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EfBcient direct calculation of complex resonance (Siegert) energies
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An improved version of the Siegert method to calculate resonance state parameters directly is
presented. A prediagonalization of the Hamiltonian in a real L basis and an equation partitioning
technique are utilized along with an inverse iteration method (combined with a rational fraction
root search) to find accurate positions and widths of narrow resonances. Model calculations suggest
that the present method is efFicient and accurate especially for narrow resonances regardless of the
potential range.

PACS number(s): 34.10.+x

I. INTRODUCTION

One can divide the various exact theoretical methods
of resonance structure calculations according to whether
the resonance parameters (position E„and width I') are
determined directly or indirectly. The so called Siegert
method [1—5], along with the complex scaling approach
[6], and the optical potential method [7], finds them
directly as a complex resonance energy. Other meth-
ods, such as stabilization [8], time delay maximum anal-
ysis [9,10], eigenphase analysis [11], and the S-matrix
parametrization [12] may be exact but require extraction
of the resonance parameters &om the background con-
tributions. The direct methods may be more convenient
to apply, especially when the background effects are not
negligible or depend strongly on the scattering energy
(e.g. , just above the threshold with inany bound states).

The Siegert methods proposed thus far have several
common characteristics. They determine the resonance
energies as the resonance poles of the S matrix (i.e. , the
complex Siegert energies whose corresponding states are
purely outgoing and diverging asymptotically) on the sec-
ond. sheet of complex energy plane, each located at an
Es = E„—il'/2 (Es denotes the Siegert energy and
E„, I" are the position and width of the resonance state,
respectively). Since a resonance energy Es occurs non-
linearly in the equation that must be solved to determine
the poles, and Eg is not known initially, some kind of iter-
ation scheme is inevitably needed to solve the equations.
Finally, as a result of the matrix variational procedures
used to solve for all the poles of the S matrix, one obtains
not only the resonance poles but also the direct scattering
poles, also called "false" or "cutofF" poles. Thus, there is
a need to distinguish between the two kinds of poles [5],
the resonance poles of interest having relatively narrow
widths in favorable cases.

Depending on where one applies the asymptotic
boundary condition for the Siegert wave functions, one
can use either an infinite or a 6nite range of the scatter-
ing coordinate. In the in6nite range versions, one must
be careful in evaluating the matrix element integrals to
avoid divergences caused by diverging Siegert wave func-

tions. Analytic continuation [3] and combined evaluation

of the II —E operator [4] have been successfully used in
this regard. Also, some of the basis functions must be-
have like the Siegert wave functions asymptotically in
order to satisfy the required boundary conditions. On
the other hand, in the finite range versions [1,5], the ba-
sis functions may be 6xed functions which simplifies the
matrix element evaluation requirements. The informa-
tion determining the Siegert energies is introduced into
the equations through the Bloch operator [13], which
fixes the boundary conditions at finite range. This 6-
nite range version is suitable for short-range potentials,
but even with long-range potentials this may be still use-
ful, as exempli6ed later in our model calculations. One
can also include the long-range part of the potential in
the asymptotic boundary conditions, leaving only the re-
maining short-range part to be taken care of by the basis
set [4].

The problem of scattering poles versus resonance poles
is shared by the complex scaling method, although the
expected locations of the scattering poles are simpler to
determine in the complex scaling method [6]. Because
no poles are found below the string of scattering poles
in the complex energy plane, one may not expect to 6nd
resonance poles near or below the string accurately or at
all. The location of the string of scattering poles in the
complex energy plane is a function of the potential and
the basis set range in the Siegert method, and of the co-
ordinate rotation angle 8 in the complex scaling method.
Since 8 can be chosen to be any value between 0 and vr/2,
there is no concern about missing resonance poles in the
complex scaling method, in principle. But, in the Siegert
method, there is less control over the position of the scat-
tering poles. Thus, some of the broad resonance poles
may be "hidden" or "displaced, " and one must resort
to some kind of correction scheme in some cases to find
them [5]. This will be tested in the model calculations
below. However, if one is interested in the broad reso-
nances especially, it might be useful to use other methods
rather than the Siegert method, such as the time delay
maximum analysis [9,10], the coxnplex scaling [6], or the
optical potential methods [7).
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In the complex scaling and the optical potential meth-
ods, many diagonalizations of large (size of the basis set)
matrices are required before one finds the stable (highly
accurate) values of the resonance poles. In the Siegert
method, however, the iteration may not necessarily in-
volve many large matrix diagonalizations, which is rele-
vant to the focus of this paper.

