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Quantum-mechanical treatment of high-energy channeling radiation
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An alternative theoretical description of axial electron channeling in the multi-GeV region has been
developed. We solve a kinetic equation to evaluate an electron distribution function in axially oriented
single crystals. Based on the single-string model, the required matrix elements for radiation and scatter-
ing by lattice vibrations are calculated employing solutions of the Dirac equation in cylindrical coordi-
nates. Results obtained for 150-GeV electrons propagating along the (110) axis of germanium are in

good agreement with experimental observations.

PACS number(s): 61.80.Mk, 41.60.—m, 03.65.—w

I. INTRODUCTION

Over the past ten years, the interaction of multi-GeV
electrons and positrons with oriented single crystals has
been investigated with great effort [1,2]. In both planar
[3,4] and axial channeling experiments [5], in this energy
region, one encounters a dramatic enhancement of
bremsstrahlung. For a review, see [6]. Electrons aligned
to major crystal axes radiate typically most of their kinet-
ic energy when passing through a crystal more than
1 mm thick. A substantial fraction of this energy loss
consists of hard photons and due to relativistic kinemat-
ics, the bremsstrahlung quanta are more or less emitted
in the channeling direction. These observations led us to
question whether axial channeling of ultrarelativistic
electrons might be utilized as a new source for two-
photon physics [7]. Two electron beams, channeled in
opposite directions by the same single crystal, could pro-
vide enhanced luminosities for y-y reactions if a
sufficiently large number of hard photons were emitted by
the electrons and if these photons stayed close to the
crystal axes. There is a broad interest in photon-photon
physics as can be seen, e.g., from [8]. High-energy
photon-photon reactions both with photons backscat-
tered from electron beams and with bremsstrahlung pho-
tons, i.e., photons generated by the collective charge of a
particle bunch in an accelerator, are sought. We want to
determine whether channeling as a source of high-energy
photons can compete with these other options.

Channeling electrons stay close to rows or planes of
crystal atoms, "sensing" their electric fields throughout
the whole passage through the medium. Therefore any
reasonable theoretical description of channeling phenom-
ena must go beyond perturbation theory in treating the
interaction between electrons and crystal fields. Detailed
models of channeling radiation have been developed by
Baier, Katkov, and Strakhovenko [9—11] as well as by
Kononets and Ryabov [12,13]. Both Baier, Katkov, and
Strakhovenko's semiclassical theory and Kononets and
Ryabov's model assume channeling radiation to be basi-
cally of synchrotron nature and use the constant-field ap-

proximation to evaluate radiation probabilities. Al-
though especially Kononets and Ryabov are very success-
ful in describing the data obtained by Medenwaldt et al.,
[3—5], they use phenomenological constants to incorpo-
rate the inAuence of angular momenta on the transverse
electron distribution.

In this paper we choose a more rigorous approach to
axial electron channeling. Starting with the simplest ver-
sion of the continuum description introduced by Lin-
dhard [14], i.e., the single-string model, the Dirac equa-
tion is solved in cylindrical coordinates. These wave func-
tions are employed to calculate radiation and scattering
matrix elements, which enter a rate equation for evaluat-
ing the electron distribution function. All information
about the channeled electrons and the emission of radia-
tion quanta is contained in this distribution. Since we
start from first principles, we are certain not to miss any
large relativistic effects such as those connected with,
e.g., virtual pairs created in the extremely strong channel-
ing fields. For many years we have studied the properties
of overcritical electric fields [15]. Ultrarelativistic chan-
neling is often classified as a similar phenomenon. By
solving the Dirac equation we can check whether it really
involves nontrivial quantum effects, missed by a semiclas-
sical model. We shall show that this is not the case. To
solve the Dirac equation for channeling, considerable nu-
merical problems had to be mastered, which are mainly
due to the large effective mass that governs the transverse
motion of the channeled particles.

