
PHYSICAL REVIEW A VOLUME 51, NUMBER 2 FEBRUARY 1995

Comparative study of exchange-correlation efFects on the electronic and optical
properties of alkali-metal clusters

M. Madjet and C. Guet
Commissariat a l'Energie Atomique, Departement de Recherche Eondamentale sur la Matiere Condensee,

Laboratoire des Ions, Atomes et Agregats, I7, rue des Martyrs, F9805/ Grenoble Cedez 9, France

W.R. Johnson
Department of Physics, University of Notre Dame, Notre Dame, Indiana $6556

(Received 3 May 1994; revised manuscript received 11 October 1994)

Ground-state properties of alkali-metal clusters are investigated within the framework of the jel-
lium model from the standpoint of either the local-density approximation of the density-functional
theory or the nonlocal Hartree-Fock theory. Accordingly, the optical response is calculated micro-
scopically within the corresponding time-dependent theory. The present study deals with closed-shell
systems with up to 200 delocalized electrons. A comparative investigation of various approxima-
tions is carried out. In spite of significantly different mean-field potentials, a consistent inclusion
of polarization-type many-body effects leads to surprisingly similar theoretical predictions of the
first moments of the oscillator strength distribution. This agreement is discussed in terms of sum-
rule constraints. The remaining discrepancies with regard to the measured data originate from the
jellium assumption which underlies our calculations.

PACS number(s): 31.10.+z, 31.25.+m, 36.40.+d

I. INTKODU CTION

The optical response of alkali-metal clusters has been
now measured for a large variety of systems [1—7]. The
energy dependence of the photoabsorption cross section
of clusters with filled electronic shells is particularly sim-
ple and observed as a broad resonance around a &equency
which is typical of the corresponding bulk metal. This
has lead quickly to an interpretation in terms of the so-
called jellium model. In this model, the electron-nucleus
many-body problem is reduced to that for a system of de-
localized valence electrons, the neutralization being en-
sured by an uniform positively-charged background, the
density of which is a parameter that is usually chosen to
be the bulk density.

Various theoretical approaches to dealing with the re-
sponse of the finite electron system to an external dipole
field have been considered. They are all variants of
the random-phase approximation (RPA) to the theory
of small amplitude vibrations of a finite fermion sys-
tem. The time-dependent local-density approximation
(TDLDA) formalism, which had gained success in the
context of atomic photoionization [8], was extended to
jellium metal spheres [9,10]. Prior to any relevant data,
it predicted quite nicely both static polarizabilities and
dipole absorption &equencies. It already appeared that
the polarization effects arising &om many-body correla-
tions were indeed important and thus necessary to give
the correct absorption resonance. Alternatively, one may
treat this collective effect through a matrix formulation of
the RPA [11—13] which, although computationally more
demanding, allows one to consider nonlocal interactions
[14]. Simpler approximations to the full RPA such as the
semiclassical RPA sum rule [15] and the local RPA [16)
have also been used.

All of the works mentioned previously, except that of
Ref. [14], were based on the LDA, i.e. , it was assumed
that the exchange and correlation contributions should
be treated on an equal footing, albeit locally, and thus
cast into a local density-dependent potential. The sub-
sequent construction of the ground state is then easily
performed within an effective mean-field theory. For
bulk metal, the LDA is indeed a much more natural ap-
proximation than the Hartree-Fock (HF) approximation,
which fails to provide a finite density of states at the
Fermi energy. However, for finite systems, the superior-
ity of the LDA has yet to be established. Apart &om
inhomogeneity effects, which can be treated by a gradi-
ent expansion formalism, the LDA fails to provide the
expected asymptotic falloff of the mean-field potential
that an electron sees. By contrast, the HF potential has
the correct 1/r asymptotic behavior since the Fock ex-
change term compensates for the fact that an electron
does not interact with itself. Moreover, the HF theory is
the natural &amework for including correlation effects in
many-body perturbation theory.

It was observed that theoretical polarizabilities cal-
culated within the LDA &amework were systematically
lower than measured polarizabilities and that, consis-
tently, the predicted dipole resonance &equencies were
blueshifted with respect to the experimental data. It
was conjectured that this defect might originate &om
the incorrect asymptotic behavior of the potential which
could crucially affect those observables that are sensitive
to outer parts of the wave function, such as dipole tran-
sitions. This was indeed the motivation of our previous
work [14]: to calculate the dipole vibrations within the
&amework of the random-phase approximation with ex-
change (RPAE), and to show eventually that the exact
treatment of exchange does not resolve the discrepancies
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with the experimental data. Note also that within the
&amework of the LDA, some recipes exist to correct for
the self-interaction [17], and that a clear improvement
has been claimed in some recent works [18].

In the present paper, we report a systematic compara-
tive study of an exact treatment of exchange correlations
versus local treatments. The ground state is described
either in the HF approximation, leading to a nonlocal
HF central potential or in the LDA by solving the Kohn-
Sham equations. In both cases, a complete basis of single-
particle states is constructed by confining the cluster to
a cavity of large but finite radius, thereby discretizing
the continuum. The spectrum of physical dipole-excited
states is then obtained by solving either the RPAE or the
RPA matrix equation. These states are used to deter-
mine oscillator strengths for dipole transitions from the
ground state as well as the ground-state static dipole po-
larizability. An assessment of our approximation for the
continuum states within the matrix RPA formulation is
done by comparing to a TDLDA calculation similar to
that worked out by Bertsch [19]. Unless specified other-
wise, we use atomic units.

