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Semiclassical theory of elastic electron-atom scattering
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We show that diffraction oscillations in elastic electron-atom scattering can be quantitatively account-
ed for semiclassically in terms of path interferences. The quantum scattering amplitude is expressed as a
topological sum over classical and pseudoclassical paths, containing only information on the classical
dynamics. The sum is shown to converge rapidly. The validity of the semiclassical theory of potential
scattering is analyzed in terms of the angular-momentum dependence of the classical action for the radi-
al motion.

PACS number(s): 34.80.Bm

Elastic differential cross sections do/dQ for electron
scattering at medium and heavy atoms display noticeable
diffraction oscillations [1] with pronounced minima,
which are sometimes termed "generalized Ramsauer-
Townsend" (GRT) minima [2]. They play an important
role not only in electron-atom scattering but also in pho-
toelectron emission from solids [2] and electron emission
in ion-atom collisions. The splitting of the binary-
encounter peak [3,4], as well as peak shifts of backward
emission of projectile electrons [S,6], result from GRT
minima.

As is well known for some 60 years, nonrelativistic
quantum theory provides a straightforward description in
terms of the dominance of a very few partial waves with
phase shifts 51 in the partial-wave expression of the
scattering amplitude,

f(8)=(2ki) ' g (21+1)(e ' —1)Pi(cos8),

where k is the momentum of the electron and atomic
units are used throughout except where otherwise stated.
The minima in the cross section d o /d 0=

~f(8)
~

are
then given by the zeros (or extrema if partial-wave in-
terference is important) of the Legendre polynomial
Pi (8) of the dominant partial wave lo. The fact that0

only a few and low angular momenta [l of the order
O(1)] significantly contribute has led for decades to the
understanding that GRT minima are a generic quantum,
i.e., nonclassical effect.

Only very recently, with a resurgence of modern semi-
classical methods, has renewed interest in a classical and
semiclassical analysis of GRT minima arisen. The appli-
cation of modern semiclassical methods to potential
scattering is of considerable general interest well beyond
the problem of electron-atom scattering. A large number
of studies have been performed for nuclear scattering
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problems [7] and, more recently, for irregular scattering
in multidimensional classical nonintegrable systems
[8—10].

A qualitative explanation [4] of the GRT minima in
terms of semiclassical path interferences exploits the fact
that the classical deflection functions for heavy atoms al-
low for deflection angles 8(—m, i.e., orbiting. Accord-
ingly, two or more impact parameters b or angular mo-
menta L can reach the same observation angle 0 after
looping around the force center. Furthermore, phase
shifts 6I can be accurately calculated semiclassically us-
ing the WKB approximation [S]. However, the further
customary steps in reducing Eq. (1) to what is called the
"primitive" semiclassical approximation [8], i.e., the eval-
uation by stationary phase approximation after convert-
ing the sum over partial waves to an integral fails [S,ll].
The semiclassical path interference employing the primi-
tive semiclassical quantization and only classical paths
[11] does not reproduce the structures in the elastic
electron-atom scattering cross section.

In this paper we show that GRT minima can be accu-
rately accounted for by semiclassical mechanics if contri-
butions beyond the primitive semiclassical approximation
are properly included. Most importantly, the conven-
tional criterion for the validity of the semiclassical ap-
proximation in terms of large angular-momentum quan-
turn numbers, l »1, does not need to be met.

Our analysis follows closely the seminal work by Berry
and Mount [12],which appears to have found very few, if
any, applications to atomic collision problems. First, the
quantal phase shift 5& is replaced by the WKB phase shift
5L, which is nothing but the compensated classical ac-
tion of the single-path radial motion from the turning
point ro to infinity,

R
5t —+5L, = lim I k„dr —kR +Ln /2,R~ oo ~0

with k„=I2[E—V(r)] L /r ]', and the connection—
between the classical angular momentum L and the I
quantum number is made through the Langer correction
[13] L =1+—,'. The replacement of 5t by 5L is accu-
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Pi(cos8) —=
2

mL sin8
cos(L 8 m /4), — (3)

which is valid for angles within the interval
I/L &8&m —1/L. The crucial point is that the GRT
minima, which coincide with the zeros, 8, of P& lie
within the interval of validity, even for lowest L for
which GRT minima are observed. The position of the
zeros can be estimated as 8 =m.(4m+3)/4L (m is an in-
teger). For angles near forward (8& 1/L) and backward
directions [(m —8) &1/L] alternative approximations to
Legendre polynomials can be used to arrive at a semiclas-
sical approximation for potential scattering.