The main objective of this work is to calculate photon
production in high-energy channeling, to check whether
the quasiclassical results are approximately right, to
derive the radial photon distribution, and to decide
whether y-y collisions of channeling photons in the 100-
CreV range offer a practicable experimental possibility.
Detailed theoretical analyses of various quantum-
mechanical properties at MeV energies can be found in
Ref. [16]. These investigations are very interesting, espe-
cially for the use of channeling radiation as a probe in
solid-state physics. They include, e.g. , a detailed descrip-
tion of the interaction with phonons and show that quan-
tum effects are not in general negligible.
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II. DIRAC EQUATION
AND THE SINGLE-STRING MODEL

In the single-string model the channeled particles in-
teract with only one row of crystal atoms positioned
along a straight line. (The direction defined by this line
will be called the z direction throughout this paper. ) The
electrostatic potential describing this interaction is ob-
tained by averaging the projectile-atom potentials over
the z direction. For the Debye-Turner potential [17] one
obtains the thermally averaged potential

2e Qo a;
VT(ri) = g exp

; —i 8;+2ui

2

(1)
B;+2u i

This potential represents an analytical approximation to
relativistic Hartree-Fock calculations. The numerical
values of the constants a; and B; are taken from Ref.
[18]. d and ui denote the interatomic distance in the
string direction and the one-dimensional mean square
amplitude of thermal lattice vibrations, respectively. ao
is the Bohr radius and r~ is the distance perpendicular to
the channeling axes.

Inserting the potential (1) into a Dirac equation, rela-
tivistic wave functions for axial channeling can be com-
puted (we use natural units fi=c =1 and the Dirac repre-
sentation of the y matrices according to Ref. [19]}.Since
(1) depends only on ri, the problem has cylindrical sym-
metry. Fortunately the Dirac equation

r
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with the four-spinor P(ri ) describing the transverse
motion

1 1
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( —p, +im ismi)e'—" ' 'ru, (ri)
( p, +Em +—lsml )e'~8+ 1/2)yu2(rl )

(4)

can be separated in cylindrical coordinates ri, p, z [20].
Following the separation procedure of Shishkin and Vil-
lalba [21],we are led to the wave function

i(p z —Et)
QE,J...„,(r, t) = e ' P(ri),

energy E, the momentum in z direction p„ the z com-
ponent of the total angular momentum p, and the spin
orientation s =+1. The spin operator for the cylindrical-
ly symmetric Dirac equation (2) that is diagonalized by
Pz ~ „,has a slightly difFerent form than the usual one:

. 8 y'+m y'y'
Bz

Since the longitudinal momentum p, is a good quan-
tum number, the transverse energy e—=E —mj is a con-
served quantity as well. Only states with negative values
of e describe electrons that are bound to the string, i.e.,
that are channeling. Particles with positive energy e have
transverse momentum and therefore move from one
string of crystal atoms to another.

The structure of the equations determining the radial
functions ui(ri) and u2(ri} is very similar to the spheri-
cally symmetric case:

u i
—[E +sm i —Vz.(ri ) ]u 2 =0 .p

dry rg

+ u, + [E—smi+ VT(ri )]u i =0 .p
dry rg

As already mentioned above, the main effects that cause
transitions between different channeling states are emis-
sion of radiation and scattering by thermal lattice vibra-
tions. Treating the electromagnetic field A" of the emit-
ted photon as a perturbation, the first-order S-matrix ele-
ment for a radiative transition reads

Sf; = ie Id x —ff A g, . (7)

2
Wr

=EX
dZdpzf p'zi.
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k~
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The energy co=Qk, +k i and momentum components
of the emitted photon follow from the conservation laws
for the initial energy and the momentum in z direction:

Here i=(E;,p„,p;, s;) and f=(Ef,p,f,pf, sf) represent
the quantum numbers of the initial and the Anal state, re-
spectively. From Sf; a double-differential radiation prob-
ability per unit length and final electron momentum can
be derived:

Here m denotes the electron rest mass and
mi =Qp, +m the transverse mass. The wave functions
u, (ri) and u2(r~) depend on the chosen values for E and
p„' see also Eq. (4). More precisely, the quantum num-
bers characterizing such a channeling state are the total

mi,-+e;=mif+ef+Qk, +k2i, p„=p,f+k, .

