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Theoretical calculations of quantum interference effects occurring in photodetachment of H™
with short-pulse lasers in the presence of a uniform static electric field [Q. Wang and A. F. Starace,
Phys. Rev. A 48, R1741 (1993)] are examined in more detail and extended to the case of parallel
static electric and magnetic fields. We show that modulation factors characterizing near-threshold
cross sections resulting from detachment by relatively long laser pulses may be employed to set
the parameters that are most effective for control of detachment cross-section magnitudes with
short coherent laser pulses. Use of a static magnetic field to control detached electron wave-packet
motion perpendicular to the static field axis is shown to increase greatly the magnitude of quantum
interference effects on the cross sections (from 10% of the field-free cross section in an optimized static
electric-field case to 50% in a parallel static electric and magnetic-field case). Theoretical dependence
of calculated cross sections on laser pulse lengths, time delays, relative phases, frequencies, and
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classical electron orbit times are presented and discussed in detail.

PACS number(s): 32.80.Fb, 42.50.Vk

I. INTRODUCTION

The field of quantum control of atomic and chemi-
cal processes has grown enormously in recent years. In
chemical physics beginning in the mid-1980s a number of
groups commenced the investigation of controlling molec-
ular dynamics using lasers. In particular, Tannor et al.
[1-3] investigated the use of short laser pulses to control
wave-packet motion along molecular potential curves.
Their goal was to control in which final channels the wave
packet departs. Brumer and co-workers [4-6] at the same
time investigated using quantum interference between
simultaneous excitations in molecules. They proposed
the performance of two-color experiments, with one fre-
quency being a multiple of the other so that, e.g., one-
and three-photon excitation processes populate some of
the same final states. They also proposed varying the rel-
ative phase of the two transitions in order to control the
yield of the final-state products. Experimental realization
of the latter scheme has begun [7].

In atomic physics, the field of quantum control of elec-
tronic wave packets in Rydberg atoms has burgeoned.
The 1991 review article by Alber and Zoller [8] on this
topic lists 155 references. A common element of work in
this field is to use short laser pulses to create an electronic
wave packet in the high Rydberg state energy region. The
wave packet is a coherent superposition of a number of
atomic (Rydberg level) eigenstates. Alber and Zoller [8]
note that such wave packets “provide a bridge between
quantum mechanics and the classical concept of the tra-
jectory of a particle” and that “the evolution of these
wave packets provides real-time observations of atomic or
molecular dynamics.” Elucidating such linkages between
classical, semiclassical, and quantum dynamics has long
been a goal of theoretical atomic and chemical physics

[9]-
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The wave packets that are produced in most numerical
and experimental investigations are usually radial wave
packets, i.e., a superposition of Rydberg energy levels
localized in the radial direction [10]. However, ways to
produce angular wave packets using external fields have
also been presented [11]. Typically, experiments are of
the pump-probe type in which a localized wave packet
is excited, moves along its almost-classical trajectory far
from the nucleus, and, when it returns to the origin, is
either ionized by another laser pulse or else is deexcited
back to the ground state. The probe stage of such experi-
ments is required because the Rydberg wave packets are,
after all, bound.

Phase coherent effects have also been extensively stud-
ied in atoms. Many authors have explored simultaneous
single and multiphoton excitation of final states having
the same energy [12-15]. They have primarily considered
effects of the relative phase of the two excitation pro-
cesses. Alber, Ritsch, and Zoller [16] have sketched theo-
retically an experiment in which there are two laser pulses
that are delayed with respect to one another and which
differ only in their relative phase. The first laser pulse
excites a Rydberg wave packet and the second is delayed
so that it turns on just as the wave packet produced by
the first laser pulse returns to the origin. The relative
phases of the two laser pulses determine whether there is
constructive or destructive interference between the wave
packets produced by each pulse. Noordam, Duncan, and
Gallagher [17] have examined theoretically the effect of
the phase difference in just such an experiment as that
proposed by Alber et al. [16]. They predict that Ramsey
fringes can be observed.

Relatively few groups have been concerned with Ryd-
berg wave packets in the presence of external fields. Al-
ber has studied theoretically the production of Rydberg
wave packets in atoms in the presence of both electric and
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magnetic fields in the vicinity of the ionization threshold
[18-20]. This work was concerned with the connection of
classical and quantum dynamics and the use of the static
fields to control wave packet motion. The evolution of
Rydberg wave packets in the presence of a static electric
field has been explored experimentally by Noordam, van
Linden van den Heuvel, and co-workers [21,22]. Finally,
Rydberg wave packets in crossed electric and magnetic
fields have been studied both theoretically [23] and ex-
perimentally [24].

In this paper we present results of theoretical inves-
tigations of negative-ion detachment in the presence of
parallel static electric and magnetic fields using short-
pulse lasers. Unlike Rydberg states, which are bound and
require a probe pulse — or else field ionization — to de-
termine the population of the Rydberg state, the study of
negative-ion detachment permits a direct observation of
the interplay between quantum interference and classical
motion. The motion of the electronic wave packet that is
produced by the short-pulse laser is controlled by the ex-
ternal static fields. When the packet returns to the origin,
the relative phase of a coherent second laser pulse deter-
mines the extent of destructive or constructive quantum
interference and controls the magnitude of the detach-
ment cross section. Our two-coherent-laser-pulse treat-
ment is similar to those proposed by Refs. [16] and [17]
for Rydberg atoms, but we assume a constant (arbitrary)
phase difference between the laser pulses for simplicity.

The present paper extends and discusses in more de-
tail our initial results on short-pulse laser detachment of
H~ in a static electric field [25]. (A similar theoretical
treatment for short-pulse laser detachment of negative
ions in a static magnetic field has just recently been pre-
sented [26].) Negative-ion detachment in a static electric
field leads to quantum interference effects (e.g., cross-
section oscillations) near threshold due to the two pos-
sible paths for electron detachment along the static field
direction: a direct path and a reflected path [27-29]. This
interference has been observed [30]. Our wave-packet cal-
culations [25] showed that the quantum interference in-
terpretation of the observed cross-section oscillations in
photodetachment of a negative ion in the presence of a
static electric field is indeed a fruitful one. Using a single
short laser pulse, we reproduced the cross-section oscilla-
tions as long as the laser pulse length was longer than the
electron reflection time for motion between the negative
ion (i.e., the origin) and the static electric-field potential
barrier. The observed oscillations arise as a result of in-
terference between old and new laser-excited electronic
amplitudes. If, however, the pulse length of the laser is
shorter than the electron reflection time, then the laser-
excited electronic wave packet gets reflected by the static
electric field and returns to the origin after the laser pulse
is gone. In this case, the cross-section oscillations disap-
pear because there is no new amplitude with which the
returning electronic amplitude can interfere.

We extended our single-laser-pulse calculations to in-
clude a double laser pulse of the form [25]

EL(t) = {Eo exp(—a®t?) sinwt
+Egexp[—a?(t — 7)?|sin(wt + B)}k. (1)
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One sees that such a pulse involves a time delay and
phase difference between two coherent laser pulses. (One
might be able to realize such a pulse by beam splitting a
single laser pulse with subsequent time delay and phase
modulation of one of the beams. However, the precise
form of the double pulse is not relevant to the essential
physics.) The key point of Ref. [25] is that by making the
time delay 7 between the two pulses equal to the reflec-
tion time of the electronic wave packet produced by the
first laser pulse, then the second laser pulse can control
the amount of the reflected electronic wave packet which
escapes down field toward a detector. This control can
be achieved by varying the relative phase of the second
laser pulse. Thus one can design experiments in which
quantum interference phenomena are observed at fized
laser frequency as a function of the relative phase of the
two laser pulses. This contrasts with conventional exper-
iments which observe such interference only as a function
of laser frequency.