In this paper, our purpose is to improve the compu-
tational efficiency in determining directly the resonance
parameters using a finite range basis and focusing pri-
marily on the iteration stage. A prediagonalization of a
real Hamiltonian matrix using a finite range basis is done
to obtain good initial guesses of the resonance pole loca-
tions. We then use a new iteration procedure to facilitate
the calculations. In the equation partitioning technique,
the matrix size of the iterative eigenproblem reduces to
(N~, + 1) x (N z, + 1) (N z, denotes the number of
open channels), and the accompanying large matrix in-
version is replaced by a simple summation. This small
complex eigenproblem is solved by the standard inverse
iteration method [14] with some necessary modification
until a converged eigenvalue is obtained. The overall pro-
cedure completely avoids any iterative diagonalization or
iterative inversion of the full matrix.

Using the basis set R-matrix theory [15], one can also
extract the resonance parameters following a single full
real matrix diagonalization. The S matrix at any energy
is easily determined by analyzing the eigenvalues and
eigenvectors of the Hamiltonian matrix represented by
basis functions satisfying the B-matrix boundary condi-
tions. The subsequent analysis of the energy dependence
of the S matrix produces the resonance parameters. Also,
the variational B-matrix method can be used to avoid the
slow convergence problem in the original theory.

Also, Bowman and co-workers diagonalized a single full
real Hamiltonian matrix to obtain a good truncated basis
set in which to represent a complex Hamiltonian modified
with an optical potential. They then used this smaller
complex matrix to study resonances and photodissocia-
tion [16,17].

The inverse iteration method was used with a full com-
plex matrix to determine a small number of (resonance)
eigenvalues and eigenvectors when good initial guesses
were available from the previous calculations in the com-
plex scaling method [18]. In these cases, the Lanczos
recursion method [19] could also be used for the same
purpose. Both methods are more efficient than the full
matrix diagonalization.

Additional efficiency with negligible (or little) loss of
accuracy is obtained by adopting continuum-type func-
tions which depend only on the initial guess of the real
part of the resonance energy. Thus, the frequency of en-
ergy dependent matrix element integral reevaluations is
greatly reduced. Finally, with a limited size basis set, it
is shown to be useful to increase the definition range of
the Siegert wave function (or, equivalently, the integra-
tion range of the continuum-type basis functions) beyond
that of the bound-type basis functions. This recovers the
residual e8'ects of the potential beyond the bound-type
basis function range. This improves the results with little
extra eKort. In Sec. II we present the theory and algo-

rithm used; in Sec. III we present several model calcu-
lations of shape and Feshbach resonances with the com-
parisons of approaches; and in Sec. IV we briefly present
our conclusions.

II. METHOD

A. Basis and equation partitioning

We restrict our notation to a one-dimensional s-wave
scattering case for simplicity, and generalize later. The
basic approach of the Siegert method is to solve the
Schrodinger equation (in atomic units) of the system of
mass m with outgoing boundary conditions at r = P
(i.e. , L@s = 0) for the complex eigenenergy Es. This
equation can be written as [13]

H+I —Es @s = o,

where the Bloch operator L is

= 1 (d
L=L(E&) = 6(r —P)

~

——ik& ~.
2m (dr )

The Hamiltonian operator H is defined as that of the
usual radial motion with the volume element d7.

dr sin gdedg. If the complex wave number k~ (with
negative imaginary part) is given by the eigenenergy

A:Es ——2, then the solution Es is the Siegert energy and
4'p is the Siegert wave function if they are independent
of P.