The R;. denote the occurring radial integ rais
(~v—=s; —sf)
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where Jz„(kiri) is a Bessel function of the first kind.
The coefBcients A,

& 2 are combinations of the electronic
quantum numbers, whose meaning become transparent if
they are expanded into the parameters m /p„and m /p, f.
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The scattering of channeling electrons by lattice vibra-
tions is also considered in first-order perturbation theory.
One can derive the following scattering probability per
unit length [22—24]:

=d [[I(gf(ri)I V(rj —ui)IP;(rj ) ) I']

Again the subscript t ] T denotes thermal average. Em-
ploying the harmonic approximation for the lattice vibra-
tions this averaging assumes the form

VT(ri)= d use ' 'V(ri —ui) .
27TQ )

(13)

Here V(ri —ui) is the transverse string potential generat-
ed by a charge centered at uj. Vz.(ri} is the transverse
potential resulting from averaging V(ri —uz) with a
gaussian weight. The charges are assumed to be dis-
placed from the string axes by a typical distance u &.

We evaluated Eq. (12}by inserting the transverse wave
function (4) and the potential (1) and obtained

dw 2e a0 a.
Z 2&Q j=l J

2

00 '2
d j Vr(r J )[u „u [f +uzi u2f ]P;Pf 0

with Bi being the constants introduced in Eq. (1) and
Pi(ui ) being defined as

—r /B
PJ.(ui)= J drie ' 'Iq„

0

2Ti9g
B.

X [u i;u ]f+u2|u2f ]

In this equation I&„stands for the modified Bessel func-
tion. In the derivation of Eq. (14) we again assumed that
the crystal atoms perform independent harmonic vibra-
tions. This assumption already entered the evaluation of
the channeling potential (1). Collective lattice excitations
such as phonons were neglected.

Let us remind the reader that we are interested in
checking in this contribution whether relativistic e6'ects
such as the presence of virtual particles play an impor-
tant role in high-energy channeling (i.e., whether high-
energy channeling involves overcritical effects or not) and
we want to derive an approximate transverse photon dis-
tribution. While the incorporation of the coupling to
phonons could be important to obtain a high-precision
description of the data (see Ref. [16] for the importance
of phonons for low-energy channeling), it should not lead
to fundamental changes.

In order to correctly describe the channeling process,
detailed knowledge about the lattice degrees of freedom

—f(n, z)gw„d(n ~n'),
n'

(16)

I,„,=gw„„(n'~n . )f (n', z) f (n, z)gw„„(n ~n') .—
n' n'

Here we have defined the symbolic notation
2

W radw„d(n'~n) = bp,f,
dZdPzf

dW spatw„„(n'~n ) =
dZ

is, in general, of secondary importance. Instead a careful
determination of both the longitudinal and the transverse
energy distributions of the channeled electrons is essen-
tial. According to the conservation laws (9), every loss of
total energy, i.e., every photon emission, goes along with
a transition in the transverse energy of the electron.

With knowledge of the radiation (8) and scattering
probabilities (14), the electron distribution function
f (n, z) can be computed by means of the rate equation
[n =(p„e,p,s)]—
df (n, z)

farad iscat &az

I„d=gw„d(n'~n)f (n', z)
n'
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with n and n denoting the initial and final quantum num-
bers, respectively. The quantity f (n, z)bp, heb, p is sim-

ply the number of electrons at a certain position z in the
crystal occupying channeling states in the intervals
[p„p,+bp, ], [e,a+be], and [p,p+bIu]. Since any loss
of longitudinal energy is associated with photon emission,
all information about the produced channeling radiation
can be deduced from f (n, z).

III. NUMERICAL SOLUTION AND RESULTS

For numerical purposes the continuous quantum num-
ber p, and the position variable z have to be discretized.
The rate equation (16) then becomes a simple matrix
differential equation, which can be solved by elementary
methods, provided that the spacing hz is chosen
sufFiciently small.

The actual numerical problems mentioned in the Intro-
duction arise from the computation of the radiation and
scattering probabilities (8) and (14). They are basically
caused by the huge difference between the two energy
scales, which characterize the high-energy channeling
processes considered in this paper. The total energies of
the channeled electrons and their transverse masses are in
the multi-GeV range, while the potential VT(r~) govern-
ing the transverse motion is of the order of a few hundred
eV. Therefore one has to deal with large quantum num-
bers for the spinor (4), i.e., for example, hundreds of
nodes for the radial functions. One consequence is the
presence of a huge number of matrix elements between
the existing channeling states, for each of which integra-
tions over highly oscillatory functions must be per-
formed.

