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Free-free transitions in collisions between slow electrons and neutral oxygen atoms
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The absorption coefficients for the free-free transitions in collisions between slow electrons and neutral
oxygen atoms have been calculated for wavelengths in the range of 1 to 30 p,m and temperatures between
5000 and 50000 K. The wave functions of the unbound electron are the solutions of a one-electron
Schrodinger-like continuum equation that includes the Coulomb, exchange, and polarization interac-
tions with the oxygen atom. The polarization potential is determined by a first-principles calculation
based on the method of polarized orbitals. Our absorption coeScients are in good agreement with those
of John and Williams [J. Quant. Spectrosc. Radiat. Transfer 17, 169 (1977)], but are much smaller than
the experimental data of Taylor and Caledonia [J. Quant. Spectrosc. Radiat. Transfer 9, 681 (1969)]and
of Kung and Chang [J.Quant. Spectrosc. Radiat. Transfer 16, 579 (1976)].

PACS number(s): 34.80.—i

I. INTRODUCTION

During an encounter with an atom, an electron may
emit (bremsstrahlung) or absorb (inverse bremsstrahlung)
a photon in a manner in which the atom is not affected
energetically. Such free-free transitions of electrons are
an important source of emission and absorption processes
in the stellar atmospheres and the low-temperature plas-
mas [1—3].

The free-free transitions with the neutral atomic oxy-
gen as a host have been studied theoretically by several
groups [4—7]. Since the free-free transitions assume a
particular importance at low incident electron energies,
usually below the Qrst excitation threshold, the target po-
larization is an important factor to consider in the
theoretical calculation. Thus, in the work of Mjolsness
and Ruppel [4] and of Geltman [5], an empirical polariza-
tion potential is included in the calculation of the contin-
uum wave functions. John [6] obtained the absorption
coefacients from the momentum-change cross sections by
means of a formula suggested by Dalgarno and Lane [8].
Later, John and Williams [7] adopted the multichannel
theory of Morgan and John [9] to calculate the absorp-
tion coefficients, utilizing the results of a close-coupling
calculation of the electron-atom scattering [10]. The po-
larization effect was not included in the latter calculation
[10], although target correlation was taken into account
by the use of multiconfiguration (MC} target wave func-
tions.

In this work, we account for the target polarization by
means of the method of polarized orbitals, which Temkin
[11]devised to study the e-0 scattering and later extend-
ed to the e-H problem [12]. Henry has also applied this
method to study the elastic scattering of the e-0 system
and photodetachment from 0 [13]. In the polarized-
orbitals method, the target polarization is made a part of
the atomic wave functions, which depend parametrically
on the incident-electron coordinates. The polarization
potential is obtained from the polarized orbitals and is in-
cluded in the scattering equation.

In Sec. II, we briefly discuss the basic formulation of

free-free absorption and emission coeScients, and de-
scribe the method by which the free-electron functions
are obtained. The polarized-orbitals method of Temkin,
from which the polarization potentials are derived, is de-
scribed in Sec. III. A short description of the numerical
procedure is contained in Sec. IV. In Sec. V, we compare
our results with the work of Geltman [5], with that of
John and Williams [7), and with experiments [14,15].
Section VI concludes this paper.

(k A') (k trt)i f
2m 2m

(2)

It is appropriate to construct the wave functions of the
(e +0) system that are eigenfunctions of the total orbit-
al (L) and spin (S) angular momenta if we neglect the
spin-orbit interaction. Then the transitions of interest are
of the type,

[2p (S,Lt )k;lSL]~[2p (S)Lt )k~l'SL'], (3)

where S, =L, =1 for the P state, and (l, l') are the par-
tial waves of the incident and scattered electrons. The di-
pole matrix elements for the above transition have been
worked out [16]. Using these results, the formula for the
absorption cross sections o», [1,2] can be generalized,
viz. ,