To save computation during the iterative solving of
these equations, we diagonalize the Hamiltonian matrix
in a real subset of translational basis functions which is
composed of bound-type functions only (satisfying zero
boundary conditions at both ends of the basis set range).
This prediagonalization of one real large matrix yields
two major rewards in the later iteration stage. First,
in the search for resonance poles, we have to deal with
only small size (number of open channels plus one) ma-
trix eigenproblems not involving any large matrix inver-
sion or diagonalization, instead of the usual large matrix
eigenproblems. Second, the discrete eigenvalues serve as
good initial guesses of the resonance energies which is the
basic idea behind the stabilization method [8].

Unlike the infinite range version. , the finite range
version allows us to use fixed energy independent
continuum-type basis functions in place of the usual
Siegert energy dependent functions. In this case, the
matrix elements are less frequently reevaluated than oth-
erwise without much loss of accuracy in the final result
(hopefully) .

Regarding the iteration scheme, we find that the indi-
vidual eigenvalue hunting inverse iteration method [14]
is efficient and avoids some wasteful computation if we
ever use the iterative diagonalization method, since only
one eigenvalue is the consistent and meaningful Siegert
energy only when we solve for a matrix with the Siegert
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energy. In the inverse iteration process, we may use the
refined eigenvalue to define the matrix of the eigenprob-
lem for the next iteration. In this way, the eigenvalue and
the eigenproblem are refined and converge at the same
time. We can boost the convergence speed by adding a
root search tool virtually at any point along the above
iteration thread as needed.

Thus, to start we diagonalize H in a real sub-basis set
on a range of [0,P]. Then, to proceed with the above,
we expand 4S in a finite basis set defined on the same
range [0,P] as

(M —EsDa ) c' = 0, (4)

where

M = M (Es) = H~~ —(H~g —ESD~$)
x(Hbi, —Es) (Hs —EsDg ) (5)

We can now rearrange the full eigenproblem into two
smaller coupled problems. With standard matrix parti-
tioning, the a eigenproblem alone can be written exactly
as

A —1

s = cpPp+ ) c,P;, (2)

and

C = Coq Con

where P; (i ) 1) are the orthonormalized bound-type
discrete eigenfunctions of H in the above mentioned
sub-basis set and Pp is a continuum-type function with
the boundary condition imposed to satisfy Pp(0)
0, Pp(P) g 0. The definition range [0,P] must be cho-
sen such that 0 is located at the origin or in the classi-
cally forbidden region where @s(0) = 0 and P is in the
asymptotic region. The bound. -type basis functions may
be defined on a smaller region for a particular choice of
Pp (see below for detail), such as [0,Q], Q ( P. In this
case, the P; (i ) 1) vanish in [Q, P].

By applying the usual variational procedure to Eqs.
(1) and (2), one obtains a matrix secular equation that
can be cast as a matrix eigenproblem,

(H —EsD) c = 0,

where

P
H;, = H;, (Es) = dad;(r) (fI d-I) P, (r),

O
P

Dv = «&'(r) &1-(r).
O

H
Hb

H b

Hbb

D= D
Db

D b

Dbb

where a involves the continuum-type function and the
mth bound-type discrete eigenfunction, and b involves
the remaining N —2 bound-type discrete eigenfunctions.

Only the matrix elements involving Pp may depend on
Eg (depending on how we choose Pp), while the others
are constant. Thus, the submatrix of H not involving
Pp is a diagonal matrix of discrete eigenvalues and the
similar submatrix of D is a unit matrix. Note that the
full H is complex symmetric since L is not a Hermitian
operator; therefore, a biorthogonal basis set must be used
[»]

We wish to solve Eq. (3) for many values of Es includ-
ing all resonances. To solve it efBciently by iteration for
values of Es, for example, &om the mth discrete eigen-
value e, we partition H and D into "a" and "6" blocks
as

Note that (Hsq —Es) i is a diagonal matrix composed of
the inverse of the discrete eigenvalues minus Es and that
we used the fact that Dbb is a unit matrix. Thus, the
second term of Eq. (5) is easily evaluated by summation.
As a result, we only have to solve this 2 x 2 eigenproblem
of Eq. (4) iteratively until converged. We may view M
of Eq. (5) as H giving the direct coupling between
the continuum-type state and the mth bound-type state,
which is the minimal requirement to describe a resonance.
The second term represents the remaining coupling via
the other bound-type functions. For a multichannel case,
the size of small eigenproblem becomes the number of
open channels plus one. After solving the multichannel
problem, the eigenvector c' can be used to determine the
partial widths.