Using the Poisson summation formula [15],Eq. (1) can
be written as a sum over pseudopaths p,

4

I

(a)

I wKB

(b)

rate, even for low 1 values over a wide range of energies
for electron scattering at medium to heavy atoms [Fig.
1(a)]. This is due to the fact that the gradient of the de-
Broglie wavelength A,(r) for the radial motion,
~dA, (r)/dr~, remains small over the whole range of r
values, where significant deflection occurs for typical
effective one-electron potentials for scattering at medium
to heavy atoms. %'e present in the following our calcula-
tions for electron scattering at krypton. For this collision
system a significant body of experimental data as well as
accurate quantum calculations are available. In our cal-
culation we use the parametrized Hartree-Pock potential
of Garvey, Jackman, and Green [14]. Next, we replace
the Legendre polynomials by their asymptotic expression
for "large 1,"

' 1/2

f(8)=f (8)

(2n. sin8) '~ g ( —1) (e ' ~ I~++e' ~ I„),ik p= oo

(4)

with

I*= dL L' [exp[iS,I(L,B,p, +)]
0

—exp [iS;I(L,B,p, 2 ) ] ] .

In Eq. (5), the classical action S,I is given in terms of the
compensated action for the radial (S,'I ) and the angular
(S;I) motion as

S„(L,B,p, +)=S,"I(L)+S;I(L,B,p, +),
'th S' =25 ~ and S,'& = —LO and where the

deflection angle B and the observation angle 8 (0 & 8 m )

are related through 6=+9—2p~. Note that the only
approximation used so far is the WKB approximation for
the phase shift [Eq. (2)] and the large-1 approximation for
PI [Eq. (3)]. Equations (4)—(6) can be viewed as a semi-
classical (SC) approximation to the Feynman path in-
tegral for potential scattering. It contains the topological
sum over all pseudoclassical paths allowing scattering
into the angle 8 for all angular momenta L. The path in-
dex (p, +) counts the number of times a trajectory encir-
cles the force center (nucleus) clockwise (p )0) or coun-
terclockwise (p &0) and + ( —) refer to positive (nega-
tive) observation angles counted clockwise relative to the
incident-beam direction (see Fig. 2). Pseudoclassical

aths consist of three pieces: a classical path from 00 to
the turning point ro, a purely rotational motion wit
gular momentum L on an arc of the circle with the radius
given by the turning point ro, and a classical path from ro
to ~ starting at the end point of the arc. Equation 6
gives the correct classical action for both pseudoclassical
and classical paths. The intermediate segment of the
path allows all L (and, hence, all impact parameters) to
be scattered into a given observation angle 0 and destroys
the one-to-one classical relation of a single (or multi-)
valued deflection function. The relative weight of pseu-
doclassical and true classical orbits (those with zero arc
length and extremal action) is controlled by the oscillato-
ry phase integral containing the classical action, which is
the only dynamical input entering Eq. (4). One important
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FIG. 1. Classical dynamics for electron scattering at krypton
at 100 and 500 eV. (a) Quantum-mechanical (QM) and semiclas-
sical {WKB) phase shift, {b) deflection function 9{I), and {c)

2second-order variation of classical act&on d S,&/dL —dO/
FIT&. 2. Classical scattering paths with topological coding

{p,+ ) relevant for generalized Ramsauer-Townsend minima.
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feature of this representation is that it allows the quanti-
tative determination of the convergence of the semiclassi-
cal approximation as a function of the number of pseu-
doclassical paths included and does not involve the sta-
tionary phase approximation. The role of pseudoclassical
orbits has been recently also highlighted in the semiclassi-
cal theory of the spectral oscillator strength density of
hydrogen in a strong magnetic field (in this context re-
ferred to as "ghost orbits" [16,17]).

If now for a given pseudoclassical path p, the classical
action is sufficiently rapidly varying, the integral [Eq. (5)]
can be evaluated employing the stationary phase approxi-
mation yielding the primitive semiclassical (PSC) result

2mL (8)I,psc X exp[iS, i(L~, B,p, +)
dBIdL

10 '
a5

10~

0
coo

iO-1

+iapn /4), (7)
60 120 180

where a =sgn(dB!dL ). For each path one or more
stationary points may exist, yielding the corresponding
branches of the classical deflection function, which is
given by the stationary points of dS,i(L, B,p, +)IdL =0
or, equivalently, 8(L~)=2(d5L IdL)I L . It is worth

P

noting that the validity of the stationary phase approxi-
mation does not require L~ to be large. Equation (7) is
valid even for 1=0(1)when S,i varies rapidly over one
unit of angular momentum, i.e.,

d Sl
dL

de »1.
dL

(8)

This is precisely the situation we encounter near some of
the GRT minima [see Figs. 1(b) and 1(c)]. The semiclas-
sical scattering amplitude [Eq. (4)] therefore consists of a
coherent superposition of contributions from pseudoclas-
sical and true classical paths [Eq. (7)].

Electron scattering at krypton at energies of 100 and
500 eV illustrates the interplay of classical and pseudoc-
lassical paths in semiclassical dynamics. At 500 eV the
defiection function [Fig. 1(b)] features the onset of orbit-
ing (B(—m. ) but only one classical path for most 8. At
100 eV, on the other hand, the deflection function ex-
tends to 8 & —2m, supplying at least two true paths for
all 0. At both energies, the deflection functions contain
glory and rainbow singularities. Since we employ in the
analysis of GRT minima the large-angle approximation
[Eq. (3)], the semiclassical corrections to glory singulari-
ties near 0=180 are not included, while semiclassical
rainbow scattering is treated properly. Furthermore, the
criterion for the validity of the primitive semiclassical ap-
proximation [Eq. (8)] is satisfied at 100 eV over a wide

range of 8, while it is only marginally satisfied over a nar-
row band of 8 at 500 eV [Fig. 1(c)].

