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Time-resolved dynamics of two-channel molecular systems in cw laser fields:
Wave-packet construction in the Floquet formalism
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The description of the wave-packet time-resolved dynamics in a two-channel molecular system driven
by a cw laser field is considered within the time-independent Floquet representation. It is shown that, at
high field intensity, the wave-packet motions are governed solely by the pair of adiabatic dressed
potential-energy surfaces (PES s) associated with a single Brillouin zone. The same expressions of the
wave-packet motions in terms of the adiabatic PES s are obtained within a short-time approximation,
thereby furnishing a new numerical algorithm for the wave-packet propagation in a laser-driven two-
channel system at any intensity. Numerical tests of this algorithm are presented. The numerical results
establish unambiguously the adiabaticity of nuclear motions at high field intensities.

PACS number(s): 33.80.Be, 42.50.Hz, 34.50.Rk

I. INTRODUCTION

Recent experiments [1,2] on the intense-field photodis-
sociation of the dihydrogen molecular ion have spurred
renewed interest in the dressed-molecule picture, or Flo-
quet representation of the dynamics of molecules driven
by intense laser fields. Emanating from atomic physics
[3] the dressed-molecule picture basically views the field
as a part of a supermolecular system, and, by identifying
the quantized field as a set of new harmonic degrees of
freedom whose fluctuations drive electronic excitations in
the molecule, it places the field on the same footing con-
ceptually as the intrinsic nuclear motions. The diabatic
electronic-field representation [4] gives rise to dressed
potential-energy surfaces (PES's) obtained from the field-
free or intrinsic PES's by the addition of integral numbers
of photons, corresponding to the definite field-mode Fock
states. In this way, field-induced electronic transitions
are viewed as curve-crossing processes occurring at the
intersection of these dressed PES's. This picture was al-
ready evoked in the early work of Kroll and Watson [5],
and those of Lau and Rhodes [6]. The analogy between
intense-field photodissociation and natural predissocia-
tion was noted and exploited extensively by Bandrauk
and co-workers [7]. The idea that the field modes can be
regarded as additional degrees of freedom, to be treated
on the same footing conceptually as the nuclear coordi-
nates, has further been explored in the Bloch-Nordsieck
representation [8] where it is given a most elegant expres-
sion.

A picture similar to that furnished by the dressed-
molecule approach is also obtained when the radiation
field is treated classically as a periodic function of time,
the so-called cw-excitation regime. In this case, the
periodicity of the time-dependent Hamiltonian permits
the use of the Floquet theorem [9], and the time-

dependent Schrodinger equation can be replaced by a set
of coupled time-independent Schrodinger equations for
the Fourier components of solutions to the dynamical
problem called Floquet states [10—12]. The similarity be-
tween the coupled equations obtained in both theories
justifies associating the dressed-picture concepts with
Floquet concepts. Thus the integer indices, identifying
the Fourier component either of the state vector or of the
channel wave functions, are often referred to as "photon
numbers. " Many calculations of the cross sections for
the photodissociation of Hz+ in an intense cw laser field
use this Floquet picture, and they determine the dynam-
ics of the system through the properties of laser-induced
resonances [13—15]. Trends of calculated branching ra-
tios between diff'erent dressed or Floquet channels associ-
ated with these Floquet states appear to confirm qualita-
tively the experimental findings on the above-threshold
dissociation of this system [13]. The success that the
dressed-molecule picture has met in interpreting these ex-
perimental findings is such that there is a general tenden-
cy to consider the Floquet states as the actual time-
dependent states describing the dynamics of the molecu-
lar system. The conceptual difficulties met in defining the
proper initial state denoting the molecular system prior
to laser excitation have largely been ignored, often by im-
plicitly evoking an adiabatic transport of the initial state,
considered to be an eigenstate of the field-free molecule,
into the closest-lying resonance. Even in the case of exci-
tation by a short-pulsed laser, a situation for which there
is no a priori justification for the application of Floquet
theorem, remnants of the Floquet or dressed picture can
still be found in attempts to interpret the results of exper-
imental investigations and/or theoretical wave-packet
calculations [16—18]. Dressed PES properties, in particu-
lar properties of the adiabatic potential curves resulting
from the diagonalization of these dressed PES's, were
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evoked to explain such efFects as laser-induced bond
softening [16,17] and vibrational stabilization [18,19]. In
these interpretations, which generally consider the wave
packets to be moving on the adiabatic potential surfaces,
a precise description of the manner in which an initial
wave packet is transported onto these dressed surfaces is
still lacking.

The present paper brings a contribution to fill this gap,
and aims at establishing the precise connection between
the time-resolved wave-packet dynamics as obtained by
directly solving the time-dependent Schrodinger equation
(without making use of the Floquet ansatz), and the
time-independent amplitudes associated with the Floquet
representation. We show that for a two-channel system
driven by an intense cw field, the nuclear wave-packet dy-
namics is basically governed by only two adiabatic
dressed potential-energy surfaces associated with a single
Brillouin zone, the first one for instance. The time-
dependent wave function supported by each Born-
Oppenheimer (undressed) channel is at all times a super-
position of two wave packets, one propagating on the
lower adiabatic potential, the other one associated with
the upper adiabatic potential. The dependence of these
wave packets on the initial state is explicit, and the Flo-
quet description gives the same wave-packet dynamics as
obtained in the direct time-resolved approach. The
demonstration of this equivalence proceeds by first evok-
ing an adiabatic time-dependent electronic representation
recently introduced by Nguyen-Dang and co-workers
[20—22], and which is constructed essentially as a gen-
eralization of the Born-Oppenheimer adiabatic basis to
account for the strong-field couplings in the electronic
Hamiltonian. By expressing these time-dependent elec-
tronic states in terms of the local two-state Floquet repre-
sentation [23], the resulting nuclear dynamics can be re-
lated to the eigenvectors and eigenvalues of the infinite
diabatic dressed potential matrix. The result is the
wave-packet picture alluded to above. On the other
hand, starting from the construction of nuclear Floquet
states which are solutions to the time-independent cou-
pled Schrodinger equations for the nuclear amplitudes in
the diabatic dressed representation, we show that at high
intensities, the closure of these nuclear Floquet states also
leads to the same final wave-packet description. This
equivalence is shown in Sec. II. After presenting relevant
computational details, in particular those on the compu-
tational technique used in obtaining the adiabatic dressed
PES (without actually diagonalizing the infinite local Flo-
quet matrix) and in propagating the wave packets, we
present, in Sec. III, results of wave-packet calculations on
H2+ using the present Floquet decomposition of the wave

packets, and compare these to results of direct wave-
packet propagations.