2
256~'aa0

3k; k~(hk )

where a is the fine-structure constant,

6k~= ~k~ —kz~,

(4)

(5)

II. THEORY

A. Absorption and emission coef5cients

We study the free-free transition process,

e (k, }+0(2p 3P)—+e (kI)+0(2p P)+%co, (1)

in which a photon is emitted (+fico) or absorbed ( Rro)—
The conservation of energy gives the relationship
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M =g l g (2S+1) (2L+1)(2L'+1)
W (lLl'L';L, 1)iMII. 's~2

, 2(2Si+1) (2Li+1)

In the above, l & is the greater of l and l', 8'is the Racah
coefficient, and

MA"= Pk'i( )
0 & dT f (7)

where r 'Pk &(r) is the radial part of the continuum func-
l

tion of the free electron, and V(r) is the potential that
affects the free electron. If the dependency of MI I on
(L,L', S) is suppressed, the quantity inside the curly
brackets in Eq. (6) reduces to MI &

so that Eq. (4) reverts
back to Eq. (6) of Ref. [2].

The (mean) absorption coefficient is obtained by
averaging the cross sections over the Maxwellian distri-
bution function f(v, T) corresponding to the electron
temperature T, viz. ,

«(A, , T)= f o.,„,(k, , hk )f (v, , T)du, , (8)
0

where
3/2

[5], which we found to be

0.794 814X 10

[A,(pm)]

exp( —31.32968k; )O3/2
Up ki kf

XM d(k ) (15)

where u0 is the threshold velocity of the free electron for
emission, i.e.,

—,
' mu =%co, (16)

J(A, , T)= '
exp

1.19X10'
[A.(pm) ]

1.439X 10
[A,(pm)][ T(K)]

(17)

and the symbol [k (pm)] indicates that A, is to be ex-
pressed in pm. The emissivity in this work was comput-
ed by Eq. (15). Cxeltman [5] also gave the relationship

mu

2kTf (u, T)du = — exp
4 m

2kT

= 198.00~ ~ exp( —31.32960k, )k; d ( k; ),

(9)

(10)

which can be used to check the consistency between Eqs.
(12) and (15).

B. Free-electron function Pki (r)

0=5040/[T (K)],
The reduced radial function P&& (r) is obtained as the

solution of the integro-differential equation

so that

05 X 1p ~3/'2 exp —31.32960k,.
«(A, , T)=

(b,k')' k, kf

d2 —Vc,„i(r)—Vp, i(r)+k P«i (r)
dT T

X W 'I'i. , kl~ 'I'( )+X ~l'lc 'I'~ 'I'( (18)
XM d(k ) n'1'A. n '1'

The wavelength A, and hk are related as

[A, (A)]=911.8/[b, k (a.u. )] . (13)

[n (cm ) ]=0.724 X 10' /[ T (K) ] (14)

per dyn/cm [1], so that the cross sections and
coefficients are now expressible in cm /dyn. The photons
involved in the absorption also induce emission so that
the absorption coefficients are sometimes multiplied by a
factor [1—exp( —hv/kT)] [1]. In this paper, we do not
include this factor unless specifically stated otherwise.

The expression of the emission cross sections has been
given in Refs. [4,5]. However, a more pertinent quantity
in applications is the emissivity in units of W cm /(pm sr)

The cross sections in Eq. (4) are expressible in units of
cm [1] after a substitution of a0=0.529X10 cm, so
that the absorption coefficients in Eq. (12) are also in
units of cm . The absorption cross sections and
coefficients are frequently multiplied by the electron den-
sity n that would give rise to a pressure of 1 dyn/cm at
temperature T,

(r) = Fi (r)rP„i(r),
and the Coulomb potential is

(19)

where Vz, „& and V,&
are the Coulomb potential due to

the unperturbed atomic orbitals and the polarization
correction (to be discussed in Sec. III), respectively. The
first term on the right-hand side is the exchange interac-
tion term, and the second term is to ensure the ortho-
gonality with the bound atomic orbitals P„&. The depen-
dency on the angular momenta I. and S is indicated as su-

perscripts. Because the 2p shell in O(ls 2s 2p ) is not
completely filled, the composite nine-electron wave func-
tion of the e-0 system may contain a term corresponding
to the 1s 2s 2p configuration of the 0 ion, which is
not considered in the present work. Inclusion of the
1s 2s 2p configuration would introduce additional terms
to Eq. (18), as discussed in Ref. [17], and would greatly
increase the complexity of the computational procedure.

