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Numerical solution of the nonlinear Schrodinger equation for small samples of trapped neutral atoms
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We present a numerical technique to solve the time-independent nonlinear Schrodinger equation with

an external potential. We apply it to the case of a dilute Bose-condensed assembly of trapped neutral

atoms where the potential varies on the same scale as the condensate. This situation should soon be ac-
cessible to experimental observation.
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I. INTRODUCTION

It may soon be possible to produce samples of Bose-
condensed, neutral atoms in magnetic traps [1,2]. In
some cases dilute gases will be composed (especially in ex-
periments that just get to condensation) of a modest num-
ber of atoms and may be very inhomogeneous due to the
variation of the trap potential on the scale of the sample
[2]. This is particularly true in the laser plus evaporative
cooling route. This means that they can exhibit features
that are difficult to observe in homogeneous gases. In
particular, we shall show that nonlinear excitations of the
condensate are stabilized by the presence of the potential.
As long as we are outside the region of critical Auctua-
tions [1],we can determine the shape of the condensate in
the trap using the relevant nonlinear Schrodinger equa-
tion, i.e., the Gross-Pitaevskii equation [3]. Approximate
semiclassical solutions of this equation have been present-
ed elsewhere for magnetostatic traps [4].

In this paper, we present an account of the solutions
obtained by a direct numerical solution of the Gross-
Pitaevskii equation for atoms in a spherical harmonic
trap. We then compare these solutions with those ob-
tained using the well-known and much-used approxima-
tion, which assumes the kinetic energy term in the
Schrodinger equation can be neglected. We shall present
solutions for the case where all the atoms are in the con-
densate, i.e., for the case T=O. It is not difficult, howev-
er, to extend the numerical method to include the effect
of any uncondensed atoms on the mean field acting upon
the atoms [5]. This ground-state solution can also be
used as an input to techniques that predict the spectrum
of elementary excitations in the trap [6]. It is also needed
in theories of the optical properties of condensed atoms
[7]. We have given a fairly full account of the way we
proceed to maximize the usefulness to others who wish to
find such solutions.

II. THE NONI. INEAR SCHRODINGER EQUATION

Mean field theory for a dilute assembly of bosons at
T=O results in an effective nonlinear Schrodinger equa-

+NU, ~% (r, t ) ~'ql(r, t ) . (2.1)

Here 4(r, t ) is the Bose-Einstein condensate (BEC) wave
function, m is the mass of a single atom, co„, is the angu-
lar frequency of the trap, N is the number of atoms in the
condensate, and U0 characterizes the atom-atom interac-
tion and is given by

4M a (2.2)

where a is the scattering length. Using this approxima-
tion for the interaction is valid at sufficiently low energies
and when one can exclude all but s-wave interactions be-
tween atoms [10]. We shall assume, for the purposes of
this discussion, that a is positive. We shall return to this
issue later in the paper when we consider the results for
specific examples.

To find a stationary solution we write
%(r, t ) =e '"' "g(r), (where p, is the chemical potential
of the condensate); inserting this equation into Eq. (2.1),
we find the following equation for P(r):

U =
0

V g(r)+ —,'mco„, r g(r)+NUo~1b(r)~ f(r)
2m

=pg(r) . (2.3)

The BEC ground-state wave function is spherically
symmetric, thus, we can write it in the form

g(r)= A '(b(r)
r

Inserting Eq. (2.4) into (2.3) gives

+—,'mco„, r $(r)+NUo A
~

P(r)P (r)
2m dr r

(2.4)

=p,P(r) . (2.5)

tion for the condensate's "wave function. " This equa-
tion, the Gross-Pitaevskii, nonlinear Schrodinger equa-
tion (NLSE) for condensed neutral atoms in an harmonic
trap, has the following form [8]:

iA ' = — V 'P(r, t)+ ,'mco„,—r'P(r, t)t)%'(r, t ) A'

Bt 2m
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To obtain an equation suitable for numerical work, we
transform to dimensionless length units by letting
r = ()rt/2m co„, )

' x, which yields

respect to x. Note that P(x) must vanish at x =0. Equa-
tion (2.6) can, therefore, be approximated in this limit by

2

+ [P NA—y[P'(0)] ]$(x)=0 . (3.4)

~+ P—,'x —N—A y
dX X

where

2m Uor= =Sea
$2

P(x) =0, (2.6)

(2.7) P'(0) =
XA y+1

(3.5)

Differentiating the solution of the above equation that
vanishes at the origin and setting x =0 yields an algebra-
ic equation for P'(0), which can be solved to obtain

1/2

and

p
strap

(2.8)

This equation is useful in numerical work because it
serves as a starter for the Runge-Kutta integration.