II. WAVE-PACKET AND FI.OQUET
DESCRIPTIONS OF A LASER-DRIVEN

TWO-CHANNEL MOLKCULK

(1)

where R is the internuclear distance, ek(R), k=1,2
denote the Born-Oppenheimer potential-energy surfaces
associated with the field-free molecular channels, and f'&

denotes the nuclear kinetic-energy operator. The field-
induced channel coupling

V, 2(R, t ) =p, (2 R) E( t ) (2)

involves the transition dipole moment p, z(R ) linking the
Born-Oppenheimer electronic states and is periodic in a
cw monochromatic laser field, since then

E(t) =eEO coscot, (3)

where co is the field frequency and c its polarization
which will be considered to be linear. The electric field
amplitude Eo is related to the field intensity via

Viz(cm ')=1.17X10 +I(W/cm )~p, z~ (a.u. ) . (4)

For the case of a periodic field, the Schrodinger equa-
tion (1) can be solved in at least two ways: In a time-
resolved wave-packet description this equation is solved
directly, whereas in the time-independent Floquet
coupled-equation description, the time evolution is de-
scribed indirectly through a superposition of vibrational
quasi-energy states. It is the purpose of this paper to es-
tablish the explicit relation between these two descrip-
tions, and thus, to assess the roles played by laser-induced
resonances and their overlaps in the wave-packet dynam-
ics on the coupled channels.

A. Direct, time-resolved wave-packet description

A direct time-resolved description of the generation
and propagation of wave packets on the two coupled
channels involves a Dirac transformation to the interac-
tion picture with respect to the nuclear kinetic energy,

For a two-channel molecular system driven by a laser
field described in a semiclassical treatment, the time-
dependent Schrodinger equation is

f'~+ei Vi~(R, t) y, (R, t)

V,2(R, t) f'~+eq Xq(R t)

exp f~(t to)
g, (R, t)

(5)
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V)~(R, t )

sz(R )

s)(R )

V)q(R, t )

f((R, t )

x +O(5t'),
y, R, t

followed by the solution of the local two-state problem

g)(R, t)

(6)

this vector can be written in the form of an infinite
discrete Fourier series

'(R, t)
(k, m) (R ~ ) -(k, m)(R

which, as indicated, is equivalent to the original two-
channel Schrodinger equation up to second order in
Bt=(t —t0). The 5t correction terms are nonadiabatic
couplings originating from the R dependence of the local
two-state system, i.e., from Bii(bE)%0 and ()z( Viz)WO.
Thus, for the case of exactly parallel channel potentials,
this nonadiabatic coupling vanishes and solving Eq. (6)
amounts to solving Eq. (1) exactly, using the relation be-
tween the interaction picture amplitudes yk and the
Schrodinger picture amplitudes yk. The transformation
of the two-channel dynamics into an equivalent descrip-
tion in terms of local two-level dynamics can also be
viewed as a change in the electronic representation. This
has been noted in other work where new, time-dependent
electronic basis vectors were constructed by solving the
local electronic two-state Schrodinger equation with ini-
tial conditions corresponding to the field-free Born-
Oppenheimer states [20—22]. In the Appendix, this con-
struction is recalled, but with the initial conditions re-
laxed and replaced by the requirement that the new basis
vectors are Floquet electronic states. In the presentation
given here, the construction of this new electronic basis
corresponds to solving Eq. (6), with or without prescribed
initial conditions.

The local Schrodinger equation (6) describing a two-
state system driven by a periodic field can be solved using
any appropriate method; it can be integrated numerically,
or by using the formally exact adiabatic representation of
Ref. [23]. Alternatively, this equation can also be solved
by applying the Floquet theorem [9] which is applicable
due to the periodicity of the external field. In the Floquet
formalism, the time-evolution operator for the local two-
level problem defined by Eq. (6) is [24]

&(,'0)(R, t) ~Pa)(R, t)
U"'(R, t ) =

'~(, i 0)(R, t, ) ~Pa)(R, t, )

q(,) 0)(R, t, ) q(,'"(R,t, )

where ri)"' '(R, t) and ri'zk™(R,t) are the two com-
ponents of the Floquet solution g( ' ' (k =1 or 2), in a
given Brillouin zone, which is indicated by the super-
script m EZ. In the Schrodinger picture, the vector

'(R, t ) is a particular solution to the time-dependent
Schrodinger equation (6) and is formed by the product of
a dynamical phase factor exp[ —(i/A')e. k' t ] and a
periodic vector-valued function if' ' '(R, t),

(k, pyg) ~

(8a)

ingot
(k, m)(R )n= —oo 2, n

(8b)

The quantum number m labels the Brillouin zones in
the frequency domain, which is the reciprocal space of
the time domain, and m=0 denotes the first Brillouin
zone. The vector g'"' '(R, t ) is an eigenvector associated
with the eigenvalue sk' of the operator (H i fiB—, )

defined over the enlarged two-state linear space
[ —r/2, +r/2]IR in which inner products are scalar
products of two-dimensional time-dependent vectors
averaged over the optical cycle [ —r/2, +r/2] of the
field, r =2n/co. —The time-independent Fourier com-
ponents il&"„™(R) and the quasienergy ek' satisfy the fol-
lowing set of algebraic coupled equations:

[E,(R )+n Ace E"„' (—R )]ii(("„)(R)

0
[~(k, m) (R )+ (k, m) (R )]

Viz
(9a)

[E~(R )+nba sk' (R —)]ri~("„' '(R)

VO
(k, m) (R )+~(k, m) (R )] (9b)

where

V,~(R )=p)~(R ) aED . (10)

Note that Eqs. (9) can be read as the eigenvalue equation
for the matrix V" defined by

(ai —sz) (s, +sz)
( V ),„= ( —1)' +v()lto+

2 2
5 „

Viz
0

2
(&.,P.+)+~.,„-)»

V"+2p AcoI = V",

the eigenvalues and eigenvectors of V satisfy

sk' (R )=ek0(R )+mh'co,

+(k, m)(R ) ~(k, 0)

(12)

(13a)

(13b)

which is recognized as the dressed-molecule potential ma-
trix in the diabatic electronic-field representation. Thus
each column of the infinite matrix C which diagonalizes
V is filled with the Fourier components of an eigenvec-
tor g~~™of the Floquet Hamiltonian (H ikey, ). Be--

cause of the periodicity of V" with respect to a transla-
tion by 2pkco, p EZ, i.e.,