While Ref. [25] demonstrated the feasibility of coher-
ent control of a continuum atomic process, the extent of
such control in the case of a static electric field is limited
by the tendency of laser-excited wave packets in three
spatial dimensions to spread out. Hence, even though
half the wave-packet amplitude travels in the direction
of the increasing static electric-field potential and gets
reflected, little of it returns to the origin where it can be
modified by another laser pulse. Thus, for the laser fre-
quency of 1 eV used in the calculations in Ref. [25], the
magnitude of the quantum interference effects is of the
order of a few percent of the detachment cross section.
Calculations presented in this paper with smaller laser
frequencies give larger effects of the order of 10%. How-
ever, to achieve a major increase in the magnitude of the
interference effects requires that one control the extent
of wave-packet spreading in three dimensions.

The case of parallel static electric and magnetic fields
is an ideal one for this purpose. In this field configuration
the electronic wave-packet amplitude is confined by the
magnetic field in the direction perpendicular to the static
electric field. Furthermore, a new feature is that there are
now two time parameters for the system: the reflection
time for motion along the electric-field direction and the
reflection time for motion perpendicular to this direction.
For the infinitely long laser pulse case, the work of Rein-
hardt [28] as well as the perturbative treatments of Du
[31] and of Fabrikant [32] found extremely strong quan-
tum interference effects as large as nearly 100% of the
average detachment cross section as a function of laser
frequency. Similar results have recently been reported by
Peters and Delos [33]. We show here that such effects
can be controlled with short laser pulses and observed at
fixed frequency as a function of the relative phase of the
two laser pulses.

In Sec. II we present our theoretical formulation, which
is based on an analytic three-dimensional wave function
for a detached electron moving in a laser field and parallel
static electric and magnetic fields. Formulas are derived
for the H~ detachment transition rate and, in the limit
of weak laser intensities, for the detachment cross section
and modulation factors. The limiting cases of pure static
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electric and magnetic fields are also presented. In Sec.
IIT we first present more detailed results for the static
electric-field case considered in Ref. [25]. We then present
our results for the parallel static electric- and magnetic-
field case. In Sec. IV we discuss our results and adduce
some conclusions.

II. THEORETICAL FORMULATION

Our calculations employ an analytic solution of the
time-dependent, three-dimensional Schrédinger equation
for a detached electron moving in parallel static electric
and magnetic fields as well as in the field of a laser pulse.
We thereby generalize prior treatments for an electron
moving in a monochromatic laser field and either a static
magnetic [34] or electric field [35]. These wave functions
are in essence the natural extensions of the Volkov so-
lution [36] for an electron in a laser field. As discussed
below, our choice of initial-state representation enables
us to define a gauge-invariant S matrix. For this rea-
son, we choose the gauges which are most convenient for
the external static and laser fields. Finally, in order to
compare with prior results employing perturbative treat-
ments for monochromatic laser pulses, we examine the
weak laser field, long-pulse limit of our analytic formu-
las. Throughout this paper we employ atomic units (i.e.,
e = i =m = 1) unless otherwise specified.

A. Analytic final-state wave functions

Consider an electron moving in a static electric field
Es = Egsk, a static magnetic field B = Bk, and the field
of a laser pulse

Er(t) = Eoe ** (sinwt)k, ()

where w is the laser frequency and the Gaussian factor
describes the pulse shape. Introducing the vector poten-
tials

A.B = Bzj, (3)

Ap(t) = —c / t Ep(t)dt, (4)

the time-dependent Schrédinger equation for the final-
state wave function in momentum space is

20550 _{1(;. 2, 2]

ot 2
FiBs - Y(5,) (5a)
T Sapz b, a
= (HL + H))y(p, 1), (5b)
where
_1(2 2 i _3__ _ l 2_?1 6
HL = 5 (p:p +py) + chpy apz ch 6p;2¢ ( )

and

1 1 1 . o
H” = Epz + ZALP: + %Ai +iEg p. . (7)

Note that in Eq. (6) we have introduced the cyclotron
frequency

we = Be. (8)
The solution of Eq. (5) is separable. Thus we write

"I)(ﬁ’ t) = "/)J.(pz1py,t)w|](pz7t)a (9)

where %, (v)) is the solution of the time-dependent
Schrédinger equation corresponding to H, (H)j). For ¢
we find

P (P2, t) = (2nEs)~1/? exp{~iezt +iE5[p2/6 — €.p.]
t
—i’% / Ap(t')dt' —i f(t)}. ©(10)

In this equation, €, is the electron’s total energy of mo-
tion along the z axis, the next two terms in the exponen-
tial describe the electron’s motion in the static electric
field, the fourth term is one of the (Volkov) phases due
to the laser field, and the last term is defined as

ft) = (2c2)‘1/t AZ(tdt' + % /t dt’ [/t dt"AL(t”)].
(11)

The first term in Eq. (11) leads to another (Volkov) phase
due to the laser field plus a ponderomotive shift and the
second term represents a coupling of the static electric
and laser fields [35]. The factor outside the exponential
in Eq. (10) gives % a normalization per unit energy. The
solution defined by Egs. (10) and (11) has been consid-
ered in detail in Refs. [25] and [35].
For ¥ (pz,py,t) we find

1/1L (p:c’p;w t) = J(py - ky) exP[i(ksz/wc - E.Lt)]@n(sz
(12)

where the energy €, is
e = (n+1/2)w,, (13)

and @, (p,) is the momentum-space solution for a one-
dimensional harmonic oscillator [37]

B, (pz) = [27n!(mw,) /2]~ 2e P2/ Gu) H (pw 1/?),
(14)

where H, is the nth degree Hermite polynomial. 9, is
normalized per unit momentum in p, and to unity in p,.

In summary, the momentum-space wave function for
an electron moving in a laser field [defined by Eqs. (2)
and (4)] and parallel static electric (Es) and magnetic
(B) fields is given by Egs. (9), (10), and (12) as
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¢nkye, (pz yPysPz, t)

= @, (p2)d(py — ky)(z""ES)_l/z
X exp [i(—éft + kyp,:u)c_1 + Egl[pg/ﬁ — €:Dz]
~./0) [ Aut)at - 1)), (15)

where f(t) and ®,(p,) are defined by Egs. (11) and (14),
respectively, and where the energy s is defined by

ef=€l +e,=Mn+1/2)w. +¢,. (16)

The coordinate space wave function in z and z is obtained
by taking the Fourier transform of Eq. (15) to get

w'nkve, (zapya Z, t)

= e tert—if(t) g (z + kywc_l)J(py — ky)

x (4 /Eg)l/GAi((ZEs)l/a (z —¢./Es

—c™! /t AL(t')dt’)). (17)

In this equation f(t) and €5 are defined in Egs. (11) and
(16), respectively, Al is the regular Airy function, and ¢,
is defined by

@n

~

z + kywc_l)

1/2
=" [wé/z/(wl/ZZ"n!)]

x exp|—(z + kyw )?w./2]H, (wg/z(:c + kywc_l)).
(18)

B. Initial-state wave function

We choose our initial-state wave function to be the
Ohmura-Ohmura [38] wave function for H™. It is given
in momentum space by

o b 1
"/}i(pat) = (271')1/2 (p2/2 _ 6,,;)6

et (19)

The form of this wave function is a well-known approx-
imation for a weakly bound electron which stems from
the effective range theory for an s electron [39]. Using
the variational results of Ref. [38] for H™ and the effec-
tive range theory [39], one finds [40]

b=0.31552 (20a)
and

€; = —0.027751 a.u. (20b)
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C. S matrix

The form of the S matrix for detachment of H™ in the
presence of parallel static electric and magnetic fields de-
pends on our choices for the initial- and final-state wave
functions. Specifically, our initial-state wave function in
Eq. (19) is assumed to be a solution of the atomic Hamil-
tonian for H™; that is, we assume that the static fields
are sufficiently weak that they do not distort the initial-
state wave function. The final-state wave function in Eq.
(15) describes exactly the detached electron’s motion in
all external fields except that of the residual atom. Ignor-
ing the electron-atom final-state interaction is a common
approximation in H™ detachment in external static fields
35].

