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In the experimental observation of radiationless resonant Raman scattering, features that differ from
the idealized case can arise when the spectral width of the incident photon distribution is comparable to
the width of pertinent atomic energy levels. These features include nonlinear dispersion of the peak
maxima and changes in the symmetry and width of the ejected-electron lines with changes in the average
incident photon energy. Under certain conditions, the electron line shapes can become highly asym-
metric or even double peaked. The origin of these features in actual experiments is explored through a
model calculation for large spectral widths. Some possible applications of these effects are pointed out.

PACS number(s): 32.80.Hd, 32.80.Fb

I. INTRODUCTION

When the energy of monochromatic x rays is tuned just
below the threshold for ionization of an atomic inner
shell, discrete states can be excited that decay under the
ejection of monoenergetic electrons. This process of reso-
nant photon absorption accompanied by electron emis-
sion is a form of radiationless resonant Raman scattering
(RRRS) ([1-3] and references therein). The scattering
process can be envisaged as Auger decay of an ionic core
in the presence of a resonantly excited spectator electron,
hence the general process has also been referred to as the
spectator resonant Auger effect [4] and the RRRS elec-
tron lines as spectator Auger lines [5]. What distin-
guishes RRRS from normal Auger decay is the nature of
the intermediate scattering state. Whereas Auger peaks
arise when the incident-photon energy is above the ion-
ization threshold, RRRS lines are observed only when
the incoming photon’s energy is near a specific resonance.
There have been many studies of spectator Auger decay
following resonant excitation (see, e.g., Refs. [6-9]);
however, RRRS is generally associated with specific
effects which arise when a highly monochromatic source
is tuned across the resonance: Within this narrow
photon-energy range, the position of the RRRS line shifts
as the photon energy is changed and the line width is less
than that of the corresponding diagram Auger line
[10,11]. The RRRS shift is shown [1-3] to be directly
proportional to the change in incident-photon energy and
observations are interpreted [5,10-15] in this context.
However, the RRRS linear dispersion relation holds
strictly only for completely monochromatic incident pho-
tons. For a given experimental arrangement, the
photon-energy spread may not be sufficiently narrow to
reflect the expected RRRS behavior in the observed elec-
tron spectrum. Since the first observation of RRRS [12],
advances in experimental technique and improvements in
synchrotron-radiation sources have led to increasingly
refined measurements of RRRS. In light of such ad-
vances, it is appropriate to investigate some of the finer
details that can arise in these types of experiments.
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Here we derive a line-shape formula for the ejected
spectator Auger electrons, based on a simple, physically
intuitive picture. The formula agrees with that derived
from scattering theory [1-3,5,15] with certain restric-
tions. The standard features of RRRS are discussed
within the context of this formula, in particular the linear
dependence of the RRRS electron-peak position on in-
cident photon energy. The consequences of employing a
nonmonochromatic spectral function and an imperfect
electron spectrometer are next examined. It is shown
that for incident-photon spectral widths comparable to
the atomic-state widths the observed spectator Auger
features will deviate from the ideal RRRS behavior.

II. THEORY

The RRRS process can be visualized as follows. A
beam of incident photons impinges on a sample of atoms.
The beam contains photons with a distribution of ener-
gies centered on an “average” energy @, (atomic units are
used, unless otherwise stated). Individual atoms in the
sample, originally in their ground state, absorb photons
from the beam and are promoted to an intermediate reso-
nance. state. In the present context this intermediate
state results from the photoexcitation of an inner-shell
electron to a bound unoccupied orbital. This resonance
state decays filling the inner-shell vacancy and simultane-
ously ejecting an electron of energy ¢, leaving the residual
ion with two vancancies in outer shells. All features of
the ejected-electron line shape can be understood intui-
tively from a statistical model of the photon beam and
the atoms of the sample. The process is sketched in Fig.
1 and detailed below.

The incident beam of photons is characterized by a
spectral function G(w—a,), where w is the photon ener-
gy. The function G is peaked sharply around the “in-
cident energy” w, and represents the probability per unit
energy of a given photon having an energy .