The quantity c.k' in the nonperiodic dynamical phase fac-
tor preceding the periodic vector g™(R,t) is called
quasienergy. The periodicity of g'"' '(R, t ) implies that

or
(k, m)(R t )

i cot~(km, )(R—mt ) (13c)
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—J dr [y'" '(R, t ) ]tg'" '(R, r ) =5«.5—v/2
(14)

which results from the fact that the two vectors
'(R, r ) and if' ' '(R, t ) are two eigenvectors of the

Hermitian operator (H i fiB,—),

with m =2p, p EZ, l=1 or 2, and vEZ. Thus the full
quasienergy spectrum of the two-state system and the as-
sociated quasienergy states are generated once two in-
dependent eigenvectors associated with m =0, denoting
the first Brillouin zone, are obtained. In addition to ex-
hibiting the orthogonality properties with respect to the
inner product defined above for the extended linear
space, [ —r/2, +r/2]R,

q'"' '(R, t )" g'" ' '(R, r ) =5« (16)

It is this strong orthogonality of the vectors g'"' '(R, t ),
A: = 1,2 at all times and their definition as Floquet
quasienergy states which permit the time-evolution
operator U for the local two-state system to be expressed
solely in terms of these two vectors, Eq. (7). Combining
Eqs. (5), (7), and (8), the wave packets g& and yz support-
ed by the coupled channels c& and c.z are explicitly given

by

(H —itic, )g'"' '(R, t ) =s„(R )g'"' '(R, t ),
the two vectors g'"' '(R, t), @=1 or 2, lying within the
first zone satisfy the stronger orthogonality condition [25]

y, (R, t)=e " ' ' [U„(R,t)y, (R)+U, (zR, t)y (zR)]

=e " " '
[z), ' '(R, t)[g, ' '(R, t~)]'y (Ri)+z)', ' '(R, t)[ zz}' (R, t D)]'y (zR)]

—/a(f + ""(t—t )

+z)", "(R,r )[zl", "(R,r, )]*y'z(R )]+O(5rz) (17)

yz(R, r)=e " ' '
[ U»( R, )ry', ( R)+Uzz(R, r)y,'(R)]

—i /fi(f' +c )(t —t )=e " " ' jrlz""(R, r)[zl", "(R,r, )]'y', (R)+qz""(R,r)[zlz""(R,r, )]*y'z(R)]

—i/fi(f' + "')(t—t )

+ zl,""(R,r )[z1z'"(R,r, ) ]*y'z(R ) ] +O(5tz), (18)

V; ()(R ) =cia(R), (19a)

while the other involves the propagator on the potential-
energy surface Vz ~(R ), where

Vz c(R ):—e~()(R ) .

The identification of the Floquet electronic quasienergy
sf~(R ) with the adiabatic PES's followed from the re-

where y, (R ) and yz(R ) are the initial channel ampli-
tudes, i.e., those defined at t~ The O(5t . ) error term in
Eqs. (17) and (18) vanishes exactly when the two-channel
potentials c., and c.z are parallel and p, 2 is independent of
R. Its presence in the generic situation where
B~(si —sz)&0 and/or Bzp, z&0 limits the validity of
these formulas to a short-time interval. Thus Eqs. (17)
and (18) are the basis for a stroboscopic wave-packet
propagation algorithm in which a long propagation time
must be divided up into shorter time slices over which
these formulas can be applied. At all times, the wave
packets y, and y2 are seen to be the sum of two com-
ponents. One component is propagated on the adiabatic
potential-energy surface V; ~(R ) defined by

mark made above that Eqs. (9) are identical with the ei-
genvalue equation for V, Eq. (11}. These two com-
ponents are not the initial wave packets yP'(R } as such,
but are obtained from these wave packets by a further
transformation which involves the components of g' ' '

at times t and t~. At first sight, it may appear that an al-
gorithm based on Eqs. (17) and (18) would suffer from
the need to generate these quantities by solving Eqs. (9)
for their Fourier components. However, as will be shown
in Sec. III, the Floquet eigenvectors g' ' ', as well as their
associated eigenvalues c.&'~, can be obtained in a much
more e%cient manner by directly integrating the two-
state time-dependent Schrodinger equation (6), exploiting
the equivalence between this time integration and the di-
agonalization of the infinite matrix V".

The mapping of the two-channel dynamics onto a set
of local two-level dynamics using the approach of the Ap-
pendix yields the same picture if the new electronic basis
introduced there is constructed such that it correlates
with the field-free Born-Oppenheimer basis at the begin-
ning of each time slice. In contrast, when this basis is a
Floquet representation, Eqs. (17) and (18) are obtained fur
the first slice only. Essentially, this is due to the fact that
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the Floquet basis states do not correlate naturally to
field-free states at the beginning of each slice. In fact,
their correlation to the field-free states is determined once
and for all at time t =0, which is considered to be the be-
ginning of the whole excitation process. Hence, although
time dependent, the Floquet electronic basis defined in
the Appendix does not evolve, in the sense that it is not
redefined at the beginning of each time slice.

B. Time-independent coupled-channel
Floquet description

In the direct wave-packet description presented in the
preceding section, no attempt was made to transform the
time-dependent problem into time-independent coupled
equations for the nuclear amplitudes, and the two-
channel time-dependent Schrodinger equation was solved
directly. The local two-state evolution operator was ex-
pressed in terms of Floquet vectors for convenience,
mainly to bring out the role played by the dressed adia-
batic potential-energy surfaces defined by Eqs. (19).

In an alternative formulation, more often used in stud-
ies of strong-field molecular dynamics, one directly
searches for nuclear quasienergy states in a Floquet treat-
ment of Eq. (1). Analogously to the definitions of the
electronic quasienergy states, Eq. (8), the nuclear quasien-
ergy wave functions are defined by

'(R, t)
y(y )(R t)= (, )

—iys@F'=e in cot
+(y, m)(R )

n = —oo 2, n

-(y, m ) (20)

The Fourier components y'k~' ' must then satisfy the fol-
lowing set of coupled equations:

[1')v+e,(R )+nfico 8k' ]y()y„' '(R—)

Vi2(R )
[+(y,m) (R )++(y,m) (R )] (21a)

[f' +e (R )+nato 6'"„' ]y'y„' '(R )—
V,2(R ) [X'('+'(«)+X" —'1«}] (21b)

where y is a multi-index denoting collectively both vibra-
tional and electronic quantum numbers. In this case, the
periodicity of V" [Eq. (12)] implies

(22a)

(~(y"(R,r)~g(y'"(R, t) &=a„, (24)

+(y, o)(R )
'

~(y, O)(R )
(25)

For problems with continua, Eq. (25) would still be appli-
cable if I. discretization is employed. Hence the dynam-
ics of the two-channel system can be completely ex-
pressed in terms of Floquet states associates with a single
Brillouin zone. The eventual L, discretization set aside,
this conclusion is exact and does not imply that the Flo-
quet description has been truncated to a single block: In
principle, the first-zone nuclear amplitudes y(ky„' '(R ),
k=1,2 are to be obtained by solving the coupled equa-
tions (21) exactly.