[ Il‘or these choices of initial- and final-state wave func-
tions, the S matrix element for a transition between them
is

+oo
—i (bniye. | Hr | i), (21)

Snkyé; =

where Hy comprises all of the field-dependent terms (i.e.,
those involving wc, Fs, and Ar) in Egs. (6) and (7). As
shown in Sec. III A of Ref. [35], for initial states of the
form of Eq. (19), this S-matrix element is gauge invariant
and equal to [cf. Eq. (27) of Ref. [35]]

Snkye. = +i/ ($nkye, | D2m) "1/ 2) e tdt.  (22)
— oo

Carrying out the momentum-space integrations in Eq.
(22), we obtain

Snkye. (t) = i(27r)1/2b ¢n(_kywc_1)Inez ®),

where

(23a)

t

Le.(t) = (4/Es)V/® /

— o0

., 1"
xAi(— (2E5)1/3(;—S + Z/ dt”AL(t”))).

(23b)

dt’ expi[(ef —)t + f(t')]

The S matrix in Eq. (22) is the limit of Eq. (23) as t —
+00; it is convenient to define a time-dependent S-matrix
element in order to examine wave-packet behavior while
the laser pulse is on.

D. Wave-packet amplitude

We may use the time-dependent transition amplitude
in Eq. (23) to determine the temporal and spatial be-
havior (in = and z) of the detached electron’s probability
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amplitude as follows:

'll’WP(vayazat)

ol +o0 +o0
= Z / dky / dfz‘/)nk!,ez ($»pya 2, t)snkve, (t)
n=0Y = —oo
(24)

i

In words, Eq. (24) defines the wave-packet amplitude as a
sum over all final states of the product of the transition
amplitude to each final state (n,ky,€.) at a particular
time ¢t and the wave function in Eq. (17) for that final
state. Substituting Egs. (17) and (23) into Eq. (24) and
making use of Eq. (16), we obtain

Pwp(z, Py, 2,t) = ib(2m) /2O N " g (z + kyw V) bn(—kyw H)e {nF1/Dwet (4 Bg)Y/6

n=0

x /+°° deze—if=‘Ai((2Es)1/3 (2 —¢,/Es—c! /t AL(t')dt'))InE, (). (25)

— o0

E. Cross sections
The transition rate to a particular final state (n, ky, €,)
is
Wokye, = (20) 7 Sniye, [ = 0%|¢n(—kywi)|* | Ine, |°.
(26)
In Eq. (26),
Ine, = tli)l?w ITLG; (t)7 (27)

where I, (t) is defined in Eq. (23b). The total cross sec-
tion may be calculated from the transition rate Wps,e,:

o +oo +o0
o=F~1 Z / dk, / de: Whk,e,
n=0"Y —® —oo

= P %0, 3 / dey|Ine. 2. (28)
n=0Y ~®

To obtain the second line in Eq. (28), use is made of the
normalization integral for Hermite polynomials [41]. F is
the incident flux. Appropriate values for F' for short laser
pulses are obtained in the next subsection. It is useful

to define the partial cross section for the nth Landau
threshold:

(29a)

g = E On,
n

where

On = F’lbsz/ de,|Ine. | (29b)

F. Fluxes for single and double Gaussian laser pulses

Consider first the Gaussian-shaped laser pulse defined
in Eq. (2). We may Fourier analyze it, i.e., set

EL(t) = v E(0)e**dQ. (30)

— 00

One finds for the frequency-dependent amplitude E(2)
[after substituting Eq. (2) in Eq. (30) and Fourier trans-
forming both sides]

B = 2 (- O - o[- 022

(31)

We define the total intensity I;o¢ of the laser pulse as the
integrated intensity of each frequency component

Lot = —C—/+°° |E(Q)|2dQ (32)
tot — an e .

Dropping the cross terms in | E(£2)|? since they are always
negligible compared to the other two terms (for w/a >
1), we find, after performing the integral over {2,

2
Liot = % [2a(2m)M/2] . (33)

The flux for a single Gaussian pulse defined by Eq. (2) is
thus

F = Lot/w = C—Eﬂz[za(zw)l/z]—l. (34)
8Tw

One notices immediately that the plane-wave limit (i.e.,
a — 0 ) gives a singular flux. However, if one substitutes
Eq. (34) in the cross-section formula in Eq. (28) first,
then the limit as @ — 0 is finite and, as expected, is
equal to the plane-wave laser result, as we show in the
next subsection.

The flux for a double Gaussian pulse [such as that de-
fined in Eq. (1) in which the second pulse is delayed by
a time 7 and shifted by the relative phase (3] may be
similarly calculated. Substituting Eq. (1) in Eq. (30), we
obtain

- Eo (2 —w)? i(w— )T +if
E("):m{e"?[“‘m (+e )

—exp [— M] (1 4 eilet =iy } (35)

4a?
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Substituting Eq. (35) into Eq. (32), dropping the cross
terms because of the small factor exp[—(w? + Q2)/4a?],
and integrating over frequency, we obtain, for the flux for
the double Gaussian pulse defined in Eq. (1),

_ _ CEg 1/2 _1-1 2.2
Fy = =2t = 20((2m)M/2%a] M1 + cos Bexp(—a’r?/2)].

(36)

G. The weak laser, long-pulse limit for the cross
section

In order to compare our results with results of pertur-
bative calculations employing monochromatic laser exci-
tation, we must examine the weak laser, long-pulse limit
of our formulas for the cross section [cf. Egs. (28) and
(29)]. It turns out that typically employed experimental
values for laser pulse duration and intensity fall in the
weak laser, long-pulse limit and thus predictions employ-
ing such limiting values have relevance to current exper-
imental capabilities.

We focus on the amplitudes I,., defined by Egs. (23b)
and (27) since this amplitude determines the total and
partial cross sections according to Egs. (28) and (29). In
the weak laser limit, i.e., Eg — 0 [cf. Eq. (2)], we retain
only terms in Eq. (23b) that are of first order in Eqy. Thus
we expand the exponential in Eq. (23b) to first order in
f(t') [and keep only the second integral in Eq. (11)] and
expand the Airy function in Eq. (23b) to first order in
Ay [cf. Eq. (4)]. Thus

+oo
1«4131—1:0 Ine, = (4/Es)1/6/ dt exp[i(ef - Ei)t]

— 00

« [i%iAi(—g) / "t / "t A (")

_(2Es5)'®
(o4

A (=€) / ‘wae|, @

where we have introduced the scaled energy variable
¢ = (2Es)Y 3¢, /Es. (38)

For the typical case that a/w < 1 (i.e. , that the pulse
shape is not too short), the time integrals of Ay over the
t' and t” in Eq. (37) may be performed using integration
by parts (dropping all terms of order a/w or higher). The
integral over t may then be carried out to obtain

—iE,

o oo (€f — €; — t‘.:)(tl/Es)l/6

lim Ine, =
a/w—0,Eq—0

x [%S-Ai(—e) + (2Es)1/3Ai’(—£)] ,
(39)

where we have introduced the quasi-§-function

Oalefr — €6 —w) = (27r1/2a)'1exp[—(ef — & —w)?/4a?].
(40)

In the limit that our finite laser pulse becomes a
monochromatic plane wave, the quasi-d-function becomes
the usual Dirac § function

5(ef—e,~—w)=ollig%6a(ef—ei—w). (41)

Substituting Eq. (39) into Eq. (28) and using the single
laser pulse flux given in Eq. (34), we obtain, for the total
cross section,

8m3b2w, e [T -
o= —TSCZ/ de bo(ef — € — w)
n=0Y >

E 2
<(4/B)"2 [ ZEAi(-0) + (2B AT (-9)| L (42
where another quasi-d-function has been introduced,
Sales — € —w) = (87)Y2ad? = (21271 /2a) 1
x exp[—(e5 — & — w)?/2a3]. (43)
As with 6., we have
O(eg — €; —w) =i111&)6a(ef—e,~——w). (44)
In the limit of a monochromatic laser (i.e., @ — 0), the

integral over €, in Eq. (42) fixes €, and hence £, which
becomes [cf. Egs. (38) and (16)]

ll_lﬂ)f == (2E5)1/3[6,‘ +w— wc(n+ 1/2)]/Es (45)
Thus

. 813b%w, 1/3
limo = =55 2 (4/5s)
E 2
x fAi(-goH(2E5)1/3Ai'(—50) . (46)

The weak laser, long-pulse limit for the case of the
double laser pulse in Eq. (1) may be analyzed similarly.
Thus the amplitudes I,(.'?,, where the d indicates the dou-
ble pulse case, equal

lim I,(“:Z = I, {1 + exp[—ifB + i(ef — €; — w)T]},

a/w—0,E;—0
(47)

where I, in Eq. (47) is given by Eq. (39). The cross
section for the double laser pulse case may be obtained by
substituting Eq. (47) into Eq. (28) and using the double
laser pulse flux given in Eq. (36).

