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Rotational-angular-momentum relaxation mechanisms
in the energy-corrected-sudden scaling theory
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In calculating the infrared (IR) band shape for bending modes, the angular-momentum coupling be-
tween vibration, rotation, and radiation must be taken into account. The accuracy of the energy-
corrected-sudden (ECS) model has been proved through many recent applications in isotropic Raman
Q-branch profiles. Furthermore, this model is based on the physical infinite-order-sudden (IOS) approxi-
mation, which allows inclusion of the other relaxation mechanisms required when considering other
spectroscopic branches, such as IR Q-bending bands. To include, in a consistent way, the role of the vi-

brational angular momentum in the rovibrational relaxation matrix, the relaxation of the rotational an-

gular momentum J and of its associated higher-order tensors [J]' ', . . . (basically absent in the IOS ap-
proximation) is enforced in the present ECS model. Application to the 2076.86 cm infrared rovibra-
tional band of ' C' 02 leads to the determination of the [J]' ' relaxation time in agreement with previous
values obtained from difFerent measurements. The present theory may be applied to other spectroscopic
bands, such as the anisotropic Raman ones.

PACS number(s): 34.10.+x, 33.70.Jg

I. INTRODUCTION

The calculation of the infrared (IR) bending band
shapes requires one to take into account the vibrational
angular-momentum coupling with the coupling of the
photon and with the rotational coupling. An ab initio
theoretical study [1] of CO&-He accounting for such a
coupling has allowed a quantitative interpretation of ob-
served spectra within the infinite-order-sudden (IOS) ap-
proximation.

It has also been shown [2] that in the classical limit and
within the IOS approximation, the tetradic collisional
spectroscopic cross sections can be transformed into a
dyadic supermatrix. Thus the use of the simple strong
collision model has led to a clear understanding of the
strong modifications introduced by the vibrational angu-
lar momentum in the IR bending band shapes [2].

For most molecular systems, the IOS approximation is
too crude to obtain sufficient accuracy for a quantitative
comparison with experiments. Therefore, the energy-
corrected-sudden (ECS) model [3], which accounts for
both rotational level spacing and a finite duration of col-
lisions, must be considered. This was done in Ref. [4] for
the (11 '0)&~(00 0) band of ' C' Oi where the three
numbers are the quantum numbers associated to the
three vibrational modes of a linear triatomic molecule,
the superscript refers to the degeneracy of the bending
mode and the underscript refers to the Fermi dyad. In
this study the diagonal contribution (r~ ) ', which
rigorously appears in the formal expression of the dyadic

Tl'I JJ' cross sections, was assumed, in a first approximation,
to be ll' independent. In spite of a reasonable agreement
between ECS calculated spectra and experimental data, a
degree of discrepancy remains.

The aim of the present paper is to account for this
dependence on the vibrational angular momentum in

(rj } '. lt will be done here on a physical basis through

the introduction of the J rotational-angular-momentum
relaxation (and of the higher-order tensors [J]' ', . . . as-
sociated with J}.

Such a relaxation is basically absent in the IOS approx-
imation [5]. The ECS corrections introduce [6,7] a possi-
ble relaxation of J, but somewhat as an artifact. The re-
quirement of these relaxation mechanisms would allow
one to define (rj )

' in terms of the known physical re-
laxation times characterizing the J, [J]' ', . . . correlation
functions.

Section II is devoted to the theoretical developments.
After the definition of a generalized IOS sum rule that is
valid whatever the excitation degree of vibrational angu-
lar momentum, an ECS model, including consistently the
rotational-angular-momentum relaxation mechanisms, is
proposed. Calculations of the (11'0),+—(00c0) '2C'60&

bending band at moderate densities (i.e., several bars) us-
ing the present theory are presented in Sec. III. Compar-
ison of the resulting value for the [J]' ' relaxation time
and those previously obtained from the Senftleben
viscornagnetic effect [8] and from Rayleigh scattering [9],
and concluding remarks are given in the last section.