There is no a priori requirement for choosing the
(2, N —2) partition; however, we found that this is highly
advantageous with respect to eKciency and stability in
the iteration procedure compared to other partitions. In-
deed, the (1,N —1) partition was suggested by Yaris,
Lovett, and Winkler [4] as a form of determinant equa-
tion instead of an eigenproblem and was also implied in
the S-matrix expression involving log derivative matrix
given by Manolopoulos, D'Mello, and Wyatt [20].

As pointed out earlier, because Es already enters
through the Bloch operator in the equations, we can
choose any proper basis functions and are not required to
include explicitly a Siegert-type continuum function. We
tried three different continuum-type functions; they are
(1) a totally energy dependent (ED) Siegert-type func-
tion, g(r)e'"~; (2) a partially energy dependent (PED)
function, g(r)e'" "; and (3) a totally energy independent
(EI) function, g(r), where g(r) is a usual cutoB' function
(or an auxiliary function) satisfying g(r ~ 0) = 0, g(r -+
P) = 1. [In the model calculations below we used S-
shape g(r) functions. ] The complex wave number k~ is
determined by Es, while the real k is determined by
each "special" discrete eigenvalue e (the one included
in the initial a partition). The ED case has been used
previously by many workers [2—4], which is natural if we
want to represent 4's by the P s (i ) 1) in the interac-
tion region and solely by the Pp in the asymptotic region.
(In the infinite range version of the Siegert method, this
is the only proper choice ainong the above three. ) The EI
case was implicitly suggested by Manolopoulos, D'Mello,
and Wyatt in their S-matrix calculation method involv-
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ing energy independent integrals [20]. The major role of
Po, in this case, is to prevent the wave function from van-
ishing at the outer end (P) of the definition range. In the
EI case, the P, 's (i ) 1) must represent the wave function
(with $0) throughout the interaction and asyinptotic re-
gion, which suggests that the bound-type basis functions
must "work harder" in the EI case than in the ED case.
On the other hand, the PED case is examined for the
first time in this work, to the best of our knowledge. Our
motivation is that since for a narrow resonance, kg A:

we may expect about the same efficiency from g(r)e'"
as for g(r)e'"~" in representing the Siegert wave func-
tion in the asymptotic region but with much saving in
the matrix element integral evaluations. This advantage
is borne out by the model calculations.

The three choices of Po entail difFerences regarding
the accuracy of the calculated Eg, the &equency of
integral evaluations during the iteration, the required
basis set density, and the compatibility with the use
of truncated discrete eigenfunctions as bound-type ba-
sis functions (e.g. , those of a successive diagonalization-
truncation scheme [21]). These aspects will be tested in
the model calculations below.

B. Iterative solution

To find the possible resonance poles without any prior
knowledge of their locations, we start with the real dis-
crete eigenvalues e and use each of thexn sequentially
instead of Eg in M(Es) of Eq. (5). This defines the
first eigenproblem in each e iteration thread. Thus, the
initial guess of eigenvalue (i.e., Eg) is chosen as e and
eigenvector as (0, 1)+ or (1,1)+. The refined eigenvalue
and eigenvector are given by the individual eigenvalue
hunting inverse iteration method [14] as

( +~) (M E(~))—«D (~)
CXCL )

c'(") D c'(")
E( +y) E( )

c'("+') D c'(") '

where (n) and (n + 1) denote (n)th and (n + 1)th in-
version results, respectively. In our actual calculations,
c'( + ) is determined as the solution of a system of linear
equations using the standard LU decomposition [14], not
explicitly involving matrix inversion. The refined eigen-
vector c'("+ ) is normalized before it is used for the next
iteration step. We can use E( + ) to refine the M at each
inversion or postpone this until a converged eigenvalue is
obtained for a given M(E~ l). The latter choice requires
more iterations with no noticeable difFerence in the final
converged results of Eg in the model calculations. How-
ever, it produces smoother trajectories of E( ) 's toward
the final values [in this case, E~ + ~ denotes the some-
what converged eigenvalue for a particular M(E~ ~)].