C. Boundary conditions on P
The norm of %(r) must be equal to one (since X ap-

pears explicitly in the NLSE), thus We are now in a position to write down the boundary
conditions satisfied by P(x). For x ~0,

4m
2m Q)trap

A' J ~P(x)~2dx=l . (2.9) P(0)=0 (3.6)

Furthermore, P( r ) must vanish as
~
r

~
~ on and it also

must be regular at the origin. Translating these two con-
ditions into equations suitable for numerical work can be
done more easily after the asymptotic behavior of P(x )

has been determined. This behavior is considered in the
next section.

P'(0) =
XA y+1

l /2

and for x ~ (x)

—x /4+(t) —l/2)ln(x) —
y asym X

(3.7)

(3.8)
III. THE ASYMPTOTIC BEHAVIOR

OF THE WAVE FUNCTION

A. Behavior asx~ao

Since the full wave function must vanish as ~re ~ no,

the nonlinear term inside the square brackets in Eq. (2.6)
must eventually become negligible compared to the other
two terms. Thus, this equation has the following approx-
imate form for large x:

d2 + [P——4'x']P(x) =0 .
dx

(3.1}

The solution of this equation is a parabolic cylinder func-
tion [9] and there are two solutions only one of which
vanishes as x ~ ao. The asymptotic form of the correctly
behaving parabolic cylinder function is well known and
has the form

and, since asymptotic expansions may be differentiated,

P'(x )—[ —x /2+ (P—1/2)(1/x) ]

X
—x /4+|'P —1/2)ln(x) —A. 'e Y'asym~ X ~ (3.9)

Note that the constant C is absent in Eq. (3.8). This con-
stant depends on the overall normalization of the wave
function and is set to one in practice as the normalization
is determined independently. Imposing this condition en-
sures that the wave-function norm mill not be unity. We
shall show how we find a solution with unit norm later in
the paper.

The four equations above, together with the normaliza-
tion condition [Eq. (2.9)], form the basis for the numeri-
cal technique for finding the ground-state solution of the
NLSE. We turn now to a description of this technique.

—x /4+(P —l/2)ln(x) (X ~ ) (3.2)
IV. NUMERICAL INTEGRATION TKCHNIQUK

where C is a constant that depends on the wave-function
norm.

B. Behavior as x ~0

P(x) =P'(0)x, (x ~0), (3 3)

where, hereafter, the prime denotes differentiation with

Now consider Eq. (2.6) as x~0. The nonlinear term
inside the square brackets approaches a constant in this
limit because of the regularity of the wave function at
x =0. Thus, we can write

The numerical method divides into two parts. The first
part consists of finding a solution of Eq. (2.6) that satisfies
the boundary conditions summarized in Eqs. (3.6}—(3.9).
The norm of such a solution will not be equal to one.
The second part involves finding a related solution whose
norm is one, but which corresponds to a condensate con-
taining a different number of atoms. We shall discuss
each of these steps in turn.

The parameters on which the solution of Eq. (2.6) de-
pend are N, y, p, and A. When all of these parameters
have been assigned numerical values, both the values of
P(0) and P'(0) are determined from Eqs. (3.6) and (3.7).
The Runge-Kutta method [11] is used to propagate the
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solution of Eq. (2.6) out to large values of x for given
values of the parameters. The resulting solution does not,
however, satisfy the boundary conditions at large x.
Thus, many different sets of the above parameters must
be tried in order to find the set of values for which bound-
ary conditions at both large and small x are satisfied. In
this work, the values of N, y, and p were held constant
and A was varied.

So, for a given value of A, Eq. (2.6) was integrated out
to x „.Let us call the resulting numerically determined
solution P„„(A, N;x). After the integration, the asymp-
totic form of the wave function P„„(x)was renormal-
ized to be equal to P„„(x,„)at x =x,„and the Wron-
skian of this function with P„„(A;x) was computed at
x =x „.The value of A was incremented and the above
process was repeated yielding another value of the Wron-
skian.

The process ended when the sign of the Wronskian
changed. Letting the value of A, for which the Wronski-
an vanishes be Ao, the wave function P„„(Ap,N;x)
satisfies all of the boundary conditions described above
except that its norm is not equal to one. It is possible to
use these results to find a solution that satisfies all of the
boundary conditions; we turn to this procedure next.