H. Modulation factor

The influence of the parallel Es and B fields on the H™
photodetachment cross section near threshhold may be
demonstrated most clearly by calculation of a modulation
factor H, which multiplies the field-free detachment cross
section for H™, oy,

o = H(Es, B)oy. (48)
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Near threshold, the field-free cross section is [42]

8m3b2 81/2 3
= + /2
g9 ( p 3 ) ( ) (UJ 61) (49)

which clearly exhibits the Wigner threshold law [43].
Thus, for example, for the case of parallel static elec-
tric and magnetic fields and a single laser pulse [defined
by Eq. (2)], the modulation factor H(Eg, B) can be cal-
culated from Eq. (48) using Eq. (42) for the cross section
o. In the long-pulse limit, Eq. (46) may be used for o to
obtain

lim H(Es, B)
a—0

3 ™ 4\? —3/2
=5er(373) (55) @+

oo

x Z [%Ai("‘fo) + (2Es)1/3Ail(_§0)] ) (50)

n=0

where o is defined by Eq. (45).

I. Pure magnetic- or electric-field case

It is of interest to examine the limiting cases of Eq.
(42) in which either the electric or the magnetic field is
zero. Consider first the case that Es — 0. In this case the
scaled variable £ [cf. Eq. (38)] becomes infinite and hence
the Airy function and its derivative take their asymptotic
values [44]. Dropping the Airy function term in compar-
ison with that involving its derivative and taking the av-
erage value of the squared cosine function, we obtain, for
the case of a single laser pulse [cf. Eq. (2)],

87l' b 1/2 1/2
op =~ anZ—;)/ de, €1/%84(e5 — €; — w), (51)
where &, is defined by Eq. (43) and € is defined by Eq.
(16). The long-pulse limit of Eq. (51) agrees with the
weak laser field limit of Eq. (A7) of Ref. [34].

Consider now the case that B — 0. In this case the
summation over n may be replaced by an integral, i.e.,

élinowc 2—:0 =/0 wedn =/0 dey , (52)

where the last equality follows from Eq. (16). Thus, Eq.
(42) becomes

372
8:“)2 / dE.L/ de,ga(ef—ei—w)

1/3 2
x(i) [ESAI( )+ (ZEs)lfsAi'(—a],

Es
(53)

where €; is defined by Eq. (16) and {(e.) is defined by
Eq. (38). The long-pulse limit of Eq. (53) agrees with Eq.
(64) of Ref. [35].

III. RESULTS

We show here how experimentally controlled parame-
ters for incident laser pulse shapes determine the magni-
tudes of H™ photodetachment cross sections in external
static fields. We employ two basic laser pulse shapes: a
single and a double Gaussian pulse, which are described
by Egs. (2) and (1), respectively. These are illustrated in
Fig. 1 for a particular set of parameters. In what follows,
we present further results for the pure static electric-field
case that was considered in Ref. [25]. We then present
results for the parallel static electric- and magnetic-field
case.

A. Pure static electric-field case

As discussed in Ref. [25], the quantum mechanical in-
terference that is exhibited by the oscillations in the cross
section for detachment of H™ in the presence of a static
electric field is sensitive to the duration of the finite laser
pulse. Briefly, the detached electron probability ampli-
tude can escape along the negative z axis by either of
two paths: a direct path (in which the electron travels
initially “down field” along the negative z axis) and a
reflected path (in which the electron travels initially “up
field” along the positive z axis and is reflected at the
classical turning point, subsequently escaping along the
negative z axis). Quantum interference occurs between
the “reflected path” electron probability amplitude that
returns to the origin at z = 0 and the “direct path” elec-
tron probability amplitude that is being newly produced
at z = 0 by the laser pulse. As demonstrated in Ref. [25],
cross-section oscillations may be observed as long as the
laser pulse duration is longer than the reflection time for
an electron wave packet.

1. Modulation factor dependence on laser pulse
duration

In Fig. 2 we show the cross-section modulation factor
H [cf. Eqgs. (48) and (49)] corresponding to the cross sec-
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FIG. 1. (a) Gaussian-shaped single laser pulse defined by
Eq. (2). (b) Double laser pulse defined by Eq. (1). The pulses
shown have a peak amplitude E; = 10° V/cm, frequency
w = 0.84 eV, and pulse width 2/a = 0.06 psec. The double
pulse in (b) has a pulse separation 7 = 4/a and a relative
phase 8 = 0.
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FIG. 2. Modulation factors H [cf. Eqs. (48) and (49)] for
photodetachment of H™ by a linearly polarized Gaussian laser
pulse [cf. Eq. (2)] in the presence of a static electric field
Es =1.64 V/cm k. H is plotted vs the scaled energy variable
¢ = (2/E%)Y3(w + &) [cf. Eq. (38)] for four values of the
laser pulse width (2/c): 1 psec (solid curve), 0.24 psec (dotted
curve), 0.12 psec (dashed curve), and 0.06 psec (dash-dotted
curve). The inset shows H on an expanded scale in the range
2<¢<6.

tion in Eq. (53) for four values of the laser pulse duration.
H is plotted as a function of the scaled energy variable £
defined in Eq. (38). The magnitude of the static electric
field used is Es = 1.64x10° V/cm. The curves shown are
those for laser pulse widths 2/a = 1.00 psec, 0.24 psec,
0.12 psec, and 0.06 psec. For 2/a = 1.0 psec, the oscilla-
tions of the modulation factor H({) are essentially those
of a monochromatic laser pulse, while for 2/a = 0.06
psec, the oscillations have vanished.

Figure 2 may be understood using classical arguments.
According to Newtonian mechanics, the reflection time
for an electron in a static electric field Eg is

Tg = (2/E5)[2(w+ei——eL)]1/2. (54)
The amplitude that returns to the origin is that for which
€, = 0. For the static field Es at which the calculations
in Fig. 2 were performed, the scaled energy variable £ =
1 corresponds to a laser frequency w = 0.777 eV. The
classical reflection time for this frequency is 0.06 psec.
This classical reflection time is equal to the shortest laser
pulse width employed in Fig. 2. Hence, for this case, the
laser pulse is just about over at the time the reflected
electron probability amplitude produced by the first half
of the laser pulse returns to the origin. At larger values
of £ (and hence w), the classical reflection time is even
longer. Hence, for a laser pulse width 2/a < 0.06 psec,
we expect the cross-section oscillations to disappear.