Another tool which helps to speed up the convergence
along the iteration thread is to construct a rational &ac-
tion T determined by several (E~ ~, E~ +il) data pairs
as [14,22]

T(E(n) ) E(n+1) 0

and. subsequently to find the root E of the equation

T(E) —E = 0 numerically to predict the approximate
location of Eg. This root is used as the input value for
constructing M for the next iteration step. This conver-
gence boosting step can be inserted at any point along
the iteration thread as needed (probably except at the
early stage since there are not enough data pairs to use).
It is found that this procedure helps to improve the con-
vergence speed substantially, especially for the poles with
large magnitude imaginary values.

The combination of the above two methods starting
&om a particular e is applied repeatedly until one finds
a converged eigenvalue (either resonance or scattering
pole). In practice, not every iteration thread leads to
a converged value within a given maximum number of
iterations; however, almost all of the failed threads have
large magnitude imaginary values at the last iteration
step, which means that they are probably converging to
the scattering poles of no interest. If one is interested
only in "real" resonances with lifetimes exceeding a cho-
sen limit, then one can truncate all pole searches at a
chosen maximum I'. The pole search iteration trajectory
appears sufIiciently monotonic to permit this procedure
(see Sec. III).

The major computation requirements incurred by the
above algorithm to find many resonance and scattering
poles are (1) a single large real Hamiltonian matrix diag-
onalization; (2) two large rectangular matrix evaluations
involving the continuum-type functions (part of H and
D)—this is required only once for all iteration threads
in the EI case, once for each thread in the PED case, or
every time the M matrix is revised in the ED case; (3)
small matrix inversion (or a solution of a system of linear
equations) at every step of the iteration; and (4) rational
&action constructions arid root finding as needed.

Even though it may not be a xnajor difIiculty in prac-
tice (one is normally interested in narrow resonances),
we need a means to distinguish resonance poles &om
the scattering poles, in principle. One way is to use
the fact that the locations of resonance poles are not
afFected by changing the calculation parameters such as
the definition range of the bound-type functions or of
the Siegert wave function. The other way is to use the
prediction formula of scattering poles which states that
Imf kg) = (2P) in[(2Refkg)) ]V(P) ~] when Re(Pkg)
is sufficiently large, or Im(ks) = —

2 if the potential be-
haves like e " asymptotically [5].

As mentioned earlier, the Siegert method. has an in-
herent difIiculty in producing accurate values for broad
resonances (to be precise, the poles near or below the
scattering pole string). In this case, one may want to use
a correction scheme such as the perturbative correction
proposed by Meyer and Walter [5]. We will try a simple
WKB-type boundary condition correction in the model
calculations [i.e. , replacing E~ by Eg —V(P)]. However,
when it gets cumbersome to apply a correction scheme, it
may be better to use other recognized methods, such as
time delay maximum analysis [9,10], complex scaling [6],
or an optical potential method [7], which are f'ree of this
restriction in principle. As mentioned above, however,
narrow resonances corresponding to poles near the real
axis are much more easily found by the present method.
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III. MODEL CALCULATIONS

The 6rst example is the one-dimensional radial prob-
lem [10] with a long-range potential of the Lennard-Jones
form, Vo[( —) —2( —)s]. The basis set representation of
the Hamiltonian operator is done by the discrete vari-
able representation (DVR) based on Lobatto shape func-
tions [23]. The integrations are done with the same DVR
quadratures. The outgoing Riccati-Hankel function is
used to define the Bloch operator. Plane waves are used
for the ED continuum-type functions. The parameters
are chosen to represent a weakly bound van der Waals
molecule. They are mass m = 1.92 g/mol, n = 3.56 A, ,
and the angular momentum J = 8.