With regard to the present problem of
0 [ls 2s 2p ( P)kl L], the unperturbed orbitals of the
oxygen atom are
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Vc,„&(r)=2 ~ ——+2yo( ls, lslr)+2yo(2s, 2slr)
Z TABLE I. Values of mq in Eq. (22).

LS
Wg

+4yo(2p, 2plr)+ —,'U zy2(2p, 2pl r) ',

where Z is the nuclear charge,

yi(nl, n'1'lr)=r ' I P„,(t)P„,i,(t)t~dt
0

+r'f P„,(t)P„,(r)r ' 'Ch,
T

(20)

(21)

l+1

l+1

3(l +1)
(2l + 1)(2l +3)

3l(2l+S)
2(2l + 1)(2l +3)

3(l —2)
2(2l + 1)(2l +3)

3l
(2l —1)(2l + 1)

3l
(21 —1)(2l + 1)

3(l +3)
2(2l —1)(21+1)

and U z is equal to I /( 2l +3 ), —1, and ( l + I ) /( 2/ —1 ) for
L =I +1,l, h

—1, respectively. The exchange terms are

3(l + 1)
(2l + 1)(2l +3)

3(2l —3)(l + 1)
2(2l —1) (21+1)

1 1g ~„ i i. ki(r)P„ i (r) =2 — yi(», k&lr)P~, (r) — yi(2s, kIlr)P»(r)
2I + 1

' ' 2I +1

+wi+&yi+i(2p, kllr)P2 (r)+wi iyi &(2p, kllr)P2 (r) ', (22)

where y&(nl, kll r) can be obtained from Eq. (21) by substi-
tuting Pki (t) for P„,&,(t). The coefficients wi are shown
in Table I. Throughout the work, we have used the wave
functions of Clementi and Roetti [18]for the unperturbed
orbitals. Finally, Eq. (18) is to be solved subject to the
boundary condition,

4m

3 ~N+1 i =1
1

X X Yf (r;) Y&„(riv+i
p= —1

(24)

lim Pkis(r) =sin(kr —,'lm. +ski ), —
P~ QO

(23) 1 for rN+, ~r,
e(ri~ iv+1) 0 for y (r. (25)

where gkI is the phase shift due to interaction with the
atom. Determination of the polarization potential
V~»(r) in Eq. (18) will be taken up in Sec. III.

To construct the wave function of O( P), we start with
the unperturbed one-electron functions of the oxygen
atom [18] as shown in Eq. (19). Following Temkin, we
add a polarization correction to each P„& to form a po-
larized orbital, which depends parametrically on rN+1 as

III. METHOD OF POLARIZED ORBITALS

In this section, we brieAy recall the essential steps in
Temkin's method of polarized orbitals [11], ultimately
leading to the polarization potential V &(r) in Eq. (18).
The details are found in the works of Temkin and co-
workers [11—13]. Here the distortion of the target atom
caused by the perturbation of the free electron at rN+1 is
treated in an adiabatic, dipole approximation with the
proviso that the perturbing electron is outside the atomic
electrons. Thus the perturbation is taken as

I (r rN+1) 0 I ( )+r~4' i (r rN+1)

l (r rN+1) e( N+I ) y Yi, — '(rN+1)
I'm '

X(t)'„i i, ,(r) .