II. HARTREE-FOCK AND LDA GROUND
STATES OF JELLIUM CLUSTERS

p2 1 1
Hg = ) —* + Vbks(r') + —). (2.1)

where Vb),s(r) is the positively-charged background po-
tential. For a constant-density distribution for the A
ions, the background potential is given by

(R)
—

(
2R (R) r&B

r&R, (2 2)

where B = A3 rs. The Wigner-Seitz radius rs is assigned
its bulk value, i.e. , 4ap for sodium (ap being the Bohr
radius). The many-body Hamiltonian is separated into
a model independent-particle Hamiltonian Ho and the
residual two-body interaction V„:

Hg ——Hp+ V„, (2.3)

(2.4)

In the jellium model an alkali-metal cluster consists of
itinerant electrons, one electron per atom, in a positively-
charged uniform background. This uniform background
has been implicitly obtained through a convolution of a
smooth ionic distribution with an electron-ion potential
that merely equals ——,thus disregarding any ionic struc-
ture efFect. In the following, we shall assume the electron
density to be spherically symmetric. This assumption is
likely to be well justified for clusters with a number of
valence electrons (8, 18, 20, 34, 40, 58, 92, . . . ) that form
a closed shell in a spherical potential. The many-body
jellium Hamiltonian, describing the system made of Z de-
localized electrons in the presence of A ions, is expressed
as

where the one-electron operator

hp ———p + Vbks(r) + U(r),
2

(2.5)

contains the mean-field potential U(r) which accounts in
some approximation for the electron-electron interaction.

In the HF theory, the ground state is approximated
by a Slater determinant of single-particle wave functions
and the Ritz variational principle is invoked to derive the
HF equations and the HF potential. The HF potential
[U(r) in Eq. (2.5)] is the sum of a direct and a nonlocal
exchange terms. The nonlocal contribution is essential; it
corrects naturally for the fact that an electron does not
interact with itself and leads to the physically correct
asymptotic behavior, , of the mean-field potential.

In the density-functional theory (DFT), according to
the Hohenberg-Kohn theorem, [20] the ground-state en-
ergy is a minimum for the exact density of a func-
tional of the density. In the spirit of the DFT, Kohn
and Sham proposed a self-consistent-field method which
takes into account approximatively exchange and corre-
lation efFects. The method leads for the ground state
to a set of self-consistent equations analogous to the
Hartree equations. It amounts to writing the potential
U of Eq. (2.5) as the sum of the direct Hartree poten-
tial and a density-dependent local exchange-correlation
potential, V„,[p(r)]. In order to be consistent with pre-
vious works [21], we use the local-density approximation
(LDA) exchange-correlation energy density e„, of Gun-
narsson and Lundqvist [22] which is expressed as

G(x) = (1+x )ln~ 1+ —
~

—x'+ ———,
x) 2 3

(2.6)

where rs(r) = [4
~ )] ~ is the local Wigner-Seitz radius.

This leads to

~[&(r)e (p(r))]
b'p(r)

( 9 ) 1 ( 11.4)—0.03331n/ 1+
t 4~2) rs(r) E rs(r) )

(2.7)

Note that the first term on the right-hand side of Eq. (2.7)
is exactly the exchange potential derived variationally
&om the HF exchange energy of a uniform electron liquid,
immersed in a uniform background of positive charge. In
order to compare this to the exact HF potential for fi-
nite systems, it is natural to consider this exchange po-
tential rather than the Slater exchange potential [23],
which is a factor 2 larger in magnitude. Asymptotically,
the density-dependent potential of Eq. (2.7) behaves as
p(r) ~, i.e., exponentially.

The self-interaction correction (SIC) to restore the cor-
rect asymptotic behavior was considered within the
framework of the LDA by Perdew and Zunger [17] and
applied to metallic clusters [24,18]. In the SIC approx-
imation, the state-dependent Kohn-Sham (KS) single-
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particle potential is written as

VsIc(r)=, "r'+ V (p(r))[ (r') —~-(r')]
ir —r'i

—V„,(& (r)), (2.8)

1.5—
HF

LDAX

where p (r) is the a single-particle state density,

S-(r) = ~'. (r)u-(r) . (2.9)
0.5—

Restricting the discussion to spherically symmetric
closed-shell systems, u„i~(r) = "„'("iYj~(0, P)y, and de-
pend. ing on whether we treat exchange exactly or use the
LDA, we are led to solve either coupled radial HF equa-
tions or coupled radial KS equations for the occupied
orbitals:

1d' l(l + 1)
2 dr'

——„,+ Vb~s(r) + &(r) +, &~~(r)2r2

0

C}

1.5—

HFC

LDAXC

e f~f (T) . (2.10)

0.5—

Numerical comparisons

Our numerical codes yield single-particle radial or-
bitals R„~(r) and eigenenergies e„i to a very high ac-
curacy (typically one part in 10 ). The HF calculations
have been carried out for clusters with up to 200 parti-
cles, whereas the KS calculations can be performed for
much larger systems.

In order to assess the validity of the LDA, we com-
pare HF predictions of ground-state properties to pre-
dictions obtained within the LDA with only a local ex-
change term (denoted as LDAX). Such a comparison has
already been done for clusters with up to 58 delocalized
electrons by Hansen and Nishioka [25]. The present cal-
culations that extend to larger systems reach the same
conclusions as Ref. [25]. In the upper panel of Fig. 1,
we show the ground-state electronic densities pHF(r) and
ppDAx(r) for a closed-shell system of 92 particles with
rg ——4ao, calculated within the HF approximation and
LDAX, respectively. These two density pro6les coincide
almost perfectly in the surface and in the tail region. The
LDA shows less pronounced quantal oscillations in the in-
ner part of the cluster than does the HF approximation.

10
I

15

r(a )
20

I

25 30

FIG. 1. Radial electronic density of Nag2 (rs = 4ao), p(r),
normalized to the constant positively charged density, pl. Top
panel: Hartree-Fock versus local-density approximation with
only exchange interaction. Bottom panel: Hartree-Pock plus
density-dependent correlation versus local-density approxi-
mation with exchange-correlation interaction.

The second moments of the radial density are reported in
Table I for a set of closed-shell systems (8, 20, 34, 40, 58,
92, 138, 196). The agreement between the HF and LDA
predictions is surprisingly good. The difference is already
less than I'Fo for 20 particles and is negligible (one part
in 10 ) for 196 particles.