II. THEORY

In linear spectroscopies the spectral function is given,
in the impact approximation at density n and mean rela-
tive velocity U, by

El,.I El,. lI ' (ro) =Re g p. 8~ J [i(ro —ro )
~ I ~ I

J;Jf&JjJf
K/. If, i &l.lf+ 7lU CT j . . . r .r 8 .r . r

J;Jf rJI. Jf J;Jf

where X is the rank of the radiation-matter coupling ten-
sor (X =1 for infrared absorption and K =0 or 2 for iso-
tropic or anisotropic Raman scattering), I; and lf are, re-
spectively, the initial and final vibrational angular mo-
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menta. The reduced matrix elements of the radiation-
matter coupling tensor are given by

j; K jf
J,Jf i f i f

where [j]=2j+1 and ( ) is the usual 3j angular-
momentum coupling symbol. The elements of the diago-
nal matrix co are the line frequencies of the free molecule

(r") ', it is not possible to obtain all the diagonal parts
(rJ' )

' from fIrst principles. Thus it is necessary to par-
ticularize our study. Here, we will mainly focus our in-
terest on infrared transitions (K = 1) between 1;=0 and
lf = 1 states, so that only the cross sections I ' for l =0,
l„and 2 have to be considered, since in this case, Eq. (4)
may be explicated as

1O1 1O] g1O1 z OO +@111g111 I 01 +g121 @121 I p2

J;Jf J;Jf i f J;Jf J;J; J' f J;Jf J;J; I'Jf j jf J;J;

co. . .i.i —co 5 . .i6.
jiJf J;Jf l f J;J; JfJf

(3)

It has been shown [2] how the tetradic spectroscopic
Kl,.Efcross sections o. . .', , can be expressed as a linear com-
JiJf 'JfJf

I,. I,.
'

bination of dyadic cross sections I .'.'„which no longer
Ji Ji

depend on the nature of the spectroscopic probe used.
Here, this is expressed as

which leads, in the particular case of the isolated Q
branch, to

o'J'J ' '= —' I '+ [j (j —1j)'(j ' 1)] '—I,",

1/2
1 (j —1)(j+2)(j' —1)(j'+2) 02

j (j +1)j'(j '+1) JJ

J;Jf~jiJf i f J;Jf J;J;
I,.

(4)

where the range of the 1 values is governed by the selec-
Kl,. Iftion rule implied in the 0 ' matrix elements

lf —EC &l &lf+E. The identi6cation I '=o ". "shows
IIIthat the I matrices are generalized rovibrational state-

to-state cross sections. It should be noted that Burshtein,
Storozev, and Strekalov [5] introduced the relaxation
operators I appropriate for a tensor of rank E as
~K — KOO

JJ JJ~j J '

The fundamental sum rule is obtained when the exact
value of the initial derivative of the time correlation func-

Kl,.lftion associated with I ' f(co) is considered [10]:
Kl. lf Kl'lf

0 ~ . .I .I .I t ~

JiJf Jl Jf Jl Jf
J;Jf

In the present formalism this leads to the sum rules

(5)

y f" =() (6)

The generalized dynamic cross sections are given in the
ECS approximation [4] by

PJ,Pll' JJ + II [
.

]( )I +l'
JJ 11' J )j J

which, in the high-j limit, reduces to
oJ' 'J = ,'(I JJ

—+I
JJ ). Finally, we are only interested in

(r ) for 1 =0, 1, and 2, which will be determined by in-
troducing new generalized sum rules and the convenient
phenomenological relaxation times.

A. The exact IOS sum rules

The expression of the IOS cross sections is well known:

(f Ol )IOS [ i]( )l

l' L j' ) J- j
0 0 0 1 0 —1

L

where it is convenient to include the L =0 term in the
summation, in contrast with the case of the ECS approxi-
mation [Eq. (7)]. In the case of the 1=0 cross sections,
the orthonormality of the 3j symbols leads to

y(r, ,, )' s=y[L, ]Q, =0,

where the last equality insures the sum rule [Eq. (6)] for
l =0. It is shown in the Appendix that, in the IOS ap-
proximation, one has the exact general sum rules

J L J J L J QL,X&[~]1O 11 O ——1
LAO L

JJ p I'I'

11' JJjJ

y ( P0J )IOSXJ —0

with the coefficients XJ',
1/2

(j+1)!
(j—1)!

X.=
J =[E (E.—E ) ~ ~ ~ (E.—E )]I~2

(12)

where the QL are the basis state-to-state cross sections,
since it is easily verified that QL

= I L0.
It should be stressed here that, in contrast with Ref.

[4], the ll' dependence of the diagonal part of I " should
be accounted for. This is the main goal of this article.