The wave function p„„(Ao, No;x ) is a solution of

The new wave function 1lj,(A„N„x) is written in
terms of the numerically determined wave function and
has a different norm. Thus, by simultaneously changing
both A and N, we can find new solutions of the NLSE
with different normalizations for condens ates having
different numbers of particles. The only undetermined
quantity in Eq. (4.6) is A, . Its value is simply deter-
rnined by the normalization condition, Eq. (2.9);

4m
m co„,

A ', f I 4„„(A„N„x }I

'dx = 1 .
0

(4.7)

A)= 4m
2m cotrap

f IP„„(Ap,No;x }I dx

(4.8)

Once A, has been determined, the number of atoms in
the condensate to which the new wave function applies, is
determined by Eq. (4.3);

2

Ão
Ao

(4.9)
1 A 0

And the final solution is given by

Since both Ap and $„„(Ao,Np ,x) a're known, we can
solve the above equation for A

&

—1/2

d $„„1 $„„(Ao,No', x)
+ P——x No Aoy—

4 X

A,
g(A] N&'r)= P (Ap Np'r)

T
(4.10)

XP ( Ao No'x )=0 (4.1)

Now consider a new wave function P, ( A „N, ;x ) that is a
solution of the equation

P, (A), N, ;x)
X

1+ P— x N, Aiy— —
61 4

XP,(A „N„x}=0 . (4.2)

The two solutions, P„„(Ao,No;x) and P, (A„N„'x),
will be different unless

N0A =X A (4.3)

P, ( A „N,;x ) =P„„(A o, No'x ) (4.4)

The full wave functions corresponding to P,(A„N, ;x)
and P„„(Ao, No;x } will be different: However,

T

go(Ao No, r)= Ao
(Ao, No, r) (4.5)

because, in this case, the defining differential equations
and boundary conditions for the two solutions are identi-
cal and we have

where P„„(A p, No; r ) and Ao are obtained numerically
from the Runge-Kutta integration, A

&
is subsequently

determined from Eq. (4.8}, and N& is obtained from Eq.
(4 9).

V. RESULTS

In this section we shall present results for some specific
examples and make comparison with a commonly used
approximation. In Fig. 1 we give the solution for the
case of X-10 particles in a trap of frequency 10 Hz.
This is a reasonable case that one might expect to realize
in the case of the alkali-metal atoms, say Cs [1]. We have
assumed that we are dealing with a case where the
scattering length is positive. In some cases, this will re-
quire the selection of particular ground states or the ap-
plication of an external field [12]. If the scattering length
were negative, there would not, in general, be a stable
solution of the NLSE, i.e., no stable condensate [13]. We
have, therefore, taken the typical value a =3 nm for the
scattering length in this investigation. We have also plot-
ted the approximate solution obtained by assuming one
can neglect the kinetic energy term in the NLSE. If one
can make this approximation, Eq. (2.3) takes the form

and

Q, (A „N„r)= Ai
P, (A „N„r)r

A)
y- (Ao No'r) .

r

,'mao„, ~r g(r)+N—UpIQ(r)I g(r)=pg(r) .

This has the solution

(4.6)
for r &r„where

(5.1)

(5.2)
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FIG. 1. This figure contains plots of the exact (solid line) and
approximate (dotted line) condensate wave functions for a con-
densate having 10648 atoms. The form of the approximate
wave function is given by Eq. (5.2) where the number of conden-
sate atoms was taken to be the same as for the exact solution but
the chemical potential was determined by normalization as in

Eq. (5.4). The value of the chemical potential for the exact case
is 4.3A~„,~. Note that the horizontal axis is scaled in harmonic
oscillator length units whose value is given by
xh„,„;,=(R/2m'„, ~)' . The vertical axis is scaled by this
number as well so that 2P(x)/x is plotted instead of 3P(x)/r.

' 1/2
2p

2Pl COtrap

and is zero for r )r, . This value of p in the above equa-
tion is fixed by normalization and has the value

15XU0 (I 2 )3/5
8m trap (5.4)

This solution will obviously fail in the region close to
r =r, . This failure is clearly exhibited in Fig. 1. For very
large numbers of atoms in a trap, one may be able to ig-
nore the role of this term. For small condensates, howev-
er, a significant amount of the condensate formed will be
in this region. In that case, the precise solutions found
using the method we have described will be needed. This
will certainly be the case when one considers light

scattering from these small condensates and the
artificially sharp edge of the approximate solution would
cause significant errors in the predictions.

The ground-state condensate wave function also ap-
pears as a potential term in the coupled equations that
describe the condensate's response to an external light
field [6]. An artificially sharp edge appearing in this po-
tential will cause the solution of these equations to oscil-
late rapidly near r=r, thus introducing high-frequency
noise into the Fourier transform of the solution. As it is
this transform that is of interest in the light scattering
problem, this limits the usefulness of the predicted con-
densate response function based on the approximate
ground state.