2. Time development of detached electron wave
packets

This classical interpretation is verified by our
quantum-mechanical wave-packet calculations shown in
Fig. 3. In this figure we plot the detached electron
wave-packet probability density | ¥wp(pz, Py, 2,t) |2 for
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the case p, = p, = 0 as a function of z and ¢.
[¥wp (Pz, Py, 2, t) is defined by Eq. (6) of Ref. [25] and
corresponds to the parallel static electric and magnetic
fields wave packet defined in Eq. (24) above.] In order
to relate the time development of the detached electron
wave packet to the passage of the laser pulse over the H™
ion, we measure time in units of 1/a. Our single laser
pulse, which is described by Eq. (2) and exhibited in Fig.
1(a), has a width of 2/a = 0.06 psec and a frequency of
w = 0.84 eV. Figure 3 shows that at t = —1/a [cf. Fig.
3(a)] the wave packet has very little amplitude, whereas
at t = 0 [cf. Fig. 3(b)] the wave packet is bifurcating,
with half the amplitude heading toward negative values
of z and half heading toward positive values of z. The
latter group, however, is trapped by the Stark potential,
while the former group escapes [cf. Fig. 3(d)]. Figures
3(e)-3(h) show that long after the laser pulse has swept
past the H™ ion at ¢t = 2/, the probability amplitude
trapped by the Stark potential returns to the origin at
z = 0 [cf. Fig. 3(f)] and eventually escapes along the neg-
ative z axis [cf. Fig. 3(h)], much as the direct path wave
packet does [cf. Fig. 3(d)], but delayed by the reflection
time of ~ 4/a = 0.12 psec for this laser frequency.
Figure 4 demonstrates how one can partially control
the magnitude of the detached electron probability am-
plitude which escapes along the negative z axis by em-
ploying a coherent, double laser pulse of the kind defined

27 t=-1/a 27 t= 3/a (e) T
/T 1—< — 1 — -
o O . . y 0 -
Te) N
! 4 L5 L
o 27 t=0/a 29 t= 4/a (f)
o 1m A :
7 6] ., | 0 -
Q29 4= 1/qa 29 t= 5/a (9) I
> Lo B
— 1— b= 1 ~ -
E’ 4 (¢) L L
2 o , - 0
o
& 27 t=2/a 27 t= 6/« (n T
1 -1 -
1 (@ L] i
0 r, 0

—-900-600-300 O 300-900-600-300 0O 300
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FIG. 3. Wave-packet probability | ¥we (pz, Py, 2,t) |* for
Pz = py = 0 for electrons detached from H™ in a static electric
field (Es =1.64 x 10° V/cm fc) by a laser pulse of frequency
w = 0.84 eV linearly polarized along k and having the form in
Fig. 1(a), where the width is 2/a = 0.06 psec. (a)—(h) show
the electronic wave-packet distribution along the z axis for
times ¢ measured in units of 1/a. The laser pulse passes over
the H™ ion for —2/a < t < 2/a; for t > 2/a the electronic
wave packet moves only under the influence of the static field.
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FIG. 4. Same as Fig. 3, but for the double laser pulse
shown in Fig. 1(b), with each laser pulse having a width
2/a = 0.06 psec and frequency w = 0.84 eV. The time de-
lay between pulses is 7 = 4/a = 0.12 psec and their relative
phase is 8. The first laser pulse passes over the H™ atom dur-
ing —2/a <t < 2/a and produces a wave-packet distribution
identical to that in Fig. 3. The second laser pulse passes over
the H™ ion during +2/a <t < +6/a. (a)-(d) show the case
of constructive interference (8 = 0.1w) and (e)—(h) show the
case of destructive interference (8 = 1.17).

by Eq. (1) and exhibited in Fig. 1(b). The two laser pulses
have a separation 7 = 4/a equal to the wave-packet re-
flection time; their relative phase is § = 0.17 in Figs.
4(a)-4(d) and B8 = 1.1x in Figs. 4(e)—4(h). The relative
phase 8 = 0.17 leads to constructive interference be-
tween the reflected path electron probability amplitude
produced by the first laser pulse and the direct path elec-
tron probability amplitude produced by the second laser
pulse. The relative phase 8 = 1.1w, on the other hand,
leads to destructive interference between these two am-
plitudes. [Note that the reflected path probability ampli-
tude produced by the second laser pulse will, in each case,
proceed eventually toward negative z; e.g., there will be
a probability distribution similar to that shown in Fig.
3(h) for t = 10/a.]

3. Dependence of the detachment cross section on the
relative phase of two short laser pulses

Different choices of p,, and p, will produce interference
effects such as those shown in Fig. 4 only for different
values of 3. The measured cross section is the result of
an integration over ¢, = (pZ + p2)/2, as shown in Eq.
(53). Because of this integration, the effect of such quan-
tum interference on the cross section is of smaller mag-

nitude than for a particular wave-packet trajectory. This
is shown in Fig. 5, which presents the cross section for
detachment of H™ as a function of the relative phase 3 of
a double laser pulse of the form in Eq. (1) with w = 0.84
eV and 7 = 4/a = 0.12 psec. One sees that in varying 3
over 27 degrees, the cross section at fixed laser frequency
w = 0.84 eV varies by about 10% from peak to trough.
Two general observations may be made concerning the
magnitude of the cross-section oscillations as a function
of the relative phase 3. First, the magnitude of such os-
cillations is sensitive to the laser frequency w. In Ref. [25]
a slightly greater laser frequency, w = 1 eV, resulted in
o(p) oscillations having a magnitude of 2% from peak to
trough [45]. Thus, by lowering the frequency to w = 0.84
eV, we are able to increase the magnitude of the oscil-
lations by a factor of 5. The reason for this sensitivity
may be deduced from the modulation factor H(¢) shown
in Fig. 2. The scaled energy variable ¢ is proportional
to (w + €;). Hence, increasing w from 0.84 eV to 1 eV
changes £ from about 3.9 to 11.2. One sees that H(¢)
is oscillating with much greater amplitude near £ = 3.9
than near £ = 11.2 (which is just off the scale of Fig. 2).
A second observation is that o(8) oscillates at about
one-half the magnitude that the long laser pulse limit
for H(&) does near the same frequency. For example, the
peak to trough magnitude of the oscillation in o(3) of
about 10% shown in Fig. 5 compares with a peak trough
oscillation of about 20% in the 1 psec laser pulse curve for
H(£) near £ = 3.9. [Similarly, the magnitude of oscillation
in 0(B) at w = 1 eV of about 2% found in Ref. [25]
compares to an oscillation of about 4% in the 1 psec
laser pulse curve for H() near ¢ = 11.2.] The reason
for the factor of 2 difference stems from the use of a
single, long laser pulse to calculate H(¢) vs two short
laser pulses to calculate o(3). In the former case, nearly
all of the electron probability amplitude is affected by
interference between the direct path and the reflected
path amplitudes. [Only probability amplitudes created
within one reflection time of the front and back ends of
the laser pulse do not experience such interference, and
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FIG. 5. Photodetachment cross section of the H™ jon in a
uniform static electric field (Es = 1.64 x 10° V/cm directed
along the z axis) by a double laser pulse of the form in Fig.
1(b) linearly polarized along the z axis. The cross section is
shown for w = 0.84 eV as a function of the relative phase 3 of
the two laser pulses. Each laser pulse has a width 2/a = 0.06
psec and they are separated by a time delay 7 = 0.12 psec.
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these have very low amplitude because the laser pulse has
low amplitude at its beginning and end.] On the other
hand, the two short laser pulses (i.e., shorter than the
reflection time in the electric field) each produce two wave
packets, one that travels along the direct path and one
that travels along the reflected path. The interference
that can be varied by varying the relative phase 3 is that
between the reflected path wave packet produced by the
first short laser pulse and the direct path wave packet
produced by the second short laser pulse. Hence only
half the total wave-packet probability produced by the
double laser pulse is affected by interference.

4. Dependence of the detachment cross section on the
time delay between two short laser pulses:
Ramsey fringes

In Fig. 6 we present the dependence of the photode-
tachment cross section on the time delay 7 between the
two short laser pulses [cf. Eq. (1)]. We plot curves of
o(t) for two values of the relative phase between the
laser pulses: § = 0.6m and B = 1.6w. From Fig. 5 we
see that at these two values of 8, o(8) has respectively
a maximum and a minimum. Thus Fig. 6 represents an
envelope within which all possible behaviors for different
values of 3 are encompassed.