The statistical character of the target atoms is
represented by two distribution functions, one describing
the intermediate resonance state, the other describing the
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FIG. 1. Representation of radiationless resonant Raman
scattering. An incoming beam of photons with the spectral
function G selectively excites intermediate states near the reso-
nance energy I,, resulting in an intermediate-state population
P,. Subsequent spectator Auger decay to the final state results
in the ejection of electrons with energies €, determined by the
difference in intermediate and final ionic state energies.

final state of the residual ion after the Auger electron is
emitted. An atomic state that decays with a characteris-
tic lifetime 7 has an uncertainty I'=1/7 in its binding en-
ergy. The probability of accessing an atom of the sample
in the resonance state with a particular energy I (mea-
sured with reference to the ground state) is given by the
intermediate resonance-state distribution L,(I —1,). This
function is sharply peaked around the resonance energy
I, and has a width I",. The (relative) probability of actu-
ally exciting a resonance state of energy I is the probabili-
ty that a photon of energy w=1 is available and that an
atom of the sample can absorb such a photon. The proba-
bility (per unit energy) of exciting an intermediate reso-
nance state by the absorption of a photon of energy w is
therefore P,(w)=G(w—wy)L,(0—1,).

The nominal spectator Auger energy is the difference
between the binding energies of the resonance and final
states €% =I,—1I r- Like the resonance state, the residual
ionic state is described by a final-state distribution
L (I—1I;), which is peaked strongly around the final-
state binding energy I, with a spread I'y. The final ionic
state can be stable against further decay, in which case
Fy—0and L, —8(I—1I;).

The energy of the atom-plus-photon system is con-
served, hence a resonance state of energy I will decay to a
final state of energy I’ by emitting an Auger electron of
energy €e=I—1I'. This is indicated in Fig. 1 by the hor-
izontal dashed line of energy I =w. The probability of
ejecting an electron of energy € from the resonance state
with a specific energy I is given by the probability that
such an initial state is excited, multiplied by the probabil-
ity that a final ionic state of energy I'=I —e(=w—¢) can
be accessed. The total probability of emitting an electron
with energy € is the integral of probabilities over all pos-
sible absorption energies
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Pe(e)= [ “do P (@)L (I'~I))
:fo‘”dmG(m—wo)L,(m—I,)L,(w—e—l,). (1)

Apart from factors that describe the probability of excita-
tion and decay relative to all other possible processes
[which can be assumed constant over the small energy
range in Eq. (1) for which the integrand is nonzero] this
line-shape formula is identical to that derived from
scattering theory [16] if the resonance is assumed to be
isolated and the amplitude for ‘direct” excitation is
negligible. By isolated, it is implied that only one inter-
mediate virtual state contributes significantly to the exci-
tation amplitude, which is expected if the resonance is en-
ergetically distant from all others. The resonance and
final-state distributions are normalized Lorentz functions
centered at I, and I, with full widths at half maximum
(FWHMs) I, and T'f, respectively.

The dependence of the emission line shape on the
(average) incident photon energy w, enters in Eq. (1)
through the spectral function G. As indicated in Fig. 1,
the spectator Auger line shape can, in general, be asym-
metric about its maximum owing to asymmetry of the
intermediate-state population density P,. The origin of
the RRRS peak shift is suggested in Fig. 1 for the case of
below-resonance excitation (a negative relative photon
energy E . =wy—1,). In this case, P, is peaked at ener-
gies slightly below I,, hence the spectator Auger line ap-
pears on average at slightly lower energies than the nomi-
nal €%. For positive relative energies of excitation, the
situation is reversed and the RRRS line moves to energies
above £%.

If the spectral function is very narrow in comparison
with the resonance and final states, so that G can be ap-
proximated as G(w—wy)=8(w—wy), then we have
Pn(e)=L,(wg—1I,)L(wg—e—1;). The overall intensity
of the RRRS line is determined by the first factor in this
expression, which depends on E,,=w,—I,. For an ap-
preciable signal the photon energy must be near reso-
nance, i.e., |E.| <T;; a maximum signal is produced
when E_,;=0. For any given w,, the electron line shape
is determined completely by the final-state function and is
thus a Lorentzian of width I';. Since this function is cen-
tered at Iy, the maximum of the line occurs at
Emax—@o—I;. With some of the preceding definitions,
this last result can be rearranged to yield the familiar
linear-dispersion relation A, =¢,,. —€% =E .