The excellent agreement for densities is also observed
for total ground-state energies as shown in Table II.
Whereas the total energies differ by about 1% for eight

TABLE I. Second moment (r ) (ao) of the valence electron density of Na clusters (rs = 4ao) for
difFerent sizes A, calculated in the Hartree-Fock approximation (HF), in the Hartree-Fock approx-
imation with correlation (HFC), and in the Kohn-Sham approximation either with exchange only
(LDAX) or with exchange correlation (LDAXC). Hartree-Fock self-interaction corrected predictions
are also given (LDAX-SIC and LDAXC-SIC). See text.

HF
LDAX
LDAX-SIC
LDAXC
LDAXC-SIC
HFC

8
44.11
44.71
43.51
42.84
42.95
42.34

20
76.85
77.17
76.52
75.31
75.80
75.06

34
106.24
106.60
106.33
104.84
105.48
104.54

40
118.82
118.95
118.58
117.07
117.72
116.99

58
149.26
149.54
149.40
147.82
148.50
147.59

92
201.13
201.34
201.28
199.63
200.33
199.47

138
262.05
262.19
262.16
260.46
261.17
260.37

196
329.73
329.83
329.85
328.09
328.81
328.03
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TABLE II. Total energy (a.u. ) of valence electrons in Na clusters (rs = 4ao) for different sizes
A, calculated in the Hartree-Pock approximation (HF), in the Hartree-Fock approximation with
correlation (HFC), and in the Kohn-Sham approximation either with exchange only (LDAX) or
with exchange correlation (LDAXC). Hartree-Fock self-interaction corrected predictions are also
given (LDAX-SIC and LDAXC-SIC). See text.

HF
LDAX
LDAX-SIC
LDAXC
LDAXC-SIC
HFC

8
5.18
5.11
5.28
5.38
5.38
5.45

20
23.01
22.90
23.20
23.59
23.53
23.71

34
55.07
54.89
55.31
56.09
55.96
56.28

40
71.94
71.78
72.23
73.19
73.09
73.35

58
133.00
132.75
133.32
134.82
134.56
135.08

92
285.42
285.10
285.84
288.41
287.95
288.73

138
559.02
558.64
559.56
563.63
562.91
564.00

196
1000.82
1000.37
1001.48
1007.48
1006.45
1007.92

particles, they agree with each other to better than one
part in 10 for systems with more than 92 particles.
These results on ground-state energies and densities con-
firm the validity of the functional theory. In the present
case where only exchange is taken into account, the ex-
change energy density is perfectly well known so that for
a homogeneous large system an exact agreement should
be obtained. The tiny difFerences that we observe are due
to the quantum finite-size efFects which are indeed play-
ing a role only in the inner region where the potential
acts.

The good. agreement on ground-state energies and den-
sities should not, however, mask the marked difFerences in
the self-consistent mean-field potentials that the HF ap-
proximation and the LDAX provide. As an illustration,
we show in Fig. 2 the LDAX mean-Geld potential seen
by an electron of Nag2. In the same figure, we have also
plotted the state-dependent HF potentials seen by a 18
and a 16 electron. As discussed above, the HF potentials
behave asymptotically as ——,thus being much shallower
in the outer region than the LDA potential which falls
off exponentially. The LDAX potential is less attractive
than the HF potential also in the inner part leading to a
spectrum of single-particle state eigenenergies systemat-
ically higher than the HF spectrum. These eigenenergies
are reported in Table III for the ten filled orbitals of Nag2.

The density-functional theory treats exchange and cor-
relation interactions on an equal footing. Starting from
the HF theory, it is a major task to include the cor-
relation contributions to the ground-state wave function
through configuration interaction methods or many-body
perturbation theory. Some work along these lines has al-
ready been published [26—28]. In the present paper, we
consider a hybrid model which we shall denote by HFC
(Hartree-Fock plus correlation) in which the correlation
contribution is just the same as in the LDA. Using this
ad hoc prescription, we have assumed that the nonlocal-
ity is entirely in the exchange term that we treat exactly.
For clarity, let us denote the LDA with exchange and
correlation by LDAXC.

In the lower panel of Fig. 1, we show the densities of
Nag2 now obtained in the LDAXC and in the HFC ap-
proximation. As expected these two densities difFer &om
each other only in the inner region. The interesting point
is that the inclusion of a correlation term in the energy
density functional does not lead to any sensitive change

~ ~ ~
~ ~

~ ~
~ ~e~

e

4.2—

4

15

r(a)
25 30

FIG. 2. Radial mean-field electronic potential, V(r) (a.u. )
for Nag' (rs = 4ao). Hartree-Fock potentials seen by the
1s-state and 1h-state electrons versus local-density approxi-
mation with only exchange interaction (LDAX).

of the density. This fact can be checked by comparing the
second moment of the density as shown in Table I. For
the smallest eight-particle cluster the correlation part of
the Gunnarsson-Lundkvist functional, Eq. (2.7), brings
a reduction of the root mean square radius of about
2%. This volume contraction due to correlation, however,
quickly diminishes with size: for 40 particles the rms radii
differ already by less than 1%. Thus, for medium-large
clusters, the four difFerent approximations provide very
similar densities.

An inspection of the values reported in Table II shows
that the total ground-state energies per particle are low-

ered by about 0.96 eV per particle, very close to the
1.02 eV correlation contribution to the energy density of
Eq. (2.6) that is obtained for rs = 4ao. As a matter of
fact, the efFect of the correlation potential comes down to
an almost constant shift of about 0.9 eV for the eigenen-
ergies of all single-particle states. This can be seen from
Table III for Nag2. Note that the wave functions are not
significantly modified. The fact that the correlation po-
tential just shifts the eigenenergy spectrum arises &om its
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TABLE III. Energy parameter (eV) of the occupied single-particle states of the A=92 closed-shell
jellium cluster (rs = 4ap) calculated in the Hartree-Fock approximation (HF), in the Hartree-Fock
approximation with correlation (HFC), and in the Kohn-Sham approximation either with exchange
only (LDAX) or with exchange correlation (LDAXC). Hartree-Fock self-interaction corrected pre-
dictions are also given (LDAX-SIC and LDAXC-SIC). See text.

