, v) acting on the atom and the momen-
tum difFusion coefficient D(z, v) as function of position
and velocity are presented for the three-level A
configuration shown in Fig. 1. The equations below have
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been derived on the basis of [9], where the following con-
ditions were jmposed. First, the standing-wave light field
is treated classically. Second, the velocity of the atom is
assumed to be constant during its travel over several
wavelengths. Third, the interacting time is assumed to be
larger than a few times the lifetime of the excited state, so
that any transient behavior can be neglected.

1. The force F{z,v)

Under the above conditions, the force F can be written

(B I: V)).b = I,b I,b+ +i 5,b V,b (z)

+ ,'i K,b—cos(kz)Vb, (z),

+ —,'1K,bcos( kz)[ Vb„(z)—V„(z)]

—
—,
' i K, bc os( kz +p ) V„(z),

(B [ V] ) = i—(5,b —5,b ) V„(z)

,' i—K,—bc os( kz +p ) V,b ( z)

(A4d)

(A4e)

as

F(z, v) =Tr[@[W (z, v)]]
(B [ Vl ),b =—

(A�)
r,„r.„+ +i5 b V b(z)

where W (z, v) is internal-state density matrix with the
equation of motion given by

+ ,'iK b—cos(kz+P)[ Vbb(z) V (z)]

,' i K—,„—cos ( kz ) V„(z),
(B [ V])b, = [(B[ V]),b J

',
(A2)

(A4g)0dW (z, v) B [ Wp( )]
dZ (B [ V) )„=[(B[ V])„]',

(B [ V])b, = [(B[ V]),b]

(A411)

(A4i)and the operators N and B in the basis of the atomic
states

I
a ), I

b ), and
I
c ) (see Fig. 1) are given by

(N[ V] )„=—
—,'RkK, bsin(kz)( V,b + Vb, ),

( I1[ V] )bb
= ,'haik [K,b—sin—(kz)( V,b + Vb, )

(A3a)

+K,bsin(kz +p)( V,b+ Vb, )], (A3b)

( @[V] )„=—
—,'erik K,b sin( kz +p )( V b + Vb, ),

(N[ V] ),b = ,'haik [K,b sin(k—z)—(V„+Vbb )

+K,b sin(kz +P)V„],

(A3c)

(A3d)

Here ~,b is the maximum Rabi frequency of the laser-
induced coupling between the states I

a ) and
I
b ),

5,b
= p1L

—co,b (where roL is the laser angular frequency
and cu, b is the angular frequency of the transition

I
b )~ I

a ) ) is the laser detuning, and I,b is the decay
rate of the state Ib ) toward the state Ia ), K,b, 5,b, and
1",b are the same quantities, but for the transition be-
tween the states I

b ) and
I
c ) . P =k b,z, where k is the

norm of the wave vectors and Az is the relative displace-
ment of the nodes of the two standing waves.

( @[ V] )„=—
—,
'

haik [K,

„sin�

( kz ) V„,+K,b

sin�

( kz +P ) V,„], 2. The momentum difFusion coe%cient D {z, v )

(@[V]), = —'fik[K, sin(kz +p—)( V„+V )

+K,b sin( kz ) V„],

(A 3e)

(A3f)
D (z, v) =Tr[@[W '(z, v)]] +ysE(z, v) (A5)

The momentum diffusion coefficient D (z, v ) can be
written as

(~'[ V] )b. = [ (@[V] ).b ]
*

(@[V] )„=[(@[V])„]"
(@[v]». = [(O'I: v]) b ]

*

and

(A 3g)

(A311)

(A3i)

with

W '(z, v)—:W'(z, v) —Tr[ W'(z, v) ]W (z, v)

and with the equation of motion of W'(z, v) given by

v ' =B [W'(z, v)]+/[ W (z, v)] .dW'(z, v)
dZ

(A6)

(A7)

(B [ V] )..=r., V„(z)

+ —,'iK,b cos(kz)[ Vb, (z) —V,b(z)], (A4a)

The term y sE is the contribution from spontaneously
emitted photons to the momentum diffusion coefficient
and can generally be written

(B [ V] ),„=—(r., +r„)V„(z) ysE(z, v) =a( I,b +I,b )(haik) W,, (z, v), (A8)

(A4b)

+
2

lK bcos(kz +p)[ Vb (z) —
V b(z)], (A4c)

+ ,'i K,bcos(kz +P)[ V—b(z)—Vb, (z) ],
+ ,'i K,bcos(kz)[ V,—b(z)—Vb, (z)]

(B [ V] )„=r„V„,(z)

where a is a positive quantity that depends on the
spontaneous-emission pattern of the excited state, but
will always be smaller than 0.5. In the calculations
presented, cz was chosen to be 0.5, i.e., the calculated
diffusion coefBcient is generally slightly higher than in a
real situation.
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