All of these features are characteristic of RRRS: for
incident photon energies within a few I", of the resonance
energy the RRRS Auger line is shifted from its nominal
value by an amount equal to the relative photon energy.
The emitted RRRS line is narrow [14,15,17], with a
width T’ Iz If the final state is stable, or very long lived,
then the only limit on the width of the observed electron
line shape is instrumental [11]. The total intensity of the
line, viewed as a function of incident-photon energy, is a
Lorentzian centered on the resonance energy I, with a
width T",. These features are all easily deduced from Fig.
1 by letting the function G, and thus P,, become “spikes”
at the energy w,.
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Conversely, if the incident-photon distribution is wide
in comparison with the initial and final states, as from a
“white-light source,” the spectral function G can be treat-
ed as constant in the convolution (1). In this case, the
spectator line shape mimics that of a normal Auger line:
a Lorentzian centered at €% with a width ', +T° £

For intermediate values of the spectral width, experi-
mental data clearly must display features which are a
blend of the two extreme cases, ranging from linear shift
to no shift at all. The question of immediate concern is
how details of the experimental environment, such as the
spectral source and electron spectrometer, modify the
RRRS behavior.

In considering the observed line shape, the effect of the
electron spectrometer can be included by introducing the
“window” function W(e—¢'), which describes the proba-
bility the spectrometer responds to an electron of energy
€’ when set to measure the electron energy €. In defining
W to be a function of electron energy difference only, a
number of real-world features are ignored, such as the
dependence of source volume and the bandpass on ob-
served electron energy. However, for the small energy
ranges involved in measuring a spectator Auger line, the
effect of such changes is usually slight. The observed
spectator Auger line shape is

Pobs(£)=fowds’W(a—s’)Pem(s’) : 2)

Averaging by the spectrometer window function causes
the emitted line shape to be broadened so that the emit-
ted asymmetry may be washed out. Furthermore, any
asymmetry in P (e) will also cause a change in the loca-
tion of the observed peak maximum [18] due to the
averaging properties of the convolution (2). If the asym-
metry is slight, however, the observed spectator shift will
be very close to that associated with the shape of the
emitted line.

The spectator Auger intensity is another important ex-
perimental feature. Because the total intensity of the sig-
nal is an integral over the entire spectator line, the ob-
served intensity as a function of incident photon energy is
proportional to the emitted intensity:

Ic»bs(wo)E fowds Pobs(e)

= [f_wwdx W(x)] [fowds'Pem(s’)]
=wl ,(wg) , &)

where w is the overall “efficiency” of the detector [19].
Within the present model, the intensity profile is propor-
tional to the number of final-state ions produced via pho-
toionization (with excitation).

Employing the normalization of the final-state distribu-
tion function, integration of Eq. (1) over electron energy
yields (for €% >>T' /) the intensity profile

I((oo)=fowde(w—-wo)L,(w——I,). @)

The observed intensity profile is simply a convolution of
the spectral and resonance-state distributions. These as-
pects could be of great utility in determining natural
widths. In particular, if the spectral width is small, the

observed intensity profile (4) will yield the resonance
width I", free of instrumental or final-state broadening.

III. RESULTS AND DISCUSSION

To model the incident-photon spectral distribution, the
function G is taken to be a normalized Gaussian distribu-
tion with a standard deviation o, or a spectral FWHM of
I',=20V'In4. Certainly other choices for the functional
form of G may be more appropriate for some experimen-
tal situations.

For the purposes of example, we consider the case of
Mn K-L,;L, ; spectator Auger decay in KMnO,. This
serves as a good example since the strong atomiclike Mn
“ls —4p” resonance is well isolated [20]. We make the
usual approximation that the presence of the spectator
electron does not substantially affect the decay rates of
the intermediate or final states. We can then use the Mn
diagram K- and L, ;-shell vacancy widths [20], setting
I=r=116eVand I',=T,,,,=2I,,= 0.66 V.

Equation (1) can be rewritten in terms of the relative
photon energy E,, and the relative electron energy
A=g—e%:

r,r,
Pen(A B )= 52,

2 2
—(x—E)?/20

x[® d ,
f_w x[x2+r3/4][(x—A>2+r}/4]
(5)

where the lower integration limit is valid as long as I, is
large in comparison to any of the widths involved. For a
fixed value of E_ the integration is performed numerical-
ly and features of the line, such as the position of the
maximum A, (E_,) and the total integrated intensity
I(E ) are evaluated.