At high field intensity, it is useful to introduce the adi-
abatic representation obtained by diagonalizing V,

v"=c'v"c
( V' ),"=E,"'(R )5,", i (j ) = ( k, m ) .

This corresponds to the transformation

X(y, m ) Cf/ (y, m )—ad ——d

(26a)

(26b)

of the nuclear amplitudes y(ky™(R) appearing in Eq. (21)
which were gathered into an infinite vector Xd~' '. As-

suming that this representation is valid, then two classes
of adiabatic solutions to Eqs. (21) can be defined.

(i) First class. These solutions are associated with vi-

brational states supported by the first adiabatic channel
in a given Brillouin zone (the first one for instance), i.e.,
by the adiabatic dressed potential e)0(R }. Thus, defining

E i „)('i,(R ) through

[f')v+Ei(')(R )—Ei, ]pi „(R)=0, (28a)

the vector X',~d'
' contains a single nonzero element asso-

ciated with i =(1,0) and, in the original diabatic repre-
sentation, the Floquet nuclear wave functions of this first
class are given by

)(', „' '(R ) = yi", „'(R )y; „(R ), y = (1,u )

~(,y„o)(R ) =~(,'„')(R )y, '„(R ), y =(1,.)

(28b)

(28c}

for all t. In fact, as shown by Okuniewicz [26], the set of
Floquet solutions [g'y' '(R, t ) J associated with a single
Brillouin zone forms a complete basis if the quasienergy
spectrum I8"'

I is discrete. In this case, the general
solution of Eq. (1) is

—i/R(, C o
—nfiu)t

y( R, t ) =g g (g'y' '(R, 0) ~g(R, 0) &e

~(y, m)(R r )
—e

—imcot~(y, o)(R r ) (22b) corresponding to a total (i.e., vibrational and electronic)
quasienergy

~(y, m)(R )
—~(y, o) (R ) (22c)

=E' y=(l u) (28d)

If the spectrum {8y' ] is discrete then

«g" )(R, i)~g(y' '(R, r) &&=|)„.5

and in particular

(23)

Equations (28b) and (28c) were obtained by inverting Eq.
(27) and by recalling that the columns of C are filled with
the Fourier components of if' ' '(R, r ).

(ii) Second class. Similarly, Floquet solutions of the
second class are associated with vibrational states
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y2 „.(R ) supported by e20(R ), the second adiabatic chan-
nel in the first Brillouin zone,

(R )~2d (R ) ) =(
y(2r„' '(R ) = 2)2 '„'(R )y2 „(R), y = (2, U')

(29b)

(29c)

[ ~N +e20(R ) —E2 n ]X2 n (R ) =0 (29a) corresponding to a total quasienergy given by

and the diabatic, Floquet nuclear wave functions of this
second class are given by

(t Fl Ead y (2 U')

Substitution of Eqs. (28) and (29) into Eq. (25) gives

(29d)

-(&,0)
—i/AE'd (t—t )

n 92, n

+y X,d,.(R)&X,d, .Iy [~()',." IXP, &+~2",." I&2&]e

-(2,0)
intro( t —to )Xg e (2 P)

n 92, n
(30)

The closure over ( l, v ) states and over (2, U') states then gives

y(R, t) =e
-(&,0)—i/A(f' +c,F~)(t —t )N 10 0 y [~( & ) ~0(R )+~( 0) ~0(R )] g 0

n n 92, n

-(2,0)
—i/i((f+ N)t(t20—'tO) + [

(2 p) p
)

(2 p) p )]+ incu(t —to)—i Xf'+cF' t —t
X& R +g2, n' X2 R e (2,0)

n n 92, n
(31)

or, as separate components

y((R, t)=e ' '
[2)I

' '(R, t)[ IrI' '(R, tp)]*y)(R)+gI' '( Rt)[g '(2)(R, tp)]~y20(R)]

—i/R(f' +c.F')(t —t )

+ALII
' '(R, t)[r12' '( Rt )0]'y (2R )],

y2(R, t)=e " " ' [q2""(R,t)[gI'"(R, tp)]'yp(R)+2)2""(R, t)[q2""(R,tp)]'y02(r)j

—iA(f' +cF')(t —t )

+212""(R,t ) [ri(2'"(R, tp) ]*y02(R ) ] . (32b)

These results are identical with those expressed by Eqs.
(17) and (18). The same physical picture thus emerges
from the two distinct approaches, the first one denoting a
direct wave-packet generation, while the second describes
the wave packets as superpositions of vibrational quasien-
ergy states. The approximations made in obtaining the
pair of expressions of the wave packets, as given by Eqs.
(17) and (18) or (32a) and (32b), differ from one approach
to another. In the direct wave-packet description, the
mapping of the two-channel dynamics onto local two-
level dynamics requires a short time scale, whereas the
adiabatic approximation made in the above treatment of
the time-independent coupled equations (21) for the nu-

clear Floquet amplitudes requires a rather difFerent con-
dition. This condition corresponds to a high-intensity re-
gime, as it is commonly accepted that nonadiabatic cou-
p1ings between the adiabatic Floquet electronic states
tend to vanish at high field intensities. This behavior of
the field-induced nonadiabatic couplings can easily be es-
tablished when the diabatic matrix V of Eq. (12) is trun-
cated to a finite number of Floquet blocks. In the context
of a nontruncated, infinite Floquet matrix V", the exact
demonstration of this behavior, particularly when the
transition dipole moment is strongly R dependent, is not
yet available. The detailed analysis of the behavior of the
nonadiabatic couplings with respect to the field intensity
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will be reported in a separate paper. In the present pa-
per, we adopt the simple viewpoint o6'ered by a finite rep-
resentation of the Floquet V" matrix, and consider the
adiabaticity condition to require a high field intensity. A
finite representation of the Floquet matrix is indeed im-
plicitly evoked in the numerical calculations reported
below, since the time evolution is discretized in all these
calculations. The equivalence of the two approaches em-
ployed above in the derivation of Eqs. (17) and (18) indi-
cates that at high field intensities, the dynamics of the
two-channel system become more and more adiabatic
(with respect to nuclear motion) and the time evolution of
the system can be represented faithfully by these expres-
sions of the wave packets over a longer time scale. This
behavior is the main object of the numerical investiga-
tions described below.