However, it turned out that the WKB energy formula
leads to an excellent approximation for the energy eigen-
values of the channeling states defined by Eq. (6). This
observation enabled us to develop an ef5cient and fast
code for computing the radial functions u

&
and u2.

As a further simplification one can neglect the spin de-
gree of freedom of the channeling wave functions. For
almost all combinations of the electronic quantum num-
bers, spin-fiip transitions are strongly suppressed (cf. the
example depicted in Fig. 1). Consequently, an unpolar-
ized beam of channeled electrons cannot be polarized by
emitting bremsstrahlung, contrary to a claim by Bagrov,
Ternov, and Kholomai [25] several years ago.

The following observation is essential for overcoming
the remaining numerical problems. The scattering and
radiation probabilities can be neglected for most com-
binations of initial and final quantum numbers. Only in
certain limited areas of this parameter space they assume
significant values. Furthermore, the radiation probabili-
ties are slowly varying functions in these areas if aver-
aged over a few neighboring final states (cf. Fig. 2). The
problem of computing a huge number of matrix elements
can therefore be reduced to evaluate a few representative
ones.

The strong fluctuations are due to the fact that for
fixed (oscillating) functions u „(rt ) and u2;(r~ ), the (oscil-
lating) functions fu(r )atnd u2f(ri) change with EIu and
thus for some values of b,p the integrals in Eqs. (14) and
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channeled electron is strongly suppressed. This figure demon-
strates that axial channeling does not lead to sizeable polariza-
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(15) are suppressed by destructive interference. Figures 1

and 2 show the differential rates for individual final
states. Such information allows one to obtain the radial
profiles in Fig. 5. To obtain the spectrum, one sums over
all final states according to Eq. (16).

Figure 3 shows an example for a differential photon
spectrum, normalized to one channeled electron. All re-
sults discussed in this paper refer to the (110) axis of
germanium. Our result is in good agreement with that
obtained by Kononets [26]. It is interesting to note that
channeling radiation exceeds regular bremsstrahlung due
to the Bethe-Heitler process only up to a photon energy
of about 75%%uo of the total electron energy. The reason for
the crossing of the curves seems to be simply that because
the probability of emitting softer photons is so much
higher in channeling, all electrons lose energy much fas-
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FIG. 3. Photon spectrum compared to a result obtained by
Kononets and to the Bethe-Heitler yield. Also plotted is the
Bethe-Heitler result for an amorphous target.

ter and therefore have less of a chance to emit photons
with energies close to 240 GeV in later stages of their
transmission through the crystal.

Angular spatial distributions of photons emitted in axi-
al electron channeling are depicted in Figs. 4 and 5, re-
spectively. Photons with the highest energies are pro-
duced at larger distances from the crystal axes than those
with lower energies. In addition, emission angles of the
order of 10 prevent the photons from staying close to
the axis over a macroscopic distance of the order 0.1 mm.
Together with the observation of Fig. 3, i.e., photons con-
taining more than 75%%uo of the initial electron energy are
not predominantly produced in channeling experiments,
these results indicate that axial channeling of ultrarela-
tivistic electrons cannot serve as an efBcient source for
high-energy two-photon collisions.

In the remaining figures we compare our results with
experimental data taken from [5]. The quantity em-
ployed for that purpose is the ratio of the differential en-

ergy loss relative to that for an unoriented crystal. For a
crystal of length z this is
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FIG. 5. Spatial photon distribution. Energetic photons are
created at larger distances from the crystal axes. Here
denotes the electron Compton wavelength. Obviously the
highest-energy photons are produced at rather large distances
from the channeling axis.