It is convenient to define

.(r) =c (Im ~l'm ') Yi, ,(r)rP„i i, ,(r),
where

(26)

(27)

(28)

1/2

(I I, ,
) (

4m(2l + 1)
(21'+ 1)

c ( lm' mlm; l'm')c (1010;—I'0) .

In the above, c(jim, jzm2', jm) is the Clebsch-Cxordan coefficient; thus we see that l1' —ll =1 and lm' —ml =0, 1.
The radial function P„& i, .(r) is obtained as the solution of the differential equation,
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I'(l'+1) V, („)+E p
&

~,(r)= g IV„'.,&„», , (r)P„, , (r)+ g 5~ ~ C„ I"P ")"(")+"PI(") .

(30)

Here the Coulomb ( Vc,„& ) and exchange ( W') potentials
are obtainable by subjecting to the Hartree-Fock pro-
cedure the determinantal wave functions in which the
parent orbitals P„& (r) are replaced by the polarized ver-
sion of Eq. (26). The function P„& &, .(r) approaches
zero as r ~ (x, and for small r,

correction A,P'„&' in accordance with Eqs. (26) and (27)
produces additional (polarization) terms, to the first order
in A, , of the form

XP„*.&.(r')P„, (r')dr'dr . (32)

As a consequence of the polarization of the n'l' orbital,
augmentation of the target orbitals by the polarization

TABLE II ~ Polarized corrections P„& ~ that are
equivalently referred to simply as P;.

nl, m ~l', m'

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

2s, O

2s, O

2s, O

2p, 1

2p, O

2p, —1

2p, 1

2p, 1

2p, 1

2p, O

2p, O

2p, 0
2p, —1

2p, —1

2p, —1

1,1

1,0
1,—1

0,0
0,0
0,0
22
21
2,0
2, 1

2,0
2,—1

2,0
2, —1

2p 2

In this work, we have obtained the P«~ &
functions as-

sociated with the unperturbed orbitals nl =2s and 2p.
For later reference, they are listed in Table II and are re-
ferred to simply as P; therein. From these polarized or-
bitals, we obtained the dipole polarizability of 5.084ao
compared with the experimental value of 5.2+0.4 [19].
Other theoretical values range from 4.63 to 5.41 [20]. In
general the polarized orbitals P«&. ~ depend on m and
m' as well as on l and I' due to the difference in exchange
term in Eq. (30), so that only two pairs are identical
among the fifteen functions in Table II; that is, P5 and
P6, and P&0 and P,2. This dependency on m and m'
manifests itself, for example, in the calculation of dipole
polarizability in which a difference up to 20% is found in
the matrix elements.

When the target wave functions are described by the
unperturbed orbitals P, the Coulomb potential Vc,„&(r)
seen by the free electron (coordinate r) consists of con-
stituent terms due to all occupied n'I' orbitals, such as

The polarization potentials associated with the Coulomb
interaction, which can be derived variationally [11],are
composed of a series of such integrals, and can be cast
into the general form

V,((r) = — g C F„( )(l)f P (t)P~(~)(t)t dt . (34)

IV. NUMERICAL PROCKDURKS

The integro-differential equations of Eqs. (18) and (30)
are solved noniteratively by using the Lagrange-
multiplier technique, as we have done previously [21].
The inhomogeneity terms, which arise due to the electron
exchange, orthogonality, and perturbation, are set to zero
after r =13.5ao. This corresponds to the r value at
which the 2p function has decreased to 10 of its peak
value. At this point, the Lagrange multipliers are deter-
mined, and the complete solution is constructed as a

The notation used here requires some explanation. We
have a summation over j, which ranges from 1 to 15 for
L =(+1, 1 to 21 for L =1, and 1 to 31 for L =3 —1, as
shown in Table III. For each value of j, we also list C,
u (j), P., and 8 (j) in Table III for the three possible
choices of L =/+1, 1, and 1 —1. To identify Pz~ ~, let us
take an example of, say, j =5 with L =/+1. The associ-
ated 8 (j) is 7 according to Table III. We then go to the
entry of i =7 in Table II and find that Pz~ 5~ is
P2, 22. From Table IV we find F„~ ~

for each j in a
similar way. P is the reduced radial function of the un-
perturbed target orbitals as defined in Eq. (19), with
P =P2, for j~3 and P =P2 for j& 3.