Various features of Fig. 6 may be understood by close
examination of Eq. (1). First, for 7 = 0 the cross section
becomes independent of the relative phase 3. This inde-
pendence is because the part of the double laser pulse in
Eq. (1) which results in photon absorption differs from
that for the single laser pulse in Eq. (2) by the factor
1+4e~%. The absolute square of this factor is 2(14 cos 3),
which is precisely the difference between the photon flux
F for the double laser pulse in Eq. (36) and F; for the
single laser pulse in Eq. (34).

Second, the time delay 7 = 4/a marks the dividing
point between laser pulses which overlap and those which
do not. This may be seen from Fig. 1(b), which plots Eq.
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FIG. 6. Photodetachment cross section of the H™ ion in a
uniform static electric field (Es = 1.64 x 10° V/cm directed
along the z axis) by a double laser pulse of the form in Fig.
1(b) linearly polarized along the z axis. The cross section is
shown for w = 0.84 €V as a function of the time delay 7 of
the two laser pulses for two values of the relative phase 3 [cf.
Eq. (1)]. Each laser pulse has a width 2/a = 0.06 psec.
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(1) for the case 7 = 4/a. For 7 < 4/a the two pulses
overlap, while for 7 > 4/a they do not. Since we have
chosen the laser frequency w = 0.84 eV in calculating
Fig. 6, the classical reflection time equals 4/a = 0.12
psec. Hence o(7) for 4/a < 7 < 8/a decreases from a
local maximum for 8 = 0.67 (minimum for 8 = 1.67) to
a constant value independent of 3 for values of 7 much
greater than the classical reflection time T'g; i.e., for 7 >
Tg, no interference occurs and hence the cross section
is not sensitive to (. In fact, it approaches the single
laser pulse cross section. (Note that since our calculation
ignores the final-state interaction of the detached electron
with the H atom, there are no revivals of cross-section
oscillations for values of 7 equal to multiples of T'g; this
approximation is a common and good one for weak laser-
field detachment of H™ in a static electric field [46].)

Note that Ramsey fringes [47] would normally be ex-
pected in a plot such as that shown in Fig. 6 (e.g., cf. Refs.
[17,26]). The absence of such fringes therefore requires ex-
planation. Ramsey’s key idea [47] is exactly the one we
are employing, namely, to have a quantum-mechanical
system pass twice through a region, having an electro-
magnetic field and to study the consequences of varying
the relative phases between the two passages. The details
of the case in Ref. [47] and the present case are different,
however, and worth describing briefly.

The classic Ramsey experiment is to send a beam of
molecules along a path through a region in which they
experience the same electromagnetic field at each end of
the region, but not in the middle [47]. Ramsey showed
that one gets a resonance in the signal power absorbed
by the molecules in the second field region as a function
of the detuning w — wp, where w is the electromagnetic
field frequency and wy is the frequency of the molecular
transition from the ground state. This resonance comes
about because during the time T that the molecules pass
from one region of the electromagnetic field to the other,
their dipole moment acquires a phase woT. During this
same time, however, the field acquires a phase wT. The
phase difference is thus (w — wg)T. By varying w one can
therefore accurately determine wy.

In this paper we are considering detachment of a neg-
ative ion in one or more static external fields. Since we
are in the continuum, we always have wy = w. In our
double laser pulse calculations, the time delay 7 [cf. Eq.
(1)] corresponds to the transit time T in a classical Ram-
sey experiment. The relative phase 8 in Eq. (1) between
the two laser pulses corresponds to the phase difference
(w—wo)T in a classical Ramsey experiment. For simplic-
ity in our calculations, we have chosen 3 to be a param-
eter independent of w and 7. The result for o(7) shown
in Fig. 6 depends on this simplifying assumption.

In a real experiment, we do expect there to be Ram-
sey fringe-type behavior in a measurement of o(7) vs 7.
In our work we have employed the electric dipole ap-
proximation for the usual reason, namely, that the laser
wavelength is much larger than the interaction region
relevant to photodetachment. That is, we have neglected
the phase factor k-7in describing our laser pulses. How-
ever, in order to create the coherent double laser pulse
described by Eq. (1) in practice, we imagine that one
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would need to split a single laser pulse and delay one of
the split beams by reflecting it around the laboratory.
Of course, over distances of macroscopic size, the phase
k - ¥ cannot be neglected. Since k = w/cand r = c7, it is
clear that delaying a laser pulse by reflecting it around
the laboratory will introduce a phase difference that in-
cludes a term of the form w7. Indeed, our double laser
pulse described by Eq. (1) essentially agrees with that in
Eq. (1) of Ref. [17] if we set 8 = —wT.

Thus, whereas the plots of o(7) vs 7 presented in Fig.
6 are correct for the two constant values of 8 chosen, in
practice it is likely that the price of delaying one of the
laser pulses by 7 is to introduce a relative phase that in-
cludes a term of the form w7. Such a relative phase would
result in a rapid oscillation confined within the envelope
in Fig. 6 represented by the two curves for the extreme
values of 3. Similar remarks apply to Fig. 15. No other
figures in this paper are affected by such Ramsey fringes.
Because all other calculations in this paper employing the
double laser pulse in Eq. (1) are carried out for fixed w
and 7, a relative phase of the form w7 simply contributes
a constant phase within the overall relative phase 8. The
phase difference 8 may, of course, be varied even with
fixed w and 7 by passing the second laser pulse through
a phase-changing medium.

B. Parallel static electric- and magnetic-field case

In the preceding subsection we have presented calcula-
tions that demonstrate that one can increase the magni-
tude of quantum interference effects in photodetachment
of H™ in a static, uniform electric field by using laser de-
tachment frequencies closer to the detachment threshold
[cf. Fig. 2]. However, the threshold is generally where the
cross-section magnitude is smallest. In our calculations
at w = 0.84 €V (i.e., only 85 meV above threshold) the
amount of interference controllable with two coherent,
short laser pulses is only enough to create about a 10%
variation in the cross section [cf. Fig. 5]. This modest
variation stems from the fact that the detached electron
probability amplitude created by short laser pulses is free
to spread in the direction perpendicular to the static,
uniform electric field. In this section we show that use
of a parallel magnetic field to reflect the detached elec-
tron probability amplitude back to the origin permits far
greater control of the detachment cross section magni-
tude with coherent short laser pulses.

1. Detachment cross section and modulation factor
dependence on laser pulse duration

In our calculations we choose B = 1 T, which results
in a classical period for motion perpendicular to the field
of

Tg = 27 /w. = 35.72 psec. (55)

The static electric-field magnitude is chosen so that the
classical reflection time [cf. Eq. (54)] along the z axis

is of comparable magnitude to Tg near the detachment
threshold. We have chosen Es = 60 V/cm™!. In Fig. 7
we present the detachment cross sections produced by a
single laser pulse [cf. Eq. (2) and Fig. 1(a)] for various
static field configurations (Egs only, B only, and Es || B)
and two laser pulse widths 2/a. In Fig. 8 we present the
modulation factors [cf. Sec. IIH] corresponding to the
cross sections in Fig. 7.

One sees clearly in Figs. 7(a) and 8(a) that the cross
section produced by a relatively long laser pulse (i.e.,
2/a = 500 psec as compared to the classical reflection
time T of 35.7 psec) shows much greater interference
than detachment in either a pure Eg field or a pure B
field. Furthermore, Fig. 8(a) clearly shows evidence of a
“revival” of the amplitude of the modulation factor at a
frequency above threshold of about 11 cm™!, for which
Tr =~ Tg. (We shall discuss such revivals in more detail
below.) Note, however, that when the laser pulse width
is chosen to be shorter than both the electric-field period
Tg and the magnetic-field period T'g (i.e., 2/a = T/2 =
17.86 psec), then the quantum interference disappears, as
shown in Figs. 7(b) and 8(b).