III. COMPUTATIONAL DETAILS

A. Local Floquet states and adiabatic PES's

To implement Eqs. (32), the Floquet solutions to the lo-
cal two-level Schrodinger equation are needed, as they
furnish the quantities c10,c20, i.e., the adiabatic potential-
energy surfaces in the first Brillouin zone, and the com-
ponents i1~

' '(R, t), rl'"' '(R, O) (j,k =1 or 2) of the two
Floquet vectors in this first zone, at time t and at an ini-
tial time t =0. It is useful to recall here that the Fourier
components of these vectors fill two columns of the trans-
formation matrix C of Eq. (26). To obtain these local
two-state Floquet solutions, it is sufBcient to note that
Eq. (7) can be written in the form

U(R, t)=F(t)e ' "'&'F (0) (33)

where F( t ) denotes the square matrix whose columns are
the periodic vectors g' ' (R, t), k=1,2, defined in Eqs.
(8), and Q is a diagonal square matrix containing the Flo-
quet eigenvalues ck 0. More precisely

~F1 01,0

0 C20
F1 (34a)

F(r)=—(y""(R,r), q[20](R, r))

so that

(34b)

F( t )
—(i/A)Qt

i)I (R, t) i)f (R, t)

i),"(R,t ) rI,"(R,t )
(34c)

Since F(t) is periodic, we obtain from Eq. (33)

U(R, r) =F(O)e -"/"'~ F'(O) (35)

where ~ has been defined previously as the period of the
field's oscillations. This result shows that the matrix Q,
and hence the Floquet eigenvalues c.k'0, k = 1,2 can be ob-
tained by diagonalizing U(R, r), the evolution operator
for the local two-state system evaluated exactly for one
period of the field. The diagonalization of U(R, r) also
gives the matrix F(0), i.e., the Floquet vectors g'"' '(R, o)
evaluated at an initial time, here written as t=0. The
same vectors at an arbitrary time t are obtained from
F(t), which can be extracted from the time-evolution
operator U(R, t) by inverting Eq. (33),

F(t ) = U(R, t )F(0)e ' "'&' . (36)

This method for calculating the eigenvalues and eigen-
vectors of V", without actually diagonalizing this
(infinite) Floquet matrix has previously been used by
Muller [27]. It relies on the ability to generate the two-
state time-evolution operator U(R, t) by an alternative
method, which should be formally exact, at least. Such a
method indeed exists and has been demonstrated else-
where [20—22]. It was found that U(R, t) can be written
exactly in the form

U(R, r)=

—(i/A)[c&t+ f dt'i. &(t')] A
e cos

2
—(i/R)[E2t+ f d'i&(t )+A'g&]'

sin

—(i/A')[e&t+ f dt'i &[t') A'q] . A——e 0 sin
2

—(i/A)[c2t+ f dt'i. 2(t')] A
e cos

(37)

where A. is an e6'ective field-area function, defined by

A.(t):——f p, ,i.E(t') sin(y —coizt')dt',12 (38)

and y is a phase angle coupled to A through

j& tanA(t ) =—p&2(R ).E(t )cos(q& —
co&2t ) .2

(39)

X[1—co@A(t)]/2= —Az(t) . (40)

In these expressions, co,2=(E,—c2)fi is the Bohr frequen-
cy for the vertical transition from state 1 to state 2 at the
nuclear configuration R, and

A, ,(t)=p, i.E(t) sinA(t) cos[y(t) co)it]—

This formally exact solution to the two-state
Schrodinger equation was used previously in an algo-
rithm for the wave-packet propagation in two-channel
laser-driven systems. The only remaining di5culty in us-
ing this exact representation is the integration of the non-
linear integro-differential equation (39). A numerical
iterative procedure to integrate this equation by lineariza-
tion over a short-time scale has been presented and tested
in Ref. [20]. Here, it is used to generate the quantities
needed to construct the evolution operator U(R, t ) ac-
cording to Eq. (37); the phase angle y(t), the area func-
tion A(t), and the Berry phase integral containing the
quantities A. ,-, i =1,2. These quantities depend on R, as
do ~12 and @12.

We considered a two-channel model for the photodis-
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sociation of H2+ employing the potential energy and
transition dipole functions given by Bunkin and Tugov

e cw field is assumed to have the form given inI~2 81' Th
Eq. (3), with co=0.27639 a.u. , corresponding to a wave-
length A, =164.8S nm. Five values of the field intensity
were considered, nam. ely I=10', 1.4X10', 4X10'
1014 and 3.52 X 10 WIcm . For each intensity, the14

operator U(R, t) was evaluated at the grid points of a
temporal grid obtained by dividing a field period ~ into 64
slices. Once this is done, diagonalization of U(R, r) gives
the Floquet eigenvalues Ek'0(R ), k = 1,2, which represent
the two adiabatic dressed potential-energy surfaces asso-
ciated with the first Brillouin zone. The surfaces associ-
ated with other zones are obtained by a simple translation
of these first-zone potential-energy curves, according to
(13a). As noted above, the diagonalization of U(R, r)
also gives F(0), i.e., the Floquet vectors g' ' '(R, O) eval-
uated at t =0. The same vectors at other grid points, cor-
responding to times t lying within a single field period,
are contained in F(t ), which is calculated using Eq. (36).
As noted before, the discrete representation of the time-
evolution operator U on a temporal grid containing 64
grid points corresponds to the truncation of the Floquet
diabatic potential matrix V" to 64 blocks. Figure 1 shows
the adiabatic dressed potential-energy curves obtained for
the five values of I given above, and for a single Brillouin
zone, the central zone, for instance. Figure 2 illustrates
the way these PES's are repeated in the other zones as a
result of the periodicity of the time-dependent problem.