HF
LDAX
LDAX-SIC
LDAXC
LDAXC-SIC
HFC

-8.65
-4.84
-6.02
-5.69
-6.48
-9.51

1p
-8.04
-4.49
-5.48
-5.35
-6.02
-8.92

1d
-7.23
-4.05
-4.96
-4.92
-5.53
-8.13

2$
-6.81
-3.85
-4.89
-4.70
-5.44
-7.69

1f
-6.23
-3.54
-4.40
-4.41
-4.97
-7.13

2p
-5.52
-3.23
-4.20
-4.08
-4.74
-6.39

1g
-5.00
-2.95
-3.77
-3.83
-4.35
-5.91

2d
-3.79
-2.52
-3.42
-3.36
-3.95
-4.64

-3.50
-2.31
-3.29
-3.17
-3.79
-4.34

-3.38
-2.29
-3.08
-3.13
-3.65
-4.28

1 LZ
3g2i3 S & (2.11)

where LZ measures the number of electrons in the
ground state that are outside the jellium sphere:

simple functional form given by Eq. (2.7). Since the log
function of the third power of the total density does not
vary appreciably over the radial extent of single-particle
wave functions, we expect &om perturbation theory a
constant shift for all occupied states.

A quantity of interest for further discussions is the
spillout length which can be expressed as

With regard to the ground-state densities, we observe
that for large systems the LDAX-SIC leads to even a
larger electronic volume than the LDAX, whereas for the
smaller systems (Z = 8, 20) it underestimates the elec-
tronic spatial extent. Keep in mind, however, that all
these discrepancies are small. Whereas the LDAX would
yield binding energies that are systematically higher than
the HF binding energies, the SIC prescription overesti-
mates the correction leading to a systematic overbinding
of the jellium clusters (see Table II).

III. OPTICAL RESPONSE

AZ = p(r)dr .
R

(2.12)

In harmony with the moment analysis of the density dis-
tribution, the electron spillout length, which is listed in
Table IV for clusters of various sizes, is slightly overesti-
mated by the LDAX with respect to the exact HF pre-
diction. Note again that the discrepancy is vanishingly
small as the cluster size increases. The spillout length is
reduced by about 10%%uo when the correlation is switched
on, due to the contraction of the density. The magnitude
of the electronic spillout is found to be rather indepen-
dent of size and equal around 0.55 ao for ps = 4ap.

Local-density approximation calculations including the
self-interaction correction (SIC) have also been per-
formed for the present closed-shell systems. Since the
state-dependent LDAX-SIC potential is close to the HF
potential, the single-particle energy parameters are in
better agreement than in the LDAX case (see Table III).

The response of a metallic jellium cluster to a time-
dependent external electromagnetic Geld of frequency u,
which amounts to its dipole contribution since the cluster
radius is much smaller than the relevant radiation wave-
length, is revealed by the photoabsorption spectrum. In
a linear response approximation, the deviation &om the
unperturbed density which we denote by bp(r; ~) is re-
lated to the weak external field, V,„t(r;u), by

bp(r, rr) = jdr'y(r, r';w)V, t(r';tr),

where y(r, r', ~) is the nonlocal frequency dependent sus-
ceptibility. The induced charge displacement will in turn
give rise to an induced dipole moment and a complex, &e-
quency dependent, dipole polarizability, o.(tu), that can

TABLE IV. Spillout length b (ao) of the valence-electron density of Na clusters (rs = 4ap) for
different sizes A. , calculated in the Hartree-Fock approximation (HF), in the Hartree-Fock approx-
imation with correlation (HFC), and in the Kohn-Sham approximation either with exchange only
(LDAX) or with exchange correlation (LDAXC). Hartree-Fock self-interaction corrected predictions
are also given (LDAX-SIC and LDAXC-SIC). See text for definition.

HF
LDAX
LDAX-SIC
LDAXC
HFC
LDAXC-SIC

8
0.525
0.544
0.518
0.486
0.471
0.500

20
0.567
0.574
0.571
0.519
0.523
0.550

34
0.521
0.541
0.552
0.485
0.478
0.526

40
0.603
0.603
0.609
0.548
0.560
0.586

58
0.528
0.545
0.560
0.490
0.487
0.532

92
0.542
0.555
0.571
0.501
0.501
0.544

138
0.562
0.570
0.587
0.516
0.521
0.560

196
0.576
0.580
0.598
0.527
0.534
0.571



1332 M. MADJET, C. GUET, AND W. R. JOHNSON 51

be expressed as

,2) - I&I I 2;z'I»l'
A:

Ru —(Ek —Ep) + ib

I &I I E, z'l0) I'

~+ (EI, —Ep) +ib (3.2)

The TDLDA approximation to the susceptibility is then
expressed as

y(r, r'; (u) = yp (r, r'; ur)

+go(r, r';w) f dr"Ic(r, r")y(r", r';w),

(3.8)

o.((u) = 4z. —Im[n((u)] (3.3)

and, incidentally, the static dipole polarizability by set-
ting ur = 0 in Eq. (3.2). One can express the photoab-
sorption cross section as

where we have assumed the external electric field to be
in the z direction and used the length form for the dipole
operator. Note that ~0) is the exact many-body ground
state. The knowledge of the dipole dynamical polariz-
ability allows one to determine the photoabsorption cross
section in terms of the imaginary part of the polarizabil-
ity using the relation

where the driving kernel, K(r, r ), is just the residual
interaction:

bV„, [p(r)] (,)b~(r')

(3.9)

A computer code, similar to the one written by Bertsch
[19], has been used in the present work to calculate the
optical response within the TDLDA framework for com-
parison to the other approach that we shall refer to as
the random-phase approximation (RPA).

e25
o (E) = 2~' ) fgb(E —EI, + Ep),mc

(3.4)
B. Matrix random-phase approximation

in terms of the oscillator strengths fI, for the transition
&om the ground state to the kth excited state that are
defined as

(3.5)

Starting &om a ground state described within an
independent-particle model, there are essentially two
ways of deriving the photoabsorption cross section, de-
pending on whether the many-body physics is cast into
the states or into the operator itself.