Our long laser pulse results for the cross section and
modulation factor in the parallel fields case agree well
with the monochromatic field results presented in Refs.
[31] and [32]. In particular, we have chosen Egs and B
values equal to those selected in Fig. 1(c) of Ref. [31].
A comparison of this latter figure with our result in Fig.
8(a) for the modulation factor shows good quantitative
agreement. However, our results are smoother, without
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FIG. 7. (a) Photodetachment cross section of the H™ ion in
parallel static electric (Es = 60 V/cm) and magnetic (B =1
T) fields plotted vs energy (in cm™' above the zero-field
threshold) for a single laser pulse [cf. Eq. (2) and Fig. 1(a)]
having width 2/a = 500 psec. (b) Same as (a) for laser pulse
width 2/a = 17.86 psec. (c) Same as (a), but with B = 0. (d)
Same as (a), but with Es = 0.
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the kinks and spikes shown in Ref. [31]. We suspect that
these kinks and spikes are spurious numerical effects.

2. Time dependence of detached electron wave packets

Our results for the detached electron probability den-
sity produced by a single short laser pulse of the form
of Eq. (2) [cf. Fig. 1(a)] are shown in Figs. 9 and 10.
We plot in these figures contours of a normalized wave-
packet probability density |¥we(z,py,2,t)|? /(27 F}y) as
a function of ¢ and z for p, = 0 and for various times
t, which are measured in units of 1/a [cf. Eq. (2) and
Fig. 1(a)]. The wave packet wp is defined by Eq. (24)
and the flux F; by Eq. (34). Division of | ¥wp |2 by
Fy gives results that are independent of the laser am-
plitude E¢ in the weak laser limit [cf. Egs. (24), (23a),
(39), and (34)]. [Note also that the cross section is equal
to | ywp |2 /(2wFi) integrated over x, py, and z in
the limit that ¢ — oco0.] One sees in Fig. 9 that at
at = —1.0, the probability is just beginning to be no-
ticeable. For —0.5 < at < 1.0, the probability ampli-
tude grows in magnitude and proceeds to bifurcate. By
at = 1.5 there are two well-separated wave packets, one
proceeding along the direct path toward negative z and
the other being reflected by the Stark potential barrier
at positive z.

Figure 10 shows the time development of the wave
packets produced by a single, short laser pulse after the
pulse has passed over the H™ ion (i.e., for at > 2.0). Fig-
ures 10(a) and 10(b) show how the direct path probability
density escapes along the negative z axis, narrowing its
width along the z axis as it does so. Figures 10(c)-10(f)
illustrate how the reflected path probability density re-
turns to the origin and then proceeds to escape along the
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FIG. 8. Modulation factors H(Es,B) [cf. Egs. (48) and
(49)] corresponding to the cross sections in Figs. 7(a)-7(d).

negative z axis. It is delayed by a time 4/ compared to
the direct path probability density.

Figures 11 and 12 demonstrate how one can partially
control the magnitude of the detached electron proba-
bility density which escapes along the negative z axis
by employing a coherent, double laser pulse of the kind
defined by Eq. (1) and exhibited in Fig. 1(b). In these
figures we plot the normalized wave packet probability
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FIG. 9. Contour plots of the normalized wave-packet probability density |Ywp(z,py = 0,z,t)|?/(2F,) as a function of z
and z produced by a short single laser pulse [cf. Eq. (2) and Fig. 1(a)] of width 2/a = 17.86 psec and flux F; [cf. Eq. (34)]. The
wave packet is shown at the following times ¢: (a) —1.0/a, (b) —0.5/, (c) 0.0, (d) 0.5/, (e) 1.0/, and (f) 1.5/c. At these

times the laser pulse is passing over the H™ ion. The laser frequency is 10 cm™

1 above the zero-field ionization threshold.
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FIG. 10. Same as in Fig. 9 for times ¢ after the laser pulse
following times t: (a) 2.0/a, (b)2.5/e, (c) 3.0/a, (d) 4.0/, (e)

density |¥wp(z, py, 2,t) |? /(2w F,). The two laser pulses
have a separation 7 = 4/a equal to the wave-packet re-
flection time T = T'g; their relative phase 3 is 0.73867
in Fig. 11 and 1.7386n in Fig. 12. Figure 11 shows the
case of constructive interference between the probability
amplitudes, while Fig. 12 shows the case of destructive
interference for times 3.5/a < t < 6.0/a, during which

has passed over the H™ ion. The wave packet is shown at the
5.0/a, and (f) 6.0/c.

the second laser pulse is on [cf. Fig. 1(b)]. Note that the
reflected path probability density produced by the sec-
ond laser pulse [cf. Figs. 11(f) and 12(f)] will proceed
along the negative z axis much as that produced by the
single laser pulse does in Fig. 10, but with a time delay
of At =4.0/a.

Figure 13 shows three-dimensional plots of the normal-
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FIG. 11. Contour plots of the normalized wave-packet probability density [Ywp (z,p, = 0, z, t)|?>/(27 F3) as a function of z and
z produced by two coherent laser pulses [cf. Eq. (1) and Fig. 1(b)] of width 2/ = 17.86 psec, pulse separation 7 = 4/a = 35.72
psec, flux F [cf. Eq. (36)], and relative phase 8 = 0.7386n (which leads to constructive interference). The wave packet is shown
at the following times t: (a) 3.5/, (b) 4.0/, (c) 4.5/c, (d) 5.0/c, (e) 5.5/, and (f) 6.0/c. At these times the reflected path
wave packet produced by the first laser pulse is returning to the origin just as the second laser pulse is passing over the H™
ion. The laser frequency is 10 cm™! above the zero-field ionization threshold.
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FIG. 12. Same as Fig. 11, except that the relative phase 8 = 1.7386m (which leads to destructive interference).

ized detached electron probability densities at t = 6.0/«
for the three cases shown in two dimensions in Figs. 10(f),
11(f), and 12(f). Thus Fig. 13(a) shows the reflected
path probability density produced by a single laser pulse
proceeding along the negative z axis. Figures 13(b) and
13(c) show how this reflected path probability density
produced by a first laser pulse is affected when its ampli-
tude undergoes constructive and destructive interference,
respectively, with the electron probability amplitude pro-
duced by a second short laser pulse.

3. Dependence of the detachment cross section on
the relative phase and time delay between two short
laser pulses

The wave-packet calculations shown in the preceding
subsection employed the value p, = 0 in Ywp(z, py, 2,t).

N
il

N

)

(@) 1 (b)

-
1

2,8
1, (107 aw)

1
2m Flux

The cross section [cf. Eq. (28)] sums over all final states
and hence is expected to show smaller quantum inter-
ference effects than do the individual wave packets (for
which the values of 3 were chosen to produce the maxi-
mum amount of interference). Nevertheless, Fig. 14 shows
that o(8) has a peak to trough variation of about 50%
of its average value.

It is interesting to compare the magnitude of this vari-
ation with that for the pure static electric-field case. For
Es = 60 V/cm and w + ¢; = 10 cm™!, the scaled en-
ergy variable ¢ [cf. Eq. (38)] takes the value 11.2, which
is exactly the same as considered in Ref. [25] in a pure
static electric-field case (for Es = 1.64 x 10° V/cm and
w = 1 eV). However, in that case the variation of o(03)
about its mean value was of the order of only 2%. The
introduction of a magnetic field has increased the vari-

(c)

FIG. 13. Comparison of the normalized wave-packet probability densities |Ywe(z,py = 0, z,t)|>/(2nF) as a function of z

and z produced by three different types of short laser pulses having a frequency that is 10 cm™

1 above the zero-field ionization

threshold and characterized by the width 2/« = 17.86 psec and flux F [cf. Eqs. (34 and 36)]. All figures are for a time t = 6.0/«
after the laser pulse has passed over the H™ ion. (a) Single short laser pulse case shown in contour in Fig. 10(f). (b) Double
laser pulse case (illustrating constructive interference) shown in contour in Fig. 11(f). (c) Double laser pulse case (illustrating

destructive interference) shown in contour in Fig. 12(f).
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FIG. 14. Photodetachment cross section of the H™ ion in
parallel static electric (Es = 60 V/cm) and magnetic (B =1
T) fields by a double laser pulse of the form in Fig. 1(b) lin-
early polarized along the static field axis. The cross section
is shown for a frequency 10 cm ™! above the zero-field ioniza-
tion threshold as a function of the relative phase 3 of the two
laser pulses. Each laser pulse has a width 2/a = 17.86 psec
and they are separated by v = 35.72 psec.

ation to 50%. As shown in Fig. 5, even a more optimal
static electric-field case (having £ = 3.9) only produces
variations of o(3) of the order of 10%. Clearly, the paral-
lel magnetic field makes it possible to exert much greater
control over o(3) through variation of the relative phase
B. (Note that theoretical calculations for detachment in
a pure static magnetic-field case show interference effects
of about 20% of the total detachment cross section [26].)