B. Wave-packet computations

Starting, at t =0, from an initial wave packet denoting
the v =0 vibrational ground state supported by the lo.

g
electronic ground-state manifold, Eqs. (17) and (18) were
used to generate the wave packet at a future time t &0.
In view of the short-time or adiabatic approximation in-

volved in obtaining Eqs. (17) and (18), these equations can
be used over a su%ciently short-time scale only. Thus a
long total excitation time must be divided into short time
slices over which these equations apply. The time t0 in
these expressions then denotes the beginning of a time
slice, and the initial wave packets must be redefined at
the beginning of each time slice. Time slices of extension
5t =n~/64, with n =1—1S, were used in a systematic
study of the convergence of the wave-packet calculations
using Eqs. (17) and (18). To test the adiabatic approxi-
mation at high field intensities, we have also carried out
single-step propagations using a large time step of
1.0—1&1.0 fs. These single-step propagations make use of
the representation given by Eqs. (A18) of the Appendix
instead, as this denotes more transparently a wave-packet
propagation on uncoupled adiabatic dressed PES's. In-
sofar as the results of these long single-step propagations
confirm the validity of the adiabatic approximation, i.e.,
t e weakness of the residual nonabiabatic couplings,
there should be no numerical difference between Eqs.
(17), (18), and Eqs. (A18).

The wave packets generated with Eqs. (17) and (18) are
compared with those obtained by a direct application of
the third-order split-operator method using a fixed time
step 5t = rl64 over which the field is considered constant.
In applying the adiabatic Floquet propagation procedure
described by Eqs. (17) and (18), the split-operator formula
is also used to represent the propagator s
exp[ (~'IA)(T~+ Epk)5r] associated with the adiabatic
dressed channels c,k'0, k = 1,2. In implementing this
split-operator formula, all potential terms are evaluated
in the coordinate representation, while the kinetic-energ
actor is evaluated in the momentum representation.

'c-energy

Passage from one representation to another is achieved
by a fast Fourier transform (FFT) algorithm, and the
wave packets are discretized on a spatial grid containing
1024 points with step size 5R =4.075 X 10 a.u.

0.3

C5

CO

CD

LU

0.1

0

-0.1

FIG. 1. The two adiabatic
dressed potential-energy sur-
faces, ck p(R ) k = 1,2, associatedFl

with the first Brillouin zone, are
shown for (a) I= 10i2

(b) I= 1.4 X 10" W/cm, (c)
I=4X10' W/cm, (d) I=10'
W/cm, and {e) I=3.52 X 10'
W/cm . These surfaces are ob-2

tained by diagonalizing U(R, ~)
for a two-state model of H2+ in-
volving the X~ ground state
and the X„+ first excited state of
the molecular ion coupled by a
cw laser field (A.= 164.85 nm).
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FIG. 2. For I=4X 10'
W cmcm, the adiabatic
dressed potential-energy sur-
faces, ck' (R), k =1,2 for the
two-state model of H + ar
shs own for five Brillouin zones
corresponding to m =+2, +1,0.
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FIQ. 3. Wave packets gen-
erated by a low-intensity laser
field (I=10' W/cm ), at t =50
fs, on the two diabatic (Born-
Oppenheimer, field-free) elec-
tronic states of H2+. The results
of the wave-packet propagation
using the split-operator formula
(solid lines) are compared with
those obtained by applying Eqs.
(17) and (18) over time slices
5t =nv. /64, with (a) n =1, (b)
n=8, (c) n=15 (dashed lines).
Note that only the square modu-
li of the wave packets are shown.
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+1~Ix I'&x Ix &I), (41)

where b, leak I
denotes the difference between the value of

obtained by the single-step propagation and that of
the reference calculation. Clearly, llbÃll depends less
strongly on 5t at high field intensities than at low intensi-
ties, where it increases monotonously with 5t, as expect-
ed. For all 5t, II b,+II decreases monotonically as the field

the dressed or Floquet representation is indeed adiabatic.
Figures 5 and 6 show results of single-step wave-packet
propagations at various intensities, using Eqs. (A18) of
the Appendix, with a single long step 5t =5.5 fs, Fig. 5
and 5t =11 fs, Fig. 6. A quantitative agreement with the
results of the corresponding reference split-operator cal-
culations (using a much smaller time step,
5t =w/64=8. 59 X 10 fs) is no longer obtained, but the
wave packets generated in these single-step propagations
do exhibit qualitatively the same behavior as these refer-
ence results. This qualitative agreement generally im-
proves at higher Geld intensities, which can be seen in
Fig. 7, where a measure of the deviation of the single-step
propagation results from the reference ones is shown as a
function of the field intensity for five values of the time
step 5t. The measure used for this deviation is de6ned by

II~+II= f«(l~lx I'/&x Ix &I

intensity increases. The results shown in Figs. S—7 thus
give a clear indication that the wave-packet dynamics in
the two-channel system becomes more and more adiabat-
ic as the field intensity increases, and that nonadiabatic
coupling between Floquet adiabatic dressed channels is
indeed negligible at high intensity.

In view of this adiabaticity, it is possible to interpret
the results shown in Figs. 5 and 6 for high intensities in
terms of properties of the dressed PES's. It is tempting
to interpret the oscillatory structure in y2. Fig. 6(b), or
in g&, Fig. 6(c), as refiecting nodal structures of bound

quasienergy states supported by the potential well newly
created on the upper adiabatic PES at the one-photon
avoided crossing. En this interpretation, the fact that this
structure appears in y2 for I=4X 10' W/cm, and in y&

for I=3.52X10' W/cm can be rationalized by evoking
the difFerent barrier height found on the lower adiabatic
PES in the two cases. For I=4X10' W/cm, this bar-
rier is still sufficiently high to prevent the wave packet in-

itially prepared on this adiabatic channel from moving
toward the dissociation region. This wave packet would
have mainly the character of the diabatic bound channel.
The wave packet prepared on the upper adiabatic chan-
nel would then be associated with the diabatic open chan-
nel. In contrast, for I=3.52X10' W/cm, the barrier
on the lower adiabatic PES is completely depleted and
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FIG. 5. The results of the
wave-packet propagation using
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the promoted wave packet therein would become dissoci-
ative and would be affected by a portion of the adiabatic
PES which corresponds to the repulsive diabatic PES.
This wave packet would then be gz, and the nodal struc-
ture of the vibrationally "trapped" states would appear in

Unfortunately, this attractive scheme is wrong. By
recalculating the wave packets according to Eq. (A18),
but without the final multiplication by F(R, t ), we found
that, at both intensities, the promoted population is
larger on the upper adiabatic PES, rather than on the
lower one, as implicitly assumed in the above scheme.
Thus, the dissociation at high field intensity occurs on the
upper adiabatic dressed PES, contrary to the assumed
bond-softening mechanism. Moreover, the further prop-
agation of these promoted wave packets on the uncou-
pled adiabatic PES's gives no oscillatory structure as in
Figs. 6(b) and 6(c). Clearly, the oscillatory structure in
these figures cannot arise from the excitations of laser-
induced vibrational states. They are due to
interferences between the adiabatic amplitudes
exp[ i(T~+Vk—)t]gk(R, O) which are further redistri-
buted between the diabatic channels 1 and 2 under the
action of F(R, t ).