('A Bl &X"l f X"
(3.10)

The RPA and the TDLDA are physically equivalent
approximations. In the random-phase approximation
that we use here, the aim is to construct the correlated
many-body excited states of Eq. (3.2). The RPA con-
sists in diagonalizing the residual interaction of Eq. (2.3)
within a model space that is restricted to one-particle-
one-hole (1p-1h) excitations and linearizing the equations
of motion (see, for instance, Ref. [29] for an exhaustive
discussion of the method). The vibrational modes are
obtained after solving the RPA matrix equation:

A. Time-dependent local-density approximation

—V' + E —Vz, DA G(r, r', E) = b(r —r'), (3.6)

are obtained by numerical integration and allow one to
construct the zeroth order susceptibility, yp (r, r', w), that
can be expressed as

In the time-dependent local-density approximation
(TDLDA), one calculates directly the susceptibility by
using the Green's function method. This is a very ef-

ficient method when dealing with local potentials. The
integration of the self-consistent Kohn-Sham equations
provides the filled orbitals and the effective Kohn-Sham
potential of Eq. (2.10). The Green's functions that sat-
isfy the di8'erential equation,

A ~,~b = (e —e )b sb „+(mblVlan),

B „g = (mn~V~ab) . (3.11)

The indices a, 6 (n, m) refer to the hole (particle) states.
The positive eigenvalues uI, of Eq. (3.10) are the exci-
tation energies of the system. The corresponding eigen-
vectors, representing the physical states, are expressed as
linear combinations of forward-going and backward-going
amplitudes X" and Y that satisfy the normalization
equation:

The matrix A contains matrix elements of the residual in-
teraction between particle-hole excitations, whereas the
matrix B is composed of matrix elements of that interac-
tion between the ground state and two-particle —two-hole
excitations:

yp(r, r';sr) = ) P,*(r)P;(r')G(r, r';E + Rd)
i&f

) ( x".* —v". *) = i.
a,m

(3.12)

+) P;(r)P,*(r')G(r, r', e; —Ru) . (3.7) The transition amplitude of a one-body operator E =
ata~(i[f [j) between the ground state to the kth ex-
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cited state, takes then the form, oscillator strength distribution, some of the moments,

(klElo) = ) +" (mlfla) + +" (alflm)
a,m

(3.13) Sq = ) (k)g fjk
k

(3.i6)

The RPA dipole matrix element of Eq. (3.2) and, there-
fore, the photoabsorption cross section can then be read-
ily calculated.

In the case where the ground state has been defined
as an exact HF Slater determinant, the residual interac-
tion which enters into Eq. (3.11) is the exact Coulomb
interaction with both direct and exchange parts. The p-6
interaction matrix element is given by

1 1
(ij~V~kl) = ij, kl — ij, Ik) .

r —r' r —r'

(3.14)

We are then led to solve the matrix equation within the
RPA with exchange (RPAE). The RPAE was developed
in the context of atomic physics by Amusia and Cherep-
kov [30].

In the alternative case where the ground state has been
defined as LDA Slater determinant the residual interac-
tion is then that defined in Eq. (3.9), thus leading to

are related to simple ground-state properties. In the
above expression, summation is understood as summa-
tion over the discrete states and integration over the con-
tinuum.

Starting from the jellium Hamiltonian of Eq. (2.1), the
zeroth moment So, which measures the integral of the f
distribution, equals the number of electrons (Thomas-
Reiche-Kuhn sum rule). It is well known that this sum
rule is violated in the Hartree-Fock approximation since
a nonlocal potential leads to the breakdown of the equiv-
alence of momentum and velocity. It is possible to show
[30] analytically that the RPAE restores the Thomas-
Reiche-Kuhn sum rule.

From a calculation of the S2 moment with the jellium
Hamiltonian, one shows [31] that the mean square fre-
quency (w ) = S2/So is exactly given by the overlap
integral of the positive ionic charge distribution and the
exact ground-state electronic distribution, p, (r). With
the jellium sphere of radius R, it can be expressed as

(3.17)

We shall again consider two cases: the case where only
the local exchange interaction is considered (the approx-
imation is denoted RPAX) and the case (denoted as
RPAXC) where the full exchange-correlation interaction
is taken into account. The RPAX should naturally be
compared to the RPAE in order to single out nonlocal
effects. In order to compare to the RPAXC, we have
considered a fourth approximation which we shall denote
by RPAEC in which the exchange interaction is treated
exactly as in the RPAE, but the correlation interaction
is that of the RPAXC.

An important point should be underlined. The RPA
method takes into account correlations not only in the ex-
cited states through the A g matrix elements but also
in the ground state through the B g matrix elements.
If HF orbitals are used in a many-body perturbation the-
ory, then there are no single excitations in the first-order
wave function and the double excitations are the leading
terms of the correlation [26]. The RPAE thus corrects, in
an unambiguous manner, the ground-state wave function
by allowing for admixture of the two-particle —two-hole
excitations to all orders. In the case of the LDA-RPA,
some ambiguity remains since most of the correlations
that are contained in the effective interaction are of RPA
nature leading to a double counting uncertainty.