At this stage we must emphasize that, except for

(13)

where E =j (j+1) is the reduced rotational energy. No-
tice that the sum rule for the case / = 1 was already ob-
tained by Burshstein, Storozev, and Strekalov [5] (since
I '—:I"'), who concluded that the angular momentum
does not relax in the IOS approximation.
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B. Introduction of macroscoyic relaxation times (J(0) J(&) )

As shown in the preceding section, exact IOS sum rules
[Eq. (12)] hold not only for the l =0 case (isotropic Ra-
man scattering for stretching vibrational modes), but also
for 1%0 (isotropic Raman scattering for bending modes,
IR absorption, anisotropic Raman scattering, etc.). For
most molecular systems, the IOS approximation is too
crude, and a quantitative comparison with experiments
requires ECS corrections [3] accounting for both rota-
tional level spacing and finite duration of collisions. This
ECS model allows one to get the (r )

' cross sections
from the exact sum rule [Eq. (6)] by using the ECS ex-
pressions I " [Eq. (7)].

The determination of the off-diagonal part of
I '', I ', . . . (i.e., —b, .', —b, . , with j'A j}tied to the
IR or anisotropic Raman scattering spectroscopies
[o'. . ., .„o'. .', „o.. . , .„.. . cf. Eq. (4)] is directly de-

Ji Jj' Ji JJ" Ji Jj' Ji Jj' Ji Jf Ji Jj"
duced from Eq. (7). The only modification with respect
to 1 ' is due to the angular-momentum coupling factor,
through the 3j symbol. The diagonal contributions
—5 ', —6", . . . are similarly determined. The leading
contributions r '(l = 1,2) were previously obtained [4] by
assuming that they are I independent and thus equal to

, which was already determined from the isotropic Ra-
man cross sections o.

JJ. J'J'.
In such an ECS model, in contrast with the IOS one

[5], the rotational angular momentum relaxes. But no
clear physical constraint is introduced to control this re-
laxation mechanism. It has been shown [7] that for some
particular choice for the rotational energy dependence of
the basis rates QL =I L0 (an inverse power law), a diver-00

gence of the corresponding rotational-angular-
momentum correlation function appears for the nitrogen
gas. This divergence disappears for another choice, such
as an exponential law.

To avoid such an artifact of the relaxation matrix, an
improved ECS model is proposed here by enforcing the
rotational angular momentum J, the symmetric traceless
tensor of rank 2 [J]' ', . . . , to relax exponentially with a
characteristic macroscopic time (j independent) So, the.
off-diagonal cross sections 1 ' are still expressed throughOl

the same ECS procedure as previously [4], but the diago-
nal part is now determined through these physical relaxa-
tion properties. The derivation of the convenient expres-
sion for the diagonal elements I " is thus similar for each
tensor rank [J]'"as explicated below.

=gp E' (e ') E' "gp E
JJ J

The relaxation matrix I zj is such that [cf. Eq. (4)]

~1 100 P 01
JJ JJiJ J JJ

and satisfies, through Eqs. (14) and (15), the relation

(15)

(16)

~ I 01E1/2 E1/2 —1
7 J

J
(17}

whatever j. Accounting for the inverse relaxation time
rJ ' in (r ') ' leads to [cf. Eq. (7)]

(rj~') '=(r, ') '+~s ' (18)

where (r ') ' is defined from the sum rule [Eq. (12) for
1 = 1] and from Eqs. (13) and (17):

(-01)—1 ~ ~1/2g01/El/2
J ~ J JJ J (19}

Consider the correlation function

( l ) y p g ( 2 )
( e r E

) g ( 2 ) y p ( g ( 2 ) )
2

JJ J

where

I 2 ~ g20lg201I Ol

JJ ~ JJ J J JJ
I

(20)

(21)

is the relaxation matrix for the second-rank tensor [J]' '.
The modulus of this tensor is given by [12]

Since the relaxation time ~J is known from measure-
ments of nuclear spin relaxation [1lj, Eqs. (18) and (19)
through Eq. (7) fully determine the I '' cross sections. As
explained above, the other diagonal contributions —6 '

are directly deduced from I ' as well as the off-diagonal
01 ~ s ~

JJ
ones —

lI), ' (j'Aj).
The calculation of IR bending bands or anisotropic Ra-

man scatterin~ profiles requires the additional determina-
tion of the I " cross sections. This is done by using a
procedure similar to that for I jj but tied to [J]' ' instead
of J.

022. Determination of f'jj.from the relaxation of the
symmetric traceless tensor [J]' '

g (2)
[ 2E (E 3/4)]1/2

J 3 J J (22)
011. Determination of f'JJ' from the relaxation of the

rotational angular momentum J

The macroscopic time relaxation vJ of the rotational
angular momentum J is defined by the time derivative of
the normalized correlation function Ns(t),

This correlation function appears in the description of
the viscomagnetic effect [9,12].