We calculated typical narrow (Vo ——60 cm i) and
broad shape resonance (Vo ——40 cm ) poles to check
how the 6nite cutoff radius affects the results. As one
can see &om Table I and Fig. 1, the narrow resonance
allows very accurate values while the broad one does not
because of the proximity of the scattering pole string. In
Table I, we compare the values obtained with a simple
WKB-type boundary condition with those using the ex-
act asymptotic boundary condition. It is seen that the
simple change in the boundary condition helps to obtain
more stable values especially for the broad resonance.
Even with this 6nite cutoff radius for a long-range po-
tential, we still can obtain very accurate values at least
for narrow resonances. The detailed iteration trajecto-
ries are given in Fig. 2. We can see their pseudolinearity,
which immediately suggests a useful criterion for picking
out poles with a predetermined maximum width, i.e. , we
can stop the iteration (therefore, avoid wasteful calcula-
tions) once we pass a given value of I' in the iteration
corresponding to a given minimum lifetime of interest.
Note that some results of Table I are plotted in Figs. 1
and 2.

The second example is the two-dimensional Secrest-

Johnson collinear vibrational excitation problem with a
coupling Morse potential. The Hamiltonian operator is
given by

1 8' ( 8'II= —— +
~

+y

— ( — ) 2
——( — )

The basis set representation of H is done by a DVR based
on one-dimensional box eigenfunctions (sine functions
vanishing at both ends) for x and harmonic oscillator
eigenfunctions for y. The continuum-continuum matrix
element evaluations are done with accurate quadratures
(Gauss-Lobatto). Also, for the continuum-bound matrix
element evaluations, the same accurate quadratures are
used for EI, while the DVR quadratures are used for ED
and PED since they were found to be sufFiciently accu-
rate with much simpler summations. The appropriate-
ness of the DVR quadratures for continuum-bound in-
tegral evaluations for ED and PED may be understood,
at least partly; since the intepands of these integrals of
the combined operator II + I —Es vanish (or approx-
imately vanish for PED) asymptotically as the interac-
tion potential vanishes, they may be accurately evaluated
by quadratures based on one-dimensional box eigenfunc-
tions. In the EI case, however, the corresponding inte-
grands do not vanish asymptotically, thus the integrals
may be poorly evaluated by the above quadratures.

The parameters chosen here are the ones used before
[10,24], i.e. , m = 0.2, Vo ——1.5, n = 0.1. (This po-
tential has Feshbach resonances for vibrational states
n„= 1, 2, 3, . . . .) For this example, we used only
the exact asymptotic boundary conditions. We applied
the present real diagonalization followed by complex in-
verse iteration method and found many converged poles
(in principle, the same as the number of starting discrete

TABLE I. The effect of cutoff radius and use of two different boundary conditions. Basis is 80
bound-type Lobatto shape functions plus one ED continuum-type function.

Range (A)
[2, 2O]

[2, 4O]

[2, 45]

Vo ——60 cm

Asymptotic

9.493 31
0.132 16
9.493 35
0.132 17
9.493 35
0.132 17

WKB type'

9.493 35
0.132 16
9.493 35
0.132 17
9.493 35
0.132 17

Asymptotic

17.63
3.30

17.53
3.26

17.90
3.37'

WEB type
17.64
3.27

17.64
3.26

17.64
3.27

Vo ——40 cm '

[O, Q] (bound-type function range) = [0,P] (integration range), see text for details.
Exact asymptotic energy Ez is used for the Bloch operator evaluation and for the ED continuum-

type function definition.
'Local asymptotic energy Es —V(P) is used for the Bloch operator evaluation and for the ED
continuum-type function definition.
E„ in cm, the real part of complex resonance energy, the same for other entries.
I'/2 in cm, negative of the imaginary part of complex resonance energy, the same for other

entries.
The pole with the smallest magnitude imaginary wave number, see Fig. 1(b).
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TABLE II. The efFect of using three di8'erent continuum-type functions and SDT bound-type
basis functions.