Figure 2 displays the resulting emitted electron line
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FIG. 2. Emitted spectator Auger line shape when excited
with an averge photon energy 2 eV below the resonance state
energy (E,,=—2 eV). The different lines correspond to
different widths (I",) of the incident photon spectral distribu-
tion. The electron energy is measured relative to the nominal
spectator Auger energy £%.



1244

shapes when E = —2 eV, for three choices of the spec-
tral width (I',=1.0, 2.5, and 4.5 e¢V). For the choice of
I',=1.0 eV, the resulting spectator line shape is a Voigt-
like function, with its center shifted from the nominal
Auger energy by A, ,,=—1.82 eV, and has a spectator
FWHM of 1.44 eV. This should be compard with the
RRRS line emitted in the limit of small I' : a Lorentzian
centered at A ,,= —2.0 eV with a spectator FWHM of
0.66 eV. Apparently, an experiment employing a spectral
width comparable to the natural widths still reflects the
basic RRRS features: a peak shift close to the relative
photon energy and a line width narrower than the dia-
gram Auger width of I';, +2I';, =1.82 eV.

As the spectral width is increased, however, the emit-
ted line shape becomes asymmetric and its peak max-
imum is moved closer to the nominal Auger value. This
is illustrated in Fig. 2 by the spectator line shapes result-
ing when two larger values of I' , are used. The spectator
line for I')=2.5 eV is highly asymmetric, with a peak
maximum located at A_,, = —0.48 eV. The electron line
is also quite wide (2.31 eV FWHM), due to the enhanced
low-energy flank.

Finally, when the spectral width is increased further
(I',=4.5 eV), the line approaches the “Auger” limit in
which the peak maximum is located near &%
(ALax=—0.13 eV) and the spectator width (1.83 eV) is
close to the diagram Auger width. The line has become
more symmetrical and would approach a Lorentz func-
tion as I, is further increased.

The above line shapes were all computed for the case
where the average photon energy was 2 eV less than the
resonance energy. If E_, is now varied for various fixed
spectral widths I', the evolution of the electron line
shapes can be tracked as the photon source is tuned
through the resonance energy. It can be seen from Eq.
(5) that P (AE )=P.(—A,—E_,), so that all
features of the spectator Auger line shape will exhibit
symmetry with respect to E,,; =0. In particular, the rel-
ative peak maximum or shift A, will be an odd function
of E_, and the width of the emitted line and the total line
intensity will be even functions of E_,. This is also true
in general as long as all the functions of Eq. (1) are sym-
metric about their centers.

Figure 3 displays the same three spectator Auger
peaks, but now excited with an average photon energy 5.5
eV greater than the resonance energy (E,,=+5.5 eV).
It is seen that some dramatic changes from the E = —2
eV example of Fig. 2 have occurred. Since these peaks
are the result of excitation much farther from resonance,
their overall intensities are reduced from those in Fig. 2.
The peak excited with the narrowest spectral function
(' ,=1.0 eV) still exhibits near-ideal RRRS behavior
with a peak shift A ,,=5.43 eV and its width of 1.40 eV
is little changed from Fig. 1. The peak corresponding to
I',=2.5 eV has now become symmetric, but its width has
increased to 2.99 eV. Finally, the peak resulting from ex-
citation with the largest spectral width (I',=4.5 eV) has
become very broad (6.71 eV) and has developed two dis-
tinct maxima.

Figures 2 and 3 indicate that the evolution of the spec-
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FIG. 3. Emitted spectator Auger line shape when excited
with an average photon energy 5.5 eV above the resonance ener-
gy. The results for three spectral widths are indicated.

tator Auger line shape can be quite complicated as the in-
cident photon energy and spectral width are varied. It is
instructive to examine how the gross features of the line
shape behave as a function of E ;.

Figure 4 shows a plot of the widths of the emitted elec-
tron lines as a function of the relative photon energy E .,
again for the three choices of incident spectral width I .
The lower horizontal dashed line indicates the RRRS
limit (I' ,=0) where the emitted electron line width takes
on the final-state width of 0.66 eV, independent of E .
The upper horizontal dashed line indicates the white-
light limit of 1.82 eV. It is seen that for all three cases of
finite spectral width, there is a dependence of the emitted
line-shape widths on E_, and the lines are narrowest at
resonance. In the case of I'y=1.0 eV, the line width is
still narrow, with only a slight dip near resonance, but for
larger spectral widths the variation with E , becomes
more pronounced.