C. Sum rules

Beyond accounting for a large class of correlations, a
major virtue of the random-phase approximation is its
ability to satisfy sum rules exactly. Given the complete

p =(d 1
3/2 (3.is)

The rms frequency for a quantal metallic jellium sphere
is thus exactly related to the Mie &equency by

LZ
(3.19)

where the ratio & measures the fraction of electrons
in the ground state that are outside the jellium sphere.
This ratio vanishes in the classical limit. In terms of the
spillout length defined by Eq. (2.11) and given in Table
IV the rms &equency is expressed as

(3.2o)

D. Results and comparisons

A numerical solution of the eigenvalue problem (3.10)
requires a complete set of single-particle states. Clearly
this matrix approach is simplified when dealing with dis-
crete states only. In order to discretize the continuum
states, it is convenient to confine the cluster to a cav-
ity of finite radius. By choosing this cavity radius sufIi-
ciently large, the low-lying bound states in the cavity can

The first term is the square of the classical Mie &equency
~M that characterizes the response of a small metallic
sphere of constant density, po, to an ac dipole Geld and
which is related to the plasma &equency by
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be brought arbitrarily close to the actual model bound
states. Although the cavity spectrum is discrete, it is
infinite. A finite model pseudospectrum is built by ex-
panding the model orbitals in terms of a finite number of
B splines. The low-lying states in this pseudospectrum
can be adjusted very accurately to the model states by
an appropriate choice of the number and order of the
B splines used. For more details see Ref. I32]. An an-
gular reduction of the RPA equation is performed with
the restriction to dipole excitations. An external electric
dipole field gives rise to a set of excitation channels. The
radial amplitudes which are associated with these chan-
nels are expanded in terms of the pseudostates. In order
to reach a very high accuracy, 50 B splines of order 7
have been used. As an example, we have ten channels
for Z = 40, resulting in matrices A and B each of di-
mension 466 x 466. Note that in all our calculations the
Thomas-Reiche-Kuhn f sum rule, P& fy = Z, is satisfied
to better than one part in 10, providing a numerical test
of the RPA calculations.

The oscillator-strength distributions have been calcu-
lated for closed-shell systems of 8, 18, 20, 34, 40, 58,

92, 134, and 196 electrons with the signer-Seitz radius
parameter being fixed to 4ao (sodium clusters). Ma-
trix RPA calculations are shown in Figs. 3 and 4. The
oscillator-strength distribution is in all cases bunched in a
narrow energy range centered around the frequency of the
collective dipole oscillation of the electron density with
respect to the ionic background. One may interpret the
f spectrum as resulting &om the interaction between the
collective mode and the particle-hole excitations of the
same angular symmetry (1 ). Due to the long range na-
ture of the Coulomb interaction, there is indeed a strong
coupling between particle-hole excitations to build up the
collective state.

The RPAE prediction (first column of Figs. 3 and 4)
is compared to the RPAX prediction (second column).
The RPAX systematically leads to a more fragmented
f distribution than the RPAE, to which it is the local
approximation. This trend is of course much more ap-
parent for the smallest sizes. In Fig. 5, we show the den-
sity of natural parity dipole states obtained in the RPA
calculations with our various treatments of the residual
interaction. The diferent approximations lead to quite
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FIG. 3. Oscillator-strength
distribution, calculated in the
jellium RPAE, RPAX, RPAXC,
and RPAEC, expressed as a
percentage of the Thomas-
Reiche-Kuhn sum rule given
as a function of the excita-
tion energy for closed-shell jel-
lium clusters with Z = 8, 18,
20, 34, 40 delocalized electrons
(rs = 4oo, sodium).
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different spectra. The RPAX dipole spectrum is much
denser than the correspondingly exact RPAE spectrum;
this results &om the fact, which we discussed previously,
that the LDAX mean-field potential is shallower than
the HF mean field. The collective state would, there-
fore, &agment into a large number of particle-hole exci-
tations when the true exchange interaction is replaced by
its local-density approximation. The comparison of the
RPAEC and RPAXC densities of states, both contain-
ing the density-dependent correlation interaction, leads
to the same conclusion. It is worth emphasizing that the
collective dipole frequency (around 3 eV) is in a region of
relatively low density of states thus implying important
finite-size quantal effects. One observes that the RPAXC,
which is commonly used by other practitioners [11—13],
yields a density of dipole states that is quite close to the
RPAE one. This agreement is of course accidental since
the correlations contained in both methods are different.
With regard to the RPAE and RPAX oscillator-strength
spectra, the inclusion of the correlation term, RPAXC
(third column of Figs. 3 and 4) and RPAEC (fourth col-
umn), results in a systematic narrowing of the f distri-

bution and to the concentration of the force in essentially
one line for the smaller systems (8 and 18).

The present RPAXC distributions should agree ex-
actly with those already calculated by Yannouleas and
co-workers [ll—13] using the same exchange-correlation
functional. We note, however, some differences in the po-
sitions of the main peaks but also different fragmentation
patterns in some cases. For instance, the Na2o cluster
was found [11] to optically respond at essentially two &e-
quencies (2.6 and 2.9 eV) with about the same strength
(35% of the total strength). Our present RPAXC calcu-
lation yields, for the same cluster, an f distribution that
essentially splits into three lines at 2.67, 2.92, and 3.09
eV with 41%, 22%, and 13% strength, respectively. In
order to check the numerical accuracy of the continuum
discretization method, we compare the present matrix
RPA to the TDLDA calculations using the same residual
interaction. In the practical TDLDA calculations, it is
necessary to add to the energy w an imaginary part (iI')
thus changing the b functions into Lorentzians of width
2I'. The numerical value of I was set equal to 8 meV,
a value small enough to resolve the &agmentation of the
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energy for closed-shell jellium
clusters with Z = 40, 58, 92,
134, and 196 delocalized elec-
trons (rs = 4ao, sodium).
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oscillator-strength distribution. For all systems, a per-
fect agreement between the two methods has been met.
The case of Na58 is given as an example in Fig. 6. The
continuous TDLDA(XC) response shows the same spec-
tral structure as the RPAXC discrete oscillator-strength
distribution. We note that the latter differs in the rel-
ative intensities of the peaks from the one calculated in
Ref. [13].

The finite-size effects are rapidly washed out when
comparing various moments of the f distribution. In
Fig. 7, the rms frequency obtained from the second S2
moment is plotted against the size parameter, n ~ . The
sum rule given by Eq. (3.17) is fulfilled in all cases to an
accuracy of about one part in 10, thus providing another
numerical test of the calculations. A linear fit to the
calculated values numerically confirms that the asymp-
totic value is indeed the Mie frequency (3.4 eV in the
present case), whatever the approximation under consid-
eration. The essential lesson of Fig. 7 is that the various
RPA approximations yield rms ft..equencies that differ by
less than a few percent, a fact that arises from the sum-
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FIG. 6. Bottom panel: Oscillator-strength distribution of
Nass (rs = 4as) from the matrix RPAXC calculation. Top
panel: Arbitrarily normalized photoabsorption spectrum from
the Green function TDLDA calculation.

rule constraints and very similar ground-state densities.
The systematic (although tiny) discrepancies are reflect-
ing the minute differences in the spillout lengths of the
ground-state densities.