The exchange potential is also modified by the in-
clusion of polarization. The effects of the polarization on
the exchange term have been examined by Henry [13] in
his work on the elastic scattering of electrons from the
oxygen atom. The inclusion of this exchange term was
found to change the s-wave (l =0) cross sections by only
10%. For the higher partial waves (l & 0), the difference
is even smaller (4%), so that the influence of the polariza-
tion of the orbitals via exchange is seen to be rather mar-
ginal. For this reason, we do not consider in this paper
the polarization correction on the electron exchange.
Also omitted from Eq. (18) for simplicity is a term due to
the Laplacian acting on the step function e(r;, rz+&) [13].
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linear combination of the particular integrals and homo-
geneous solution. Beyond r =13.5ao, Eqs. (18) and (30)
are considered to be homogeneous di6'erential equations.

For the free-electron functions, the phase shift g is
determined at various points 50 to 250a0 apart starting at
450ao, until two successive values agree within 0.01%%uo.

To solve for the polarization correction functions of Eq.
(30), the numerical solution is first initiated with a certain

arbitrary value of a in Eq. (31). The resulting solution
obtained by numerical integration in general would
diverge at large r, say, tending to + ~ as r —+~. The
value of a used here is denoted by a+. We then change
the value of a until the resulting solution tends to —~ at
large r, and this new choice of a is denoted by a . By
successive interpolation between a+ and a, we develop
a numerical solution for P„i I. ,(r) that monotonically

TABLE III. List of constituent parts that describe the polarization potential V~,&(r) in Eq. (34).

10

12

13

14

15

10

11

12

13

14

17

18

19

C

4
3
4
3

4
3

4
3

8
5

4
5

4
15

2
3

2
5

8
15
2
5

2
3

2
15
2
5

4
5

2
15

8
15

2
15

—2
3

—2
5

4
15

—2
3

2$

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2$

2s

2s

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

B(j)
20

21

10

12

13

14

15
10

13

14

15

17

12

13

14

23

24

25

26

27

10 29

30

31

19

20

10 21

22

CJ

—2
5

4
15

2
15

8
15

2
15

—2
3

4
15

—2
3

—2
5

4
15
4
3
4
15

4
15

4
15

15

L=l —1

10

10

13

12

14

15

14

15

16

16

17

16

18

18

18

19

19

19

20

20

20

20

20

20

2p

2p

2s

2$

2s

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

2p

B(j)

10

12

6

13

14

15

10

13

13

14

12
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decreases up to r =20ao.
The dipole matrix elements are computed by the veloc-

ity form instead of the acceleration form shown in Eq.
(7). The length and acceleration forms may be derived

TABLE IV. The I-dependent function F,.(I) in the polariza-
tion potential Vppf{r) in Eq. (34).

F;(I)

(I+1)
(2I +3)

1

(21 +3)

I(I+2)
(I + 1)(2l +3)

(I +3)
(I +1){2l+3)

I (I +3)
(I +1)(2l +3)

(I+6)
(I + 1)(21+3)

from and are equivalent to the velocity form if the wave
functions are exact eigenfunctions of the atomic Hamil-
tonian. Using a short-hand notation of y=(LSkl), we
have

(b,k )ao „d I) (I' —1)
Mt i~ s= I P (r) + P .(r)dr,

2 0 dr r

(35)

where l) is the greater of l and I'. The limits of integral
(0, oo) are divided into two regions (O, R) and (R, oo),
where R is the value of r at which the asymptotic form of
Eq. (23) sets in. The integration in the interval (O, R) is
carried out numerically. For the interval (R, ao ), the in-
tegrals are expressed in closed forms analogous to those
given in Ref. [22].