In Fig. 2, we have plotted the variation of the ground-
state energy —the chemical potential —as a function of
the total number of atoms in the condensate. One can see
how this deviates from the "free," i.e., noninteracting,
value as the number of atoms in the condensate is in-
creased.

So far we have limited our discussion to ground states.
In the presence of the external potential it may be possi-
ble to observe nonlinear excitations of the condensate.
One such solution is shown in Fig. 3. This corresponds
to %=1993 with a chemical potential the same as the
condensate of Fig. 1 ~ Such nonlinear "excitations" of the
condensate may play a role as the gas proceeds via meta-
stable states in the cooling process. In a homogeneous
gas, such amplitude variations would be quickly damped
away [14]. One has, of course, to ask about the stability
of such excitations and this is a matter that we intend to
address in detail in our future work. There will also be
excitations of the condensate that are not spherically
symmetric, i.e., vortex solutions. Some of these could be
found by separation in cylindrical coordinates (this would
work if the vortex occurs at the center of the trap. ) More
general solutions are also possible that cannot be found
using the techniques described here. Finding these may
warrant direct solution in three-dimensions of the NLSE
for trapped Bose-condensed atoms.
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FIG. 2. A plot of the number of condensate atoms as a func-
tion of the chemical potential. The horizontal axis is scaled in
units of the harmonic oscillator energy spacing, A'cot p.

FIG. 3. A plot of a second solution of the NLSE for a con-
densate having the same chemical potential as in Fig. 1 but con-
taining only 1993 atoms.
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VI. CONCLUSIONS

We have presented a technique for solving the NLSE
for a sample of Bose-condensed trapped atoms. We have
shown when and how the solution deviates from the sim-
plest, often-used approximation. The detailed nature of
the nonlinear excitations (vortices, etc.) of these confined
condensates should soon be accessible to direct experi-
mental observation. This will provide motivation to ex-
tend the investigations described here to more general
and complex geometries. The simpler solutions we have

produced do, however, already exhibit the interesting
features we have described.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Charles W. Clark
for fruitful discussions. This work was supported in part
by NSF Grant No. PHY-9206769. K. Burnett thanks
NIST for hospitality during his visit.

[1]Ch. Monroe, E. Cornell, and C. Weiman, in Laser Manip
ulation ofAtoms and Ions, Proceedings of the Internation-
al School of Physics "Enrico Fermi, " Course CXVIII,
Varenna, 1991, edited by E. Arimondo, W. D. Phillips,
and F. Strumia (North-Holland, Amsterdam, 1992).

[2] T. W. Hijmans, Yu. Kagan, G. V. Shylapnikov, and J. T.
M. Walraven, Phys. Rev. B 48, 12886 (1993); J. M.
Doyle, J. C. Sandberg, I. A. Yu, C. L. Cesar, D. Kleppner,
and T. J. Greytak, Phys. Rev. Lett. 67, 603 (1991).

[3] E. M. Lifshitz and L. P. Pitaevskii, Statistical Physics
(Nauka, Moscow, 1978) (English translation published by
Pergamon, London, 1980).

[4] D. A. Huse and E. D. Siggia, J. Low Temp. Phys. 46, 137
(1982).

[5] V. V. Goldman, I. F. Silvera, and A. J. Leggett, Phys. Rev.
B 24, 2870 91981).

[6] M. Edwards and K. Burnett (unpublished).
[7] M. Lewenstein and Li You, Phys. Rev. Lett. 71, 1339

(1993).
[8] A. L. Fetter and J. D. Walecka, Quantum Theory of

Many-Particle Systems (McGraw-Hi11, New York, 1971).
[9] J. C. P. Miller, in Handbook of Mathematical Functions,

edited by M. Abramowitz and I. Stegun, Natl. Bur. Stand.
(U.S.) Applied Mathematics Series No. 55 (U.S. GPO,
Washington, DC, 1964).

[10]M. Lewenstein, L. You, J. Cooper, and K. Burnett, Phys.
Rev. A 50, 2207 (1994).

[11]W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T.
Vetterling, Numerical Recipes: The Art of Scientific Com
puting (Cambridge University Press, Cambridge, England,
1986).

[12] E. Tiesinga, A. J. Moerdijk, B. J. Verhaar, and H. T. C.
Stoof, Phys. Rev. A 46, 1167 (1992).

[13]H. T. C. Stoof, Phys. Rev. A 49, 3824 (1994).
[14] Yu. Kagan and B. V. Svistunov, Zh. Eksp. Teor. Fiz. 105,

353 (1994) [Sov. Phys. JETP 78, 187 (1994)].