To insure an exponential relaxation of P (~)(t), with a
characteristic time ~ (&), we must impose the sum rule

[similar to Eq. (17)]

2 (2) — (2)yrjjAj Aj 7/[ ](2)2
J

(23)

with
whatever j. Using Eq. (21), this equation may be
developed into
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1/2

[E (EJ —3/4)]'/ =-
+[J)(2) 4 E.—3/4

E —2+—
4 E —3/4

oo 3 1 -01QI 'E+—,QI ,E",
4 (E, —3/4)

1/2

g I' '[E'(E —2)]' (24)

The first term in the ri ht-hand side of Eq. (24) is easily
calculated since the I matrix is assumed to be already
known from isotropic Raman Q-branch experimental
data. We introduce the individual energy relaxation
times

(25)

1 1 1
O2 O2

J J

where (r. )
' is defined by

(26)

1 —g +02[+ (E 2)]1/2/[Q (E 2)]l/2
7J J

(27)

The second term is also already known, through Eq. (17).
Concerning the third term [cf. Eq. (7)] one can introduce
the decomposition

A (295 K)=0.0341 cm '/amagat, P=0.0275,

y =0.8435, l, = 1.75 A

This allows the off-diagonal elements of the I '' cross
sections to be calculated (for I =0, 1, and 2). Then the di-
agonal parts (r ') ' and (r )

' are obtained through
Eqs. (19) and (27). The (rJ) ' contribution is almost
negligible since it goes to zero at high-j values. In the
present study, the measured value of [11) has been used
(rJ '/2mcn =0.046 cm '/arnagat). Concerning the
(r( )(&)) relaxation time in Eq. (28), it is clear that its
value greatly determines the diagonal part of the relaxa-
tion matrix I . So, due to the approximate nature of the
theories and experiments used to evaluate this parame-
ter[8], we have chosen here to consider it as a free param-
eter. This is possible since (r (, ) ) is diagonal and j in-

dependent, so the results of the diagonalization procedure
introduced in Ref. [14] will not be altered by the intro-
duction of this parameter. The relevant relaxation ma-
trix can be written as

(r )
' is thus easily deduced from Eq. (24) using Eqs.

(25)—(27):
101 101 —1nvo jJ j J nWJj + 3(r[J)(Q)) 5jj, , (31)

1 4 1

(2)[J]

+ [3(E —2)]

Equations (25)—(28), through Eq. (7), determine the I
cross sections, since, as explained above, the other diago-
nal contributions —5- are directly deduced from I ' as
well as from the off-diagonal ones —

h~~ (j'Wj). The re-
laxation time ~ —(2) can be obtained from the Senftleben

viscomagnetic effect [8] or froin depolarized Rayleigh
light scattering [9].

III. CALCULATION RESULTS
AND COMPARISON WITH EXPERIMENTAL DATA

g (nWjj ' icoj~5 ')M —
k =M kAk .

J
(32)

The spectral function for the infrared Q branch (assumed
to be uncoupled to I' and R branches) becomes

Ig '((v)=Re g Zk [i(v+Ak+ —,'(r (,)) '],
k

where the complex weights Zk are given by

(33)

where the diagonal j-independent contribution (7 J (?))
in Eq. (31) has been explicated and the high j limit of
((9'. ') equal to —,

' has been retained in connection with
the diagonalization procedure discussed just above.
Now, the M matrix, which diagonalizes nR" ' —ice, is
introduced:

A. Data used and computational procedure

The basis transition rates Ql are modelized [13]by the
exponential-power law

Z„= gag, '.,0(Mj„
J

g Mk' 8'.
J

(34)

QL
= A (T)exp( PBL (L +1)/kT)—[L (L +1)] ~, (29)

and the adiabatic factor by [3]

Ql =(1+(vt I 21, /24v ) (30)

The numerical values of the different parameters are
those given in Ref. [13];namely,

Finally, this theoretical expression of the IR bending
Q-branch profile is fitted to the experimental spectrum by
a least-squares procedure which optimizes two parame-
ters: (i) an overall frequency shift (accounting for a possi-
ble imaginary part of the transition matrix that is dis-
carded in the ECS approximation); (ii) the additive j-
independent linewidth —', (r( )(„) '/2mc.
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TABLE I. Symmetric traceless tensor [I]' ' relaxation time obtained from various physical proper-
ties.