IV. SUMMARY AND CONCLUSIONS

We have shown that in the Flo quet or dressed-
molecule representation, the time-resolved dynamics in a

two-channel molecular system, such as H2+ driven by a
cw laser field, can be analyzed in terms of propagation of
wave packets on the two adiabatic dressed channels asso-
ciated with a single Brillouin zone. The precise way an
initial state is transported onto the adiabatic PES's and
propagated thereupon is described by Eqs. (17) and (18).
In a direct time-dependent approach, these equations
were obtained by a mapping of the two-channel dynamics
onto those of a set of two-level systems, which is continu-
ously parametrized by the nuclear coordinate R. This
mapping is achieved either by the Dirac transformation
of Eq. (4) or by the construction of the new, time-
dependent, electronic basis of the Appendix. This elec-
tronic basis is adiabatic with respect to nuclear motions
on a sufficiently short time scale. Thus a condition for
Eqs. (17) and (18) to apply is a short propagation time. In
this sense, Eqs. (17) and (18) are viewed as the basis of a
short-time algorithm for the propagation of wave packets
in a two-channel system driven by a periodic field. In
comparison with other numerical techniques currently in
use, such as the split-operator formula applied over time
slices sufficiently short so as to justify the replacement of
the actual fluctuating field by an average, constant field,
the present algorithm is distinguished by the explicit use
of adiabatic dressed potentials. The algorithm was tested
on the propagation of wave packets denoting the photo-
dissociation of H2+. The numerical results reported es-
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tablish the reliability of this algorithm. Moreover, these
results indicate that the algorithm is more efficient than
other techniques, since the time scale over which it can
be directly applied is an order of magnitude larger than
that required for the application of the split-operator al-
gorithm alluded to previously.

The expressions for the wave packets in the adiabatic
dressed representation, Eqs. (17) and (18), are also ob-
tained within the so-called time-independent Floquet rep-
resentation of nuclear motions. In this representation,
nuclear, i.e., vibrational quasienergy states are governed
by the set of time-independent coupled Schrodinger equa-
tions (21). By diagonalizing the diabatic dressed potential
matrix, the adiabatic dressed representation is obtained.
Nuclear amplitudes supported by the adiabatic channels
are coupled by intensity-dependent nonadiabatic interac-
tions which are believed to vanish as the field intensity in-
creases. It is in this adiabatic, high-field-intensity limit
that Eqs. (17) and (18) have been rederived. The validity
of this adiabatic approximation is here indirectly assessed
through single-step wave-packet calculations reported in
the preceding section. The results of this numerical ex-
periment confirm the hypothesis that the field-induced
nonadiabatic couplings tend to vanish as the field intensi-
ty increases, and the wave-packet dynamics become more

adiabatic. Without this adiabatic approximation, the
general expression of the wave packets is of course Eq.
(25), which represents the decomposition of the wave
packets in the basis of the Floquet vibrational states
within a single zone. A similar expression had also been
derived previously in the context of a wave packet, time-
resolved description within a dressed-molecule picture
using a fully quantized field [29,30]. Howeve'r, no at-
tempt was made to reduce this description to a simple
picture such as the one obtained in the present work in
terms of the adiabatic dressed PES's associated with a
single zone. It is interesting to note that, even at low in-
tensity, where it is generally believed that an initial eigen-
state of the field-free Hamiltonian would simply be trans-
ported onto the closest-lying resonance state, and where
the rotating wave approximation (RWA) is valid, many
Floquet states should be included in the sum appearing
on the right-hand side of Eq. (25) in order to obtain a
correct picture of the wave packets' motions. Indeed if
the sum over y in this equation is restricted to a single
Floquet state, namely, the resonance state which ofFers
the strongest overlap with the initial state, and the RWA
is invoked, reducing the sum over n to a single term also,
then the wave packets would not be moving at all, i.e.,
they are almost stationary, except for a monotonous de-
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FIG. 7. The deviation of the single-step wave-packet propagation results from these of the reference split-operator calculations is
shown as a function of the field intensity, for five values of 5t = t&, namely, fit = 1.1 fs (0), 2.2 fs (+ ), 3.3 fs ( ), 4.4 fs ( X ), and S.5 fs
(4). The deviation is measured by the function llhqlll defined in Eq. (41). The detailed behavior of llA%ll in the high-intensity region
is shown in the inset.
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cay of their amplitudes due to the imaginary part of the
resonance energy. Clearly, inclusion of other Floquet
states, more precisely of the nonresonance states which
more closely resemble field-free continuum states, is
necessary.

The present paper deals strictly with excitation of a
two-channel molecular system by a cw, periodic field. An
extension of this work to a pulsed laser field may be made
either by assuming an adiabatic transport of Floquet
states [31], or by using a two-time-scale approach, such
as the one proposed by Peskin and Moiseyev [32]. How-
ever, this extension would appear most direct, requiring
only certain parameter changes, if an artificial periodic
repetition of the pulse can be introduced. This relies on
the fact that the Floquet ansatz gives a complete descrip-
tion of the time evolution within a single period, so that,
if the pulsed excitation is repeated with a period
T Tp 1 where ~„„1„is the actual duration of the pulse
and if this period is an integer multiple of the period
2m/co of the carrying wave, then the Floquet construction
with Q =2~/T would describe correctly the detailed dy-
namics over the total duration of the physical pulse, i.e.,
at all times t within the period T. A picture of the wave-
packet motions on the adiabatic dressed PES's associated
with the repetition frequency 0 similar to that described
by Eqs. (17) and (18) will be valid at high peak intensity,
and can be used to investigate pulse shape e6'ects on the
molecular dynamics, as well as to assess the degree of
control that can be exerted on the dynamics by varying
the pulse shape and duration. This avenue, which can be
described as a mapping of a pulsed excitation onto an
equivalent periodic one, is being explored in our labora-
tories.