The mean frequency, obtained from the S~ moment,
(w) = Si/So carries information on the the two-electron
correlations in the ground state. Consequently, we could
expect the various RPA approximations to lead to some
extra discrepancies beyond the spillout effects. This is
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FIG. 5. Cumulated number of dipole excited states as a
function of the excitation energy, calculated in the jellium
RPAE, RPAX, RPAEC, and RPAXC, for jellium clusters with
Z = 20, 58, and 196 delocalized electrons (rs ——4ao, sodium).

FIG. 7. Dipole absorption rms frequencies, calculated
in the jellium RPAE, RPAX, RPAEC, and RPAXC, of
closed-shell jellium clusters with 8, 18, 20, 34, 40, 58, 92, 138,
and 196 particles, respectively, as a function of size (rs = 4ao,
sodium).
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photoabsorption cross sections, we show as an illustration
of the quality of the jellium approximation, a comparison
between experimental data and the RPAE prediction in
Fig. 10. The RPAE cross section has been obtained af-
ter convoluting the oscillator-strength distribution with
I orentzian shapes, centered at each discrete line, and
with widths I'A, ——O. lug. This convolution procedure
models the coupling of the electronic density fluctuations
to the ionic vibrations which is very likely the main cause
of broadening of the lines [33]. The resulting photoab-
sorption spectra calculated for Na4~, Nasg and Nag3 are
reported in Fig. 10 and compared to experimental cross
sections [6]. The agreement is surprisingly satisfactory.
The theoretical cross section lies at a slightly higher en-
ergy than the measured one, and the overall shape is well

I I
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FIG. 8. Dipole absorption mean energies, calculated in the
jellium RPAE, RPAX, RPAEC, and RPAXC, of closed-shell
jellium clusters with 8, 18, 20, 34, 40, 58, 92, 138, and 196 par-
ticles, respectively, as a function of size (rs = 4ao, sodium).
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indeed the case, although the effects are very small as
shown by Figs. 8 and 9, where the mean values and
the standard deviations, respectively, have been plotted
against n ~ . The closed-shell jellium systems exhibit
an optical response which is so compact that sum-rule
constraints determine the major features.

Although the object of the present work is not a sys-
tematic con&ontation between theory and the measured
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FIG. 10. Photoabsorption spectra, calculated in the jellium
RPAE, of Na4+~, Nas» and Nass (rs ——4ao). The experimental
cross sections are from Ref. [6].
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reproduced. Keep in mind, however, that the fair agree-
ment seen here for Na clusters collapses for Li clusters
[3,34,35].

The static dipole polarizabilities are immediately ob-
tained from the inverse squared, S 2 moment of the RPA
oscillator-strength distributions. Here again, the predic-
tions from four difFerent residual interactions are very
close to each other, as can be seen in Fig. 11 and in Ta-
ble V. Only for the lighter systems (8, 18, 20) do the
local-density approximations yield polarizabilities larger
than those given by the correspondingly exact exchange
calculations. This again re8ects ground-state density dis-
tributions. If a single line were picking up the entire os-
cillator strength, then the static polarizability would be
expressed as

A=
O'RPAE

O'RPAX

O'RPAXC

O'TD LDA

O'RPAE C

8 18 20 34 40 58 92
755 1570 1808 2806 3529 4619 7178
784 1618 1850 2870 3570 4695 7270
722 1512 1721 2717 3339 4487 6981
722 1512 1721 2717 3340 4487 6981
705 1483 1701 2679 3328 4441 6930

138 196
10667 14966
10763 15089
10353 14541
10355 14543
10307 14484

TABLE V. Static dipole polarizabilities (ao) of Na clus-
ters (rs = 4ao) for different sizes A, calculated in the RPA
with various approximations for exchange and correlation:
Exact exchange, o.RpAE, exact exchange and local correla-
tion, nRPAEc, local exchange only, o.RpAx and local exchange
correlation, o.RpAxc. Predictions within the TDLDA-XC are
also given, 0.TDLDA. See text.

b
o. =R 1+3—n

~8
(3.21)

a trend which is fairly well satisfied by the present RPA
calculations, although the slope is actually larger. The
main correction with regard to the classical polarizabil-
ity of the corresponding perfectly conducting sphere (Rs)
is thus provided by the electron spillout in the ground
state. As discussed previously, the LDAX predicts a den-
sity distribution that extends further outward than in the
HF scheme, even though the asymptotic local potential
falls ofF more rapidly, and thus yields a larger polarizabil-
ity. The LDAXC that includes attractive correlations in
the ground state gives a smaller spillout (see Table IV)
than the the LDAX and, accordingly, the RPAXC polar-
izability is smaller than the RPAX one. One should note
that the excellent agreement between the RPAXC and
the TDLDA predictions is a confirmation of the accuracy
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FIG. 11. Static polarizability, calculated in the jellium
RPAE, RPAX, RPAEC, and RPAXC, of closed-shell jellium
clusters with 8, 18, 20, 34, 40, 58, 92, 138, and 196 parti-
cles, respectively, as a function of size. (rs = 4ao, sodium).
Experimental values [36] are indicated by crosses.

of the present numerical methods. A comparison with
experimentally measured polarizabilities [36], shows that
the present predictions are systematically lower by about
30%, a shift which is much larger than the internal the-
oretical discrepancies. We believe that the explanation
of this shift lies beyond the present jellium model and
requires us to take into account ionic structure efFects
[34,31]. Further measurements on different and larger
alkali-metal clusters should definitely be useful.