In Fig. 15 we show the dependence of the photodetach-
ment cross section on the time delay T between two short
laser pulses [cf. Eq. (1)]. Plotted are curves of o(7) for
two values of the relative phase between the laser pulses:

FIG. 15. Photodetachment cross section of the H™ ion in
parallel static electric (Fs = 60 V/cm) and magnetic (B =1
T) fields by a double laser pulse of the form in Fig. 1(b) lin-
early polarized along the static field axis. The cross section is
shown for a frequency 10 cm ™' above the zero-field ionization
threshold as a function of the time delay 7 of the two laser
pulses for two values of the relative phase 3 [cf. Eq. (1)]. Each
laser pulse has a width 2/a = 0.06 psec.

B = 0.73867 and B = 1.73867. As shown in Fig. 14, at
these two values of 3 the cross section o(3) has, respec-
tively, a maximum and a minimum. Thus Fig. 15 repre-
sents an envelope within which all possible behaviors for
different values of 3 are encompassed.

Details of Fig. 15 are similar to those in Fig. 6. These
details are discussed in Sec. III A 4. In particular, in an
actual experimental measurement, Ramsey fringes with
frequency w are expected to fill the envelope in Fig. 15.
The “width” of the envelope in Fig. 15 at a time delay
T = 4/a is approximately 50% of the average value of
the cross section for large values of 7. This is five times
greater than the width shown in Fig. 6 for a pure static
electric-field case.

4. Cross-section revivals

As mentioned in the Introduction, one of the most
interesting features of the parallel static electric and
magnetic-field problem is that there are two time scales
for wave-packet motion: the period Tg for motion along
the positive z axis and the period Tz for motion perpen-
dicular to the z axis. These two periods are the times
needed for the detached electron wave packet to be re-
flected back to the origin by the static electric and mag-
netic fields, respectively. Classically Tg is given by Eq.
(54) with e = we(n+1/2). Hence Tg(n,w) is a function
of the Landau level n (w, = 0.934 cm™?! or 116 meV for
B =1T) as well as the laser frequency w. T is given by

! I 1 1 L 1 L 1 Il

1.6 T 1.6
:°: 1.4 (@) n=0 L 44 (b) n=1
15} B L il
2 1.2+ o124
5 1.0 ﬁ 1.0
© ] L .'
2 0.81 - 0.8
E 0.6—_ r 0.6—_
0.4 T T T T 0.4 T T T T T
o 1 2 3 4 5 o 1 2 3 4 5
16 sl il 1 1 l 16 1 1 | | |
‘E 1:44 (c¢) n=2 1.4_~ (d) n=3
15} ] 4
2 1.2+ 1.2
§ 1.0 1.0
o N ]
2 0.8 0.8
B 0.6 0.6
= R 1
0.4 T T T T T 0.4 T T T T T
o 1 2 3 4 5 o 1 2 3 4 5
TE/TB TE/TB

FIG. 16. Modulation factors [cf. Eq. (48)] corresponding to
the total photodetachment cross sections o [cf. Eq. (29)] for
H~ in parallel static electric (Es = 60 V/cm) and magnetic
(B =1 T) fields by a linearly polarized laser pulse [cf. Eq. (2)
and Fig. 1(a)] of width 2/a = 500 psec. Modulation factors
are plotted vs the ratio of reflection times for motion along
and perpendicular to the z axis, Tg(n,w)/Ts, for particular
Landau channels n. Note that Tg = 35.7 psec and Tg(n,w)
is a function of laser frequency w. (a) n = 0, (b) n =1, (c)
n=2,and (d) n = 3.
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FIG. 17. Modulation factor [cf. Eq. (48)] for the total de-
tachment cross section o [cf. Eq. (29)] plotted versus the en-
ergy (w + €;) above the zero-field ionization threshold. The
static and laser fields are the same as in Fig. 16. The dashed
lines indicate the locations of integer values of the ratio
R; = Tg(n = 3,w)/Ts, where Tg and Tp are the reflec-
tion times for motion along and perpendicular to the z axis.
The ratio R, for the n = 3 Landau level gives the best match
with peak amplitudes in the modulation factor, as shown in
Fig. 16.

Eq. (55) and is independent of the Landau level and the
laser frequency.

One expects naively to be able to control the magni-
tude of the detachment cross section best when the re-
flected wave-packet amplitudes traveling along the posi-
tive z axis and perpendicular to the z axis coincide back
at the origin. Evidence for such revivals in the cross sec-
tion is presented in Fig. 16. In this figure we plot the
modulation factors [cf. Eq. (48)] corresponding to the to-
tal cross sections o [cf. Eq. (29)] as a function of the
ratio Tg(n,w)/Ts for the Landau levels n=0,1,2,3. It is
clear that the modulation factors exhibit revivals of their
amplitude whenever Tg(n,w) is close to an integer mul-
tiple of Tg. As shown, the ratio for n = 3 gives the best
match with the peaks in the modulation factor for the
total cross section. (Note that the partial cross sections
on [cf. Eq. (29)] do not exhibit revivals. According to
Eq. (46) these partial cross sections simply show primar-
ily the oscillations of the derivative of the Airy function.)
Hence the classical notion of a period for motion in a
particular direction is found to be useful for interpreting
our quantum-mechanical results for the total cross sec-
tion even for the long-pulse limit in which the laser pulse
width in energy is smaller than w,.

In Fig. 17 we present the modulation factor for the
total cross section [cf. Eq. (29)] as a function of laser

frequency above the zero-field ionization threshold. The
dashed lines show the frequency locations of integer val-
ues of the ratio Rz = Tg(n = 3,w)/Tp, as this ratio
was shown in Fig. 16 to match best with the revivals
in the total cross section. Of course, all Landau levels n
contribute to o. Note that our results in Figs. 9-14 are
computed for (w + ¢;) = 10 cm™?!, which corresponds to
R, =1.

IV. SUMMARY AND CONCLUSIONS

In this paper we have shown how one may control con-
tinuum electron wave packets using static fields and co-
herent short-pulse lasers. Using the H™ ion as a prototype
system and analytic, three-dimensional final-state wave
functions for electrons moving in both static and laser
fields we have presented photodetachment cross sections,
modulation factors, and detached electron wave-packet
results in both static electric and parallel electric and
magnetic fields. Throughout our presentation, we have
shown how the modulation factors characterizing near-
threshold cross sections resulting from detachment by
relatively long laser pulses may be employed to set the
parameters for short laser pulses in order to optimize the
extent of quantum interference effects (where short and
long are in comparison with classical reflection times).

A key conclusion of this work is that control of the
spreading of continuum electron wave packets is essential
to producing quantum interference effects of significant
amplitude in the total detachment cross sections. Use of
a static magnetic field to control spreading perpendicu-
lar to the z axis is shown to be ideal for this purpose.
Even when one optimizes short-pulse laser parameters in
the case of a pure static electric field, the quantum in-
terference effects are of modest magnitude (of the order
of 10% for the parameters chosen in this paper). By con-
trast, use of parallel static magnetic and electric fields
allows achievement of quantum interference effects of the
order of 50% of the detachment cross section.

Finally, as was emphasized in Ref. [25], our calcula-
tions indicate a new type of experiment: control of the
magnitude of photodetachment at any convenient laser
frequency through use of coherent short laser pulses hav-
ing variable relative phase.
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