P,~(r;R )y; (r;R )=s;(R )y;"(r;R ) (Al)

and the total wave function is given by

y, (R, t)
'P(r, R, t)=(yi(r;R ) q&z(r;R ))

2 7

(A2)

The time evolution of 0'(r, R, t ) is governed by the total
Schrodinger equation

i Ad, +(r,R, t ) =8(r,R, t )%(r,R, t ),
where

8(r,R, t)=f'&+8,&(r;R )+ P(r, R, t) .

(A3)

(A4)

Xp;'(r, t;R ) . (A5)

Defining T to be the transformation matrix linking the
two electronic bases, i.e., writing

(qP, (r, t;R ) p2 (r, t;R ))

=(y",(r;R ) pz(r;R ))T(t;R ),
then Eqs. (A2) and (A5) imply

(A6)

In order to account for the field-induced coupling 0',

which is assumed to operate only between the two elec-
tronic states g",(r;R ) and yz(r; R ), it is useful to express
the time evolution in a new electronic basis which incorp-
orates the mixing effect of f', and is necessarily time
dependent. The new electronic basis states are defined by
a pair of orthonormal solutions of the electronic time-
dependent Schrodinger equation

ifiB, q&;'(r, t;R )=[8,&(r;R )+ P(r, t;R )]'
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e, (R )

iABT(t R):
V'(,R )12

V,2(t;R )

(R )
T(~;R ),

E.2
(A7)

where V,2(t, R ) is a matrix element of 0'(r, t;R ) in the
two-state diabatic basis of Eq. (Al). Obviously the pre-
cise form of T depends on the initial conditions imposed
upon the two orthogonal solutions of Eq. (A5). In the
Floquet construction, the initial conditions are replaced
by the requirement that T be of the form

APPENDIX T(r R )=y'(t R )e ~'~"~a~ (A8)

In the Schrodinger equation (1), y, (R, t ) and yz(R, t )

are the nuclear wave functions associated with two field-
free, electronic eigenfunctions defined within the Born-
Oppenheimer approximation. Thus, denoting these by
p, (r:R) and q&z(r;R ), we have

where F is periodic and Q is the diagonal matrix of Flo-
quet exponents. These matrices have previously been
defined in Eqs. (34).

Substitution of Eq. (A6) into the Schrodinger equation
(A3) for the total wave function gives

y, (R, t)
=[X'&+A,&(r;R )+ P(r, R, t)](y', (r, t;R')

pre (r, t;R ))T '(t;R ) R . (A9)y, R, r

From the definition of the adiabatic basis states yak (r, t;R ), k = 1,2, Eq. (AS), and from Eq. (AS), which expresses the
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choice of these basis states to be Floquet states of the two-level electronic system, Eq. (A9) can be rewritten in the form

y)(R, t)
'(y' pa )e' "'Q' '~if' F '(t R) ~(R t)

ad)+( ad
yi(R, t)

g ~}Q(R )]e~ ~~~Qt ~ F (t'R ) Xz(R t} (A 10)

Define

g'i(R, t ) y, (R, t )
=F 'tR

g,(R, t) — ' y, (R, t) (Al 1)

Eq. (Al 1) can be rearranged into the form

g((R, t)
itic, R =[1'I+Q(R )+ A'(t;R )]

2

where

g, (R, t )

g,(R, t )
(A12)

qi (r R)
&=f«& &~(mi(r;R} mz(r, R}).

yz (r;R )

Using

A)2)F(t;R )f'tv

+[~,(y, p")F(t;R )], (A14)
I

g&z)F(t;R ) =(y",

to represent nuclear wave functions associated with the
time-dependent electronic states yk (r, t;R). Using Eq.
(A6) to reexpress the dual vector (g&& yz ) in terms of
the diabatic, time-independent vector (p, yz), we ob-
tain, after projecting Eq. (A10) onto these electronic dia-
batic basis states,

g)( Rt)
ikey,

~ R t =[F '(t;R )BF(t;R )+Q(R )]

g, (R, t)

g,(R, t) (A15)

where

(r;R)
k(t;R)= f dr F '(t;R) " (r;R)

X [f'z, (y&(r;R ) qrz(r;R ))F(t;R )] .

It is thus seen that the nuclear amplitudes g;(R, t) define
wave packets which would be moving independently on
the two Floquet FES's, if not for the coupling matrix
A ( t;R ) which represents nonadiabatic interactions be-
tween the two wave packets. As is seen in the rearrange™
ment in Eq. (A14), this term results from the noncommu-
tativity of (p, yz} and F(t;R ) with f'z. It is instruc-
tive to further expand this nonadiabatic coupling term
and to decompose it into natural and field-induced non-
adiabatic interactions

d*(r;R )

k(t;R)= — 'F '(t;R) f dr
2p (rR ) M2 (p, (r;R ) y2(r;R ))F(t;R )

+2F '(t;R) f dr &a (y&(r;R) yz(r;R))F(t;R)
(r;R ) BR

d*(r;R )

+2F '(t;R ) fdr &a (y, (r;R ) yz(r;R )) F(t;R )
q)~2 (r;R ) BR

B2+F '(t;R ) F(t;R )+2F '(t;R ) F(t; )
BR

(A16)



NGUYEN-DANG, CHATEAUNEUF, ATABEK, AND HE 51

The first two terms of Eq. (A16) are natural nonadiabatic
couplings, i.e., they arise already in the field-free Born-
Oppenheimer approximation. Since they are not
amplified by the presence of the field, they can be con-
sidered negligible. The other three terms are purely
nonadiabatic couplings due to the transformation from
the time-independent electronic basis (y, tpz) to the
Floquet basis. As mentioned in Sec. II, those coupling
terms are believed to vanish at high field intensity. Oth-
erwise, they can be neglected on a short-time scale.
Within either of these two approximations, the solution
of (A14) is

(A17)

Using Eq. (Al 1), we finally obtain

y, (R, t) g, (R, t)

7t,(R, t) — ' g,(R, t)

—(i/at)(f'~I+Q)t g, (R,O)

$2(R, O)

—(i ltt()(1'~I+ Q]t

y, (R, O)
XF (OiR ) (R O)X2

(A18)

Recalling the definition of F in terms of the Floquet vec-
tor g(R, t) for the two-state system, Eq. (34b), this final

result is seen to differ from that embodied in Eqs. (17) and

(18) by the permutation of the operator e
' " with the

multiplicative matrix F( t;R ). Insofar as the field-
induced nonadiabatic couplings in Eqs. (A16) are negligi-
ble, Eq. (A18) can be considered to be equivalent to Eqs.
(17) and (18), as the commutator between e

' ~ and
F(t;R) is of the same order of magnitude as these
neglected nonadiabatic couplings.
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