IV. CONCLUSION

The present work is aimed at systematically comparing
local-density approximations to an exact treatment of ex-
change. The comparison is carried out within the jellium
model applied to alkali-metal clusters, i.e., for rather ho-
mogeneous electronic densities. On one hand, it is shown
that the ground-state densities given in the Hartree-Fock
approximation and in the local-density-dependent ap-
proximation are very close to each other, except in the
inner part of the cluster. The inclusion of a density-
dependent correlation term does not modify much this
density.

A density parameter of major importance for the op-
tical response of the jellium systems is the fraction of
electrons spilling out of the uniform positively-charged
sphere; this parameter varies only slightly with the resid-
ual interactions considered in this work. Consequently,
the rms values of the optical absorption frequencies given
by the corresponding RPA models are also in close agree-
ment.

The major difFerences between the local approximation
and the exact treatment of exchange lie in the fragmen-
tation of the oscillator-strength distribution as a con-
sequence of quite difFerent mean fields yielding difFer-
ent densities of natural parity dipole states. Therefore,
whereas average values are rather model independent and
basically constrained by sum rules, precautions must be
taken when looking at the fine structure of the optical
spectra, which indeed is model dependent. Moreover,
the experimentally observed fragmentation is sensitive to
the further details of the ionic structure not embraced by
present jellium models.



51 COMPARATIVE STUDY OF EXCHANGE-CORRELATION. . . 1339

ACKNOWLEDGMENTS

We would like to thank S.A. Blundell for many useful
discussions. Clarifying discussions with G. Bertsch are
particularly acknowledged. This work has been partially

supported by SCIENCE Grant No. ERB-ESC-CT92-
0770 of the European Communities. We thank the Insti-
tute for Nuclear Theory at the University of Washington
for its hospitality and the Department of Energy for par-
tial support during the completion of this work.

[21

[3]

[4)

[5)

[6]

[81

[91

[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]

For a review, see, W.A. de Heer, W.D. Knight, M.Y.
Chou, and M.L. Cohen, Solid State Phys. 40, 93 (1987);
W.A. de Heer, Rev. Mod. Phys. 65, 611 (1993).
C. Brechignac, P. Cahuzac, F. Carlier, and J. Leygnier,
Phys. Rev. Lett. 63, 1368 (1989).
C. Brechignac, Ph. Cahuzac, N. Kebaili, J. Leygnier, and
A. Sarfati, Phys. Rev. Lett. 68, 3916 (1992).
K. Selby, V. Kresin, J. Masui, M. Vollmer, W.A. de Heer,
A. Scheidemann, and W.D. Knight, Phys. Rev. B 43,
4565 (1991).
S. Pollack, C.R.C. Wang, and M.M. Kappes, J. Chem.
Phys. 94, 2496 (1991).
Th. Reiners, W. Orlik, Ch. Ellert, M. Schmidt, and H.
Haberland, Chem. Phys. Lett. 215, 357 (1993).
J. Borggreen, P. Chowdury, L. Lundsberg-Nielsen, K.
Lutzenkirchen, M.B. Nielsen, J. Pedersen, and H.D. Ras-
mussen, Phys. Rev. B 48, 17507 (1993).
A. Zangwill and P. Soven, Phys. Rev. A 21, 1561 (1980).
W. Ekardt, Phys. Rev. B 31, 6360 (1985).
D.E. Beck, Phys. Rev. B 35, 7325 (1987).
C. Yannouleas, R.A. Broglia, M. Brack, and P.F. Bor-
tignon, Phys. Rev. Lett. 63, 255 (1989).
C. Yannouleas and R.A. Broglia, Phys. Rev. A 44, 5793
(1991).
C. Yannouleas, E. Vigezzi, and R.A. Broglia, Phys. Rev.
B 47, 9849 (1993).
C. Guet and W.R. Johnson, Phys. Rev. B 45, 11283
(1992).
M. Brack, Phys. Rev. B 39, 3533 (1989).
P.G. Reinhard, M. Brack, and O. Gensken, Phys. Rev. A
41, 5568 (1990).
J.P. Perdew and A. Zunger, Phys. Rev. B 23'F, 5048
(1981).
J.M. Pacheco and W. Ekardt, in Physics and Chemistry

of Small Clusters, edited by P. Jena, B.K. Rao, and S.N.
Khanna (Kluwer, Richmond, 1992), p. 983; Z. Phys. D
24, 65 (1992).

[19] G.F. Bertsch, Comp. Phys. Commun. 60, 247 (1990).
[20] P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864

(1984).
[21] M. Brack, Rev. Mod. Phys. 65, 677 (1993), and refer-

ences therein.
[22] O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13,

4274 (1976).
[23] J.C. Slater, Phys. Rev. 81, 385 (1951).
[24] P. Stampfli and K.H. Bennemann, Phys. Rev. A 39, 1007

(1989).
[25] M.S. Hansen and H. Nishioka, Z. Phys. D 28, 73 (1992).
[26] C. Guet, W.R. Johnson, and M. Madjet, Z. Phys. D 26,

S-125 (1993).
[27] S. Saito, S.B. Zhang, S.G. Louie, and M.L. Cohen, J.

Phys. Condens. Matter 2, 9041 (1990).
[28] M. Koskinen, P.O. Lipas, E. Hammaren, and M. Manni-

nen, Phys. Rev. B 40, 3643 (1989); Europhys. Lett. 19,
165 (1992).

[29] D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968).
[30] M.Ya. Amusia and N.A. Cherepkov, Case Stud. At. Phys.

5, 47 (1975).
[31] C. Guet, Comments At. Mol. Phys. (to be published).
[32] W.R. Johnson, S.A. Blundell, and J. Sapirstein, Phys.

Rev. A 37, 307 (1988).
[33] G.F. Bertsch and D. Tomanek, Phys. Rev. B 40, 2749

(1989).
[34] S.A. Blundell and C. Guet, Z. Phys. D 28, 73 (1992).
[35] Ll. Serra, G.B. Bachelet, Nguyen Van Giai, and E. Lip-

parini, Phys. Rev. B 48, 14708 (1993).
[36] W.D. Knight, K. Clemenger, W.A. de Heer, and W.A.

Saunders, Phys. Rev. B 31, 445 (1985).