(3,1)

(9,1)

(o 2)

(1,2)

(9,2)

(o,3)

(1 3)

CPU times (sec)

7/80, [-30,
PED(ED)

1.639 010 207
1.67[-7]s

1.887 026 277
6.52[-7]

2.308 357 655
2.52[-6]

2.973 988 565
2.41 [-6]

3.642 629 839
3.3o[-v]

3.890 344 247
1.29[-6]

4.974 528 420
4.V3[-6]

5.646 223 149
4.91[-7]

5.893 637 055
1.92[-6]

423 (1488')

200],[-30,200]
EI

1.639 010208
1.67[-7]

1.887 026 283
6.57[-V]

2.308 357 633
2.58[-6)

2.973 988 457
2.36[-6]

3.642 629 841
3.31[-V]

3.890 344 261
1.30[-6)

4.974 528 224
4.61[-6]

5.646 223 153
4.92[-7]

5.893 637 079
1.93[-6]

426

7/60 (80),' [-3
PED(ED)'
1.639 010 207

1.67[-7]
1.887 026 277

6.52[-7]
2.308 357 656

2.52[-6]
2.973 988 585

2.44[-6]
3.642 629 839

3.3O[-7]
3.890 344 246

1.29[-6]
4.974 528 454

4.89[-6]
5.646 223 149

4.91[-7]
5.893 637 054

1.92[-6]
250(935')

0,200],[-30,200]
EI

1.639 010 210
1.68[-7]

1.887 026 293
6.66[-71

2.308 357 593
2.6V[-6]

2.973 988 290
2.2V[-6]

3.642 629 845
3.32 [-7]

3.890 344 283
1.31[-6]

4.974 527 870
4.51[-6]

5.646 223 158
4.92[-V]

5.893 637 113
1.95[-6]

262

Bound-type basis set, [y functions)/[x functions].
[0, Q] (bound-type function range), [O, P] (integration range)

'SDT basis set, 80 x functions contracted to 60, then recoupled with 7 y functions.
Zeroth order vibrational quantum number of resonance state.

'All significant figures identical for ED and PED (however, not for the scattering pole values not
listed here).
E„, the real part of complex resonance energy, the same for other entries.

sl'/2, negative of the imaginary part of complex resonance energy (the number in brackets is the
power of 10), the same for other entries.
"Partitioned to 186 sec for constructing and diagonalizing a real Hamiltonian matrix and 237 sec
for finding 179 poles (including all 33 resonance poles) starting from 187 discrete eigenvalues. The
remaining 8 failed to be converged.
'CPU times for ED.

for ED and PED than do the EI results. These compar-
isons indicate that the basis set requirements for the EI
case are more stringent than for the ED and PED cases.

As mentioned in the preceding section, it is not nec-
essary that the integration range of the matrix elements
(or the Siegert wave function definition range) [0,P] be
the same as the range of the bound-type basis functions
[O, Q]. We can increase the integration range outward
arbitrarily since the continuum-type function already be-
haves like the Siegert wave function in the extended re-
gion [Q, P] in the ED and PED (approximately) cases
if we use a proper cutoff function. In this way, we can
recover, at least partly, any residual effect of the poten-
tial beyond the bound-type basis function range. A test
of this with much restricted calculations is shown in Ta-
ble III. The bound. -type basis was restricted to a small
range, while the integration range was also restricted or
expanded, as in Table III. The larger integration range
results of the right column compare considerably better
to the extensive calculations of Table II than do the fully
restricted range calculations of the left column. Note the
great reduction in CPU times (a factor of 7 11 with

A+ ) fag

(0,1)

(0 2)

(1,2)

(o 3)

(1,3)

CPU times (sec)

7/30, [-30,60],[-30,60] 7/30, [-30,60],[-30,200]
PED(ED) PED(ED)

1.639 010 224
1.7O[-7]

1.887 026 306
6.13[-7]

2.308 357 789
2.54[-6]

3.642 629 873
3.36[-7]

3.890 344 306
1.22 [-6]

5.646 223 199
5.O1[-7]

5.893 637 147
1.81[-6]

59(128 )

1.639 010 206
1.66[-V)

1.887 026 273
6.54[-7]

2.308 357 649
2.51[-6]

3.642 629 836
3.29[-V]

3.890 344 239
1.30[-6]

5.646 223 145
4.89[-7]

5.893 637 044
1.93[-6]

55(133 )

All significant figures identical for ED and PED.
CPU times for ED.