d71 z
(enhancement) =Er

rRd

where we have used z «L„d and exp( z/L„d) =—I
z/L„d. A char—ged particle penetrating an amorphous

medium of thickness L„z loses all but a fraction I/e of
its initial energy via regular bremsstrahlung. For elec-
trons of 150 GeV, L,„„assumes values of 93.6 and 23.0
mm in silicon and germanium, respectively. The energy
Er in Eq. (7) is equal to the total radiative energy loss
suffered by a channeled electron and not necessarily the
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FIG. 6. Total energy loss of 1SO-CxeV electrons channeling
along the (110) axis of germanium. The experimental data in
Figs. 6-9 are taken from [5].
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FIG. 7. Differential energy loss for 150-GeV electrons chan-
neled in a germanium crystal. The target thickness is z =0.2
mm and the data are from the same experiment as in Fig. 6; see
Ref. [5]. We plotted the di6'erential energy spectrum for a chan-
neled electron divided by the corresponding values for an amor-
phous target, i.e., the Bethe-Heitler cross section. This
enhancement factor is thus dimensionless.

energy of one emitted photon. An electron is more likely
to emit several photons during a channeling process,
whose individual energies add up to a value E&. From
our calculations we learn that typically the very large en-
ergy losses are on the average due to the emission of four
to five photons. Since one has

z

L„d
(19)

90
Eo ——150 GeV
z =0.4mm

70 & Experiment

in amorphous media, the quantity (enhancement) can be
understood as the differential radiative energy loss nor-
malized to the corresponding Bethe-Heitler process. One
arrives at the total energy loss for the given target thick-
ness plotted in Fig. 6 if the spectra of Figs. 7—9 are in-
tegrated. The agreement with the shown experimental
data is good enough to prove that our method works in

FIG. 9. Same as Fig. 7, but for z =0.6 mm.

principle. As our results, as well as those obtained with
semiclassical methods, describe the data at least approxi-
mately, we conclude that quantum effects are not large
for these observables. This suggests that the situation in
high-energy channeling is qualitatively different from
that encountered for overcritical electric fields, but obvi-
ously we cannot exclude that the quantum effects are
larger for other observables. We want to stress that our
calculation is basically parameter free; the only parame-
ters we used characterize the germanium crystal and are
well known experimentally.

While the general agreement is rather good, there are
clear discrepancies with respect to the z dependence. Our
spectra become substantially steeper with increasing z,
while the experimental slope is more or less constant. We
do not understand the origin of this discrepancy. Actual-
ly, there is a very simple argument why the spectra
should become steeper. Just because radiation is so much
enhanced, the fraction of electrons that have radiated
(usually emitting several photons) most of their energy
should become larger and larger with increasing z, while
the number of electrons with nearly their original energy
is suppressed. Because the ratio to the Bethe-Heitler
cross section is shown in Figs. 7—9, every enhancement
over the Bethe-Heitler cross should lead to such a satura-
tion effect. Further improvement of our results requires
intensified numerical efforts, i.e., basically the computa-
tion of more representative radiation and scattering ma-
trix elements.

IV. SUMMARY AND CONCLUSIONS
8
(p 50

~40

~~ 30

20

10

0
0.0 0.2 0.4 0.6

x=E /Ep
0.8

FIG. 8. Same as Fig. 7, but for z =0.4 mm.

1.0

We developed an alternative description of axial elec-
tron channeling in the multi-GeV range. Based on the
single-string model and the solutions of the cylindrically
symmetric Dirac equation, transitions between the vari-
ous channeling states due to radiation emission and
thermal lattice vibrations have been evaluated. These
quantum-mechanical transition probabilities enabled us
to determine an electron distribution function, which
completely describes the channeling process including the
production of photons.

The results presented here show that axial channeling
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experiments can successfully be described by our ap-
proach, although the accuracy still calls for improve-
ment. Unfortunately, the idea to utilize axial channeling
as a new source for two-photon physics proves to be un-
realistic because the photons with high energy are pro-
duced rather far out in the string potential. Further-
more, we Snd that the electrons become only very mar-

ginally polarized.
Our model, i.e., solving a rate equation for the distribu-

tion function based on quantum-mechanical transition
probabilities, should also be applicable to planar channel-
ing. The numerics in that case should even become
easier, because the calculation of the transverse wave
functions reduces to a one-dimensional problem.
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