Figure 3 displays the rapid convergence of the topolog-
ical sum over pseudoclassical paths using the classical dy-
namics input shown in Fig. 1. The exact sum can be ap-
proximated by just a few pseudoclassical paths with code
p =(0, + ) and p =(1,—) at E =500 eV and p = (0, + ),

p = (1,—), and p =(1,+ ) at E = 100 eV. As can be seen
from Fig. 1(b), in each case only one classically forbidden

Scattering angle (deg)

FIG. 3. Comparison of the topological partial sum for the
semiclassical differential scattering cross section at 100 and 500
eV, and full Poisson sum or semiclassical (SC) results; PSC plus
1 —denotes the coherent superposition of the PSC amplitude
for the path (0,+) and the path-integral amplitude of path
(1,—).

path [(1,+) for E=100 eV and (1,—) for E =500 eV]
significantly contributes. The residual difference to the
full Poisson sum is mostly due to the p=(0, —) path.
Furthermore, the peak in the second derivative of the
classical action [Fig. 1(c)] indicates that the path integral
associated with pseudopath p =(0, + ) for both energies
possesses a stationary point, i.e., this path becomes, ac-
cording to Eq. (8), classical and can be approximated by
the PSC amplitude [Eq. (7)]. The resulting differential
cross section (Fig. 3) containing the coherent superposi-
tion of PSC amplitudes and pseudoclassical path ampli-
tudes (denoted by PSC plus 1 —for 500 eV) approximates
the exact result for the topological sum and pseudoclassi-
cal paths remarkably well.

Within the quantum description, dominance of the
I =3 partial wave is responsible for the three GRT mini-
ma at 100 eV [-~P3(cos8)~ ]. Classical dynamics pro-
vides a simple intuitive picture: The efFective electronic
potential of a heavy neutral atom displays a very steep
rise at its outer fringe. For example, the impact parame-
ter for this "edge" translates at 100 eV into an angular
momentum of L =3.3. This steep rise implies several
characteristic features of the classical dynamics, all of
which conspire to the occurrence of generalized GRT
minima: First, the classical action steeply rises with de-
creasing L as L approaches =3.3 [Fig. 1(a)], and second
the deflection function [Fig. 1(b)] rapidly decreases from
=0 to values e ~ —2m, giving rise to orbiting and to in-
terfering paths with the codes (0,+) and (1,—). Further-
more, the classical action shows large second-order varia-
tion [Fig. 1(c)]. Therefore, two classical paths with the
codes (0, + ) and (1,—) and with angular momenta close
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to 1=3 exist whose interference gives rise to the GRT
minima. This provides a transparent semiclassical ex-
planation of the dominance of a single partial wave in
difFraction oscillations.

Figure 4 presents a comparison between a full nonrela-
tivistic quantum-mechanical (QM) [Eq. (1)], the semiclas-
sical approximation (SC) [Eq. (4)], as well as other avail-
able calculations and experimental data [18,19]. We find
excellent agreement between the quantum and the semi-
classical results. The remaining minor differences are not
due to the usage of classical dynamics input for the
scattering phase but can be traced to the "large-1" ap-
proximation to the Legendre polynomials [Eq. (3)]. How-
ever, the differences do not exceed discrepancies between
different quantum calculations [20] using different
effective one-electron potentials as well as relativistic
corrections [21]. For completeness we also give the re-
sults for the commonly used PSC and the Airy (A) uni-
form semiclassical approximations using the analytic con-
tinuation into the classically forbidden region for a local-
ly quadratic deflection function [7]. At 100 eV the PSC
approximation reproduces the oscillatory pattern, which
is mainly due to the interference of the (0,+) and (1,—)
paths. However, at 500 eV, only one branch of the
deflection function contributes at angles smaller than
145 and the PSC approximation fails. The path-integral
representation of pseudoclassical paths is obviously far
more accurate than the Airy approximation.

In summary, pronounced structures in the difFerential
scattering cross sections referred to as generalized
Ramsauer-Townsend minima provide a sensitive test for
semiclassical approximations to potential scattering. We
have shown that a semiclassical approximation to the
path-integral representation of the scattering amplitude is
accurate, even at small angular momenta and when only
very few partial waves effectively contribute. Moreover,
the semiclassical analysis provides an intuitive classical
picture of the scattering dynamics. The semiclassical
representation of the scattering amplitude as a topologi-
cal sum over pseudopaths is conceptually simpler and
more accurate than the uniform semiclassical approxima-
tion.
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FIG. 4. Differential cross section for electron scattering at
krypton at 100 and 500 eV. Present quantum-mechanical (QM),
primitive semiclassical (PSC), uniform Airy (A), full semiclassi-
cal (SC, Poisson sum) results. Experimental data of Refs. [18)
(~ ), [19]( A), and the calculations of Ref. [20] (Cl).
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