Numerical experimentation indicates a rough correla-
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FIG. 4. Widths of the spectator Auger electron line shapes,
as a function of the relative photon energy E ., =w,—1I,, for
three incident spectral widths. The dashed horizonal lines indi-
cate the RRRS (lower) and the white-light (upper) limits.
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tion betwen the asymmetry of the spectator peak and the
derivative of the spectator-width curves of Fig. 4. That
is, for regions of E_, in which the spectator width
changes most rapidly, the peaks are found to be most
asymmetric. Also, the ‘“direction” of the asymmetry is
correlated to the sign of the change. For example, con-
sider the I' ;=2.5 eV case in Fig. 4 and the slope of this
curve at various values of E ;. At resonance (E =0
eV) the line is narrow and completely symmetric. Mov-
ing to excitation above resonance, the Auger line-shape
asymmetry and width grow, the line developing an
enhanced high-energy shoulder. Maximum asymmetry
occurs at about E ;=2.4 eV and then decreases unitl the
line again becomes symmetric, very near E_,=3.0 eV
where the maximum width occurs. Further increasing
E_,, the spectator line develops an enhanced low-energy
shoulder and reaches a maximum (reverse or negative)
asymmetry near E ;=3.3 eV. Beyond this point, the line
shape becomes more symmetric.

Above or below resonance, the same general interpre-
tation of the slope can be employed: positive slope is
connected with “positive” line-shape asymmetry (an
enhanced high-energy shoulder to the peak) and negative
slope with “negative” asymmetry (a low-energy shoul-
der).

For the case of large spectral width I',=4.5 eV, the
high-energy shoulder evolves into a separate peak as E
is increased from zero and the above guidelines are less
applicable; still the general trend is the same. For 5.4
<E_=5.9 eV two clearly discernible maxima coexist.
Within this region of E ., dominance shifts from the
low-energy maximum to the high-energy maximum.
Above E ,=6.0 eV the low-energy peak disappears,
becoming a low-energy shoulder, which gradually sub-
sides as E  is increased further.

The shifts of the spectator peak maxima away from €%
are displayed as a function of E_ in Fig. 5. For ' ,=1.0
eV, it is seen that the spectator shift deviates only slightly

Spectator shift (eV)
o

p=10eV

-8 -6 -4 -2 0 2 4 6 8
Relative phaoton energy (eV)

FIG. 5. Plot of the spectator Auger shift A, =€&n.,—&% rel-
ative to the nominal spectator Auger energy &%, as a function of
the relative photon energy. The results for three spectral widths
are indicated. For the case of I' ,=4.5 eV, the line shape devel-

ops two maxima for average photon energies in the ranges
5.5<|E.4| <6.0eV.

from the linear dispersion expected for zero spectral
width. Larger deviations occur when the spectral distri-
bution is widened; Fig. 5 also displays the shifts for the
cases [',=2.5 and 4.5 eV. It is seen that as the spectral
width is increased, the shift becomes flattened in the pho-
ton energy range over which the peak can be observed,
approaching the white-light limit of no shift.

For the cases such as the I’ ,=2.5 eV example of Fig.
5, the nonlinear spectator dispersion may be noticeable as
systematic deviations away from a fit of peak maxima to
the linear model. This may provide a partial explanation
of such small deviations in recent InP data [Ref. [15],
Fig. 6(c)]; however, the analysis is complicated by the
possible presence of unresolved multiplet splitting or even
several resonances.

In the large spectral width case (I',,=4.5 V), the em-
ergence of two maxima is visible in Fig. 5 as regions of
E ., where the dispersion curve becomes double valued.
The discontinuities in the dispersion curve reflect the rap-
id transfer of intensity from the low-energy to the high-
energy peak as E_ is increased within these regions.

The emergence of two maxima in the spectator line
shape, when the spectral function is sufficiently broad and
E =TI, ,+T,, can be understood from Fig. 1. Under
these conditions, the intermediate-state population densi-
ty P, acquires two maxima. This is because the flank of
the spectral function G provides a roughly constant mul-
tiplier near the resonance-distribution center and the
broad wings of the Lorentzian resonance act similarly
near the center of G. In general, the conditions for this
splitting are restrictive and depend critically on the shape
of the spectral function. For the case of a negligible
final-state width, Ge’mukhanov and Agren [21] have de-
rived such conditions for several forms of the spectral
function. Some indication of this kind of splitting can be
seen in calculations of the radiative Raman scattering
process [22].