Property (~ (2) ) '/2~en (cm '/amagat)

From Rayleigh scattering [9]
From Senftleben viscomagnetic effect [8]
This work: from IR Q branch p =1.46 atm

(11 '0) (00 0) p =2.95 atm

0.061
0.040
0.039
0.045

Notice that the absolute value of the absorbance is ob-
tained through

lt 101( )
—lg 1011101( )Q v Q

where 5,' =4155 X 10 cm '/molecule cm is the
experimental value [15] of the integrated intensity of the
considered band.

B. IR Q-band-shape calculation at moderate densities

Moderate densities are to be understood here as the
range of density values high enough to suppress the rota-
tional structure of the Q branch, but low enough to con-
sider this Q branch as isolated from the P and R
branches.

In this case, the minimization procedure can be applied
to the two experimental situations already used in Ref.
[4]. The resulting values for the relaxation time of CO& at
room temperature are given in Table I. It is important to
note that, as shown in Fig. 1 for one of these situations,
the quality of the calculated Q-branch profile is within
the experimental uncertainties. The fitted values from
the (11 '0)~(00 0) CO& bending band are in remarkable
agreement with the Senftleben viscomagnetic effect and
remain consistent with the Rayleigh data, since, as dis-

0. 125

cussed in Ref. [9], the connection of experiment with
[2] is more intricate.

IV. CONCLUSION

The introduction of an exponential relaxation for the
rotational angular momentum J and for the symmetric
traceless tensor [J]' ' has led to a significant improve-
ment of the ECS model for calculating IR bending bands.
The fitted value for the relaxation time ~ (2] has been

found in agreement with previous determinations, in par-
ticular those coming from the Senftleben viscomagnetic
effect.

The present calculation has been limited to moderate
densities in order to avoid having to take into account the
Q Pand Q--R line couplings. Furthermore, in the
higher-density range (i.e., several tens of bars), these in-
terbranch couplings make it necessary not only to expli-
cate and to diagonalize the 3X3 supermatrix cr'. '.

J1'Jf~J

but also to introduce the Herman-Wallis vibration-
rotation interaction, which is negligible for the Q branch.
This interaction has to be included not only for the line
intensities as usual [15], but also for the collisionally in-
duced rotational energy transfer [cf. Eqs. (4) and (5)].
These extensions of the present theoretical model as well
as other possible applications (such as anisotropic Raman
scattering, which also implies the I ~~' cross sections [16])
will be developed in a further study.
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APPENDIX: THE IOS SUM RUI.ES

By introducing the usual Legendre polynomials Pl (x)
[satisfying Pl (1)=1]and the normalized Legendre func-
tions,

(Al)

1/2

I/2

P&( )
[J] J '

(1 x2)l/2P(l)(x)
2 (j+l)!

where P'"(x) is the Ith derivative of P (x), the IOS cross
sections can be written as

I I I
f

I I I
[

I I I
f

I I I

—0.4 0.0 0.4 0.8 1.2
v —vo cm

FICz. 1. Pure COz Q branch at room temperature for
P =2.95 bars in absolute scale: 0, experimental; ———,pre-
vious result [4];,present result. The frequencies are de-
tuned by the pure vibrational frequency (v0= 2076. 86 cm ').

(f ol )Ios ( )I [j ) (j+l)!(j'+l)!

X+[1-]QLI dx(1 —x )'P'"(x)
L

XP (x)P'"(x) .

Let us calculate the quantity

(A2)
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Cl ~ (f+)los (J +I}.
JJ (j' —l)!J

1/2 ' 1/2
(j—I)!
(j+I)! g [L]QL f dx(1 —x )'PJ'"(x)—,

' g [j']P.',"(x) .
L

—1 ~t

(A3)

The j' summation becomes

d' 1 d'
—,' g [j']PJ'"(x}= ,

—g [j ']P,'(x)P'(1)= , 5(x —1),
J J

(A4)

where 5 is the Dirac function for the definition space of x H [ —1, 1], due to the completeness of the Legendre polynomi-
als on this domain, so that

I/2

(A5}

It is clear that all the derivatives of (1—x )' contain (1—x ) as a factor except the lth; this leads to
I/2

(A6)

where P'"(1)=0 for lAO, so that: C'=0 whatever 1 and j. For l =0, it should be recalled that the condition
CJ =+I [L]QL =0 is imposed by the usual sum rule. Notice that

X'=—[(j+l)!/(j —l)!]'/ =[E (Ez E&) (E —E& &)]' —with E =j(j +1) . (A7)
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