TABLE III. Correction by increasing the integration range.
See Table II for notes.
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TABLE IV. Comparison of resonance positions and widths from the present method, the time
delay maximum analysis and the complex scaling method. See Table II for notes.

AQ+ ) AQ

(0,1)

(3,1)

(9,1)

(0,2)

(1,2)

(9,2)

(0,3)

(1,3)

Present
1.639 010 207

1.67[-7]
1.887 026 277

6.52[-7]
2.308 357 655

2.52[-6]
2.973 988 565

2.41[-6]
3.642 629 839

3.30[-7]
3.30[-7],2.03[-10]

3.890 344 247
1.29[-6]

1.29[-6],1.10[-9]
4.974 528 420

4.73[-6]
4.73 [-6],4.92 [-9]

5.646 223 149
4.91[-7]

4.91[-7],5.99[-10],9.83[-13]
5.893 637 055

1.92 [-6]
1.92 [-6],3.24[-9],2.69 [-13]

Time delay maximum analysis
1.639 101207

1.67[-7]
1.887 026 277

6.51[-7]
2.308 357 655

2.52[-6]
2.973 988 564

2.41 [-6]
3.642 629 839

3.31[-7]

3.890 344 246
1.29 [-6]

4.974 528 421
4.73 [-6]

5.646 223 149
4.91[-7]

5.893 637 055
1.92 [-6]

Complex scaling'
1.639 010 208

1.66 [-7]
1.887 026 278

6.52[-7]
(2.308 315 185)

(-3.60[-5])

3.642 629 841
3.31[-7]

3.890 344 249
1.30[-6]

5.646 223 153
4.94[-7]

5.893 637 059
1.93[-6]

PED (or ED) with 7/80, [-30,200],[-30,200].
Finite range scattering wave function method with the same basis set and range as present calcu-

lation, neglecting background effect [10].
'Estimated stable values along 0 trajectory except those in parentheses; see Ref. [24].

Partial widths from high to low asymptotic vibrational state channel. The same for other entries.

this procedure) with small loss in accuracy for low n
resonance states.

Finally, the present results are compared with those of
time delay maximum analysis [10] and complex scaling
[24] method in Table IV. The partial widths are also
given, which are obtained &om the total width and the
probability of decaying into each open channel. In par-
ticular, they are given by [25]

where

[c-~ke '"* f;(P)
~

P, ] c, ~k, e —*"'~f (P) ]' '

where c, is the Siegert eigenvector coefficient of ith open
channel continuum-type function f; and k; is the ith
channel complex wave number. P is the end point of
the integration range. We note excellent agreement be-
tween all methods for those resonances reported. (Note
that the partial widths shown may not represent the con-
verged values and the earlier complex scaling calculations
with a small basis [24] did not report all resonances. )

IV. CONCLUSIONS

We have shown how the direct Siegert method of find-
ing complex resonance energies and widths corresponding
to complex poles of the S matrix can be improved in effi-

ciency. After diagonalization of a single real Hamiltonian
matrix we seek the complex Siegert energies by parti-
tioning the eigenproblem to reduce the size of the eigen-
problem and combining an individual eigenvalue hunt-

ing inverse iteration method with a rational fraction root
search method to find each pole. Iterative and complex
diagonalizations are completely avoided. This implemen-
tation can be used without modification with the infinite
range version of the Hamiltonian representation (such as
the analytic continuation method of Isaacson, McCurdy,
and Miller [3] or the II —E combined evaluation method
of Yaris, Lovett, and Winkler [4]), provided that the secu-
lar determinant equation can be cast into the form of an
eigenproblem. However, the finite-range representation
used here appears simpler and more efficient for general
types of potentials.

It is demonstrated that, in the finite-range version, one
can save very substantial computation by using fixed (or
almost fixed) continuum-type basis functions to yield a
reasonable (or accurate) results when compared with the
Siegert-type continuum function case.

The difficulty that arises, that broad resonances are
masked by the scattering poles, is inherent in all Siegert
method. s regardless of the range of the finite basis set used
[5]. For this case, if all resonances are desired, a correc-
tion scheme or other direct and indirect methods may
be used. However, for cases in which only narrow res-
onances are desired, the present method appears highly
advantageous.
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