The above results for the spectator line shapes, shifts,
and widths must be further modified by the spectrometer
averaging of Eq. (2). Although we do not pursue this is-
sue, a few additional remarks can be made. Because the
spectator Auger line shapes can become quite asym-
metric, the window averaging has the potential to change
the location of the peak maximum relative to that of the
emitted maximum. This additional shift will be in the
direction of the asymmetry, e.g., an asymmetric peak
with a high-energy flank will, upon averaging by a sym-
metric window function, become less asymmetric and
wider with a maximum shifted to higher energy.

The remaining experimental feature to discuss is the
intensity profile of Eq. (4). This is the (integrated) specta-
tor Auger intensity, viewed as a function of average
incident-photon energy. It is obvious from Fig. 1 that
the intensity of the emitted line will be a maximum when
the averge photon energy is equal to the resonance energy
(E.=0). It is also clear that the broader the spectral
function, the larger the range of photon energies over
which the spectator Auger line can be observed. In the
limit of vanishing spectral width the intensity profile be-
comes a Lorentz function of FWHM TI',. This property
can be taken as a guide in defining the observation width
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FIG. 6. Plot of the observation width, the range of excitation
energies over which a spectator Auger can be observed with
“reasonable” intensity, versus the incident-photon spectral
width. The diamonds indicate calculated values, which are con-
nected by straight lines.

to be the FWHM of the intensity profile, that is, the tun-
able range of incident-photon energy over which the in-
tegrated intensity is greater than one-half the intensity at
resonance. In Fig. 6 the observation width is plotted as a
function of the spectral FWHM I, for the present exam-
ple.

In the present case, Eq. (4) reduces to the convolution
of a Gaussian and a Lorentzian function. The intensity
profile is therefore a Voigt function and the observation
range is the FWHM of this function. As long as the ap-
proximations discussed in connection with Egs. (2) and
(3) are valid, the results of Fig. 6 are independent of the
electron spectrometer used. Additionally, it is complete-
ly independent of any details concerning the final state.
A measurement of the observation width for a known
spectral function could therefore be employed to extract
the resonance width. Several measurements of the inten-
sity profile using different spectral widths could be em-
ployed for consistency.

Because the spectator shift vanishes at zero relative
photon energy and departures from linear dispersion are
antisymmetric about E =0, it might be argued that em-
ploying a purposely wide but accurately known spectral
distribution would be of advantage: If the spectral func-
tion were known along with the resonance and final-state
widths, a fit of the dispersion function A, (E ;) could
reveal both the resonance energy and nominal spectator
Auger energy, and hence the final-state binding energy.

Because the location of peak maxima can in general be
determined to better accuracy than line intensity, a fit of
data directly to the dispersion curve has the potential for
greater accuracy in determining I, than a fit for the
intensity-profile center. Conversely, if the experimental
parameters and energies were well known, information
regarding the natural widths of the intermediate and final
states could be extracted. A series of such experiments,
repeated for different values of the incident-photon spec-
tral width, could provide sufficient data to extrapolate the
electron line shapes and the intensity profiles, to the pure
RRRS regime (zero spectral width), yielding T'; and T',,
respectively.

It must be stressed that the physics of RRRS lies in the
transition matrix, in the present context the limit of a
monochromatic source and a perfect electron spectrome-
ter. The essence of RRRS is a linear dispersion relation
for the peak shifts and a RRRS electron line shape that
only reflects the width of the final ionic state. The
plethora of new features outlined above are not the result
of new physics, but simply the observational consequence
of a particular averaging of RRRS features, dictated by a
given experimental setup.

IV. CONCLUSION

In conclusion, we have presented a statistical model of
the RRRS process, which is helpful in visualizing the
scattering experiment. Because this model depends only
on the most fundamental consequences of the existence of
a resonance, it is equally applicable to RRRS in atoms,
molecules, or solids. This intuitive picture will need
modification if there are a number or resonance states
which lie close in energy. We have explored the experi-
mental features to be expected when the spectral distribu-
tion of incident light is wide. These features include non-
linear dispersion of the peak maxima and variation of the
symmetry and the width of the spectator Auger lines
with average photon energy. Under certain conditions,
the electron line shapes can be highly asymmetric and
even develop a double-peak structure.
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