Using our computational procedures, we obtain virtu-
ally identical results for various entries in Tables 3 and 5
of Ref. [2]. In these calculations of free-free transitions in
a H atom, the difference between the velocity and ac-
celeration forms was typically 1.5%%uo or less.

V. RESULTS

10

13

16

1

(I+1)
I

(I + 1)

I
(I + 1)(21+3)

(2l' —I' —I +1)
I (2l —1)(2l + 1)

(2I +I —2)
I (2I —1)(2I + 1)

(4l +4I —3l —4l +6)
I (21 —1)(2l + 1){2l+3)

(41 +8l +9I —15)
I (21 —1)(2l + 1)(2l +3)

(4l +20l —13l —3)
I (2I —1)(21+ 1)(2I +3)

(41 +8l —9l +3)
I (2I —1)(2l + 1)(2I +3)

(8l +4I —8l +3)
I (2I —1)(21+ 1)(2I +3)

(8l +4l —6)
I (2I —1)(2l + 1)(2l +3)

(21 —3)
l(2l +1)(2l +3)

TABLE V. Quadrature of the incident-electron energy k in
a.u. For each region, k runs from k„ to k& in increments of
5k .

Region 5k

In Eq. (6), we have L
&

=S& = 1 for the present problem
( P ground state of the 0 atom), and S takes on —,

' and —,'.
We have also set the limit of (l, l') (4, and (L,L') to all
values consistent with (1,/'). For a given value of the
wavelength A, (equivalently, of b,k ), we have computed
the cross sections at 200 different values of incident-
electron energy from 0 to 1.2 a.u. as shown in Table V.
The process of averaging over the Maxwell-Boltzmann
distribution in Eqs. (12) and (15) was carried out by inter-
polating between these 200 points. The resulting con-
tinuous absorption coefficients in Eq. (12) are shown in
Table VI and the emissivity of Eq. (15) in Table VII.

Geltman [5] made an extensive calculation of the free-
free absorption coefBcients for a number of neutral-atom
systems, including the oxygen atom. A Hartree-Fock-
Slater-type potential was used to describe the Coulomb
and exchange interaction of the free electron with the
neutral atom, and an empirical polarization potential was
added. The matrix elements are then evaluated in the ac-
celeration form. At 10000 K, Geltman's values are 25 to
30% smaller than our values as shown in Table VIII. A
more detailed comparison of Table 4 of Ref. [5] and
Table VI of the present paper shows that the coeKcients
of Ref. [5] are smaller than the present values at the
lower electron temperatures and longer wavelengths of

19

20

1

(2l + 1)(2I +3)

(2I —1)
(2l + 1)(2l +3)

0.0
0.025
0.050
0.100
0.200

6.25 X 10-'
1.25 X 10
2.50 X 10

5.0X 10
1.0X 10

0.025
0.050
0.100
0.200
1.200
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TABLE VI. Absorption coefficients a(A, , T) of Eq. (12) in units of cm . The wavelengths A, are in pm,
and the temperature T in kelvins. Numbers inside the brackets indicate the power of 10.

1.0
2.0
3.5
5.0
7.5
10.0
15.0
20.0
25.0
30.0

9.31 [ —40]
5.25[ —39]
2.30[—38]
6.12[—38]
1.91[—37]
4.35[—37]
1.41[—36]
3.29[ —36]
6.30[—36]
1.07[ —35]

10000

1.53[—39]
9.72[ —39]
4.63[—38]
1.28[ —37]
4.15[—37]
9.66[ —37]
3.19[—36]
7.41[—36]
1.43[ —35]
2.44[ —35]

15 000

2.18[—39]
1.46[ —38]
7.20[ —38]
2.02[ —37]
6.65[ —37]
1.56[ —36]
5.15[—36]
1.20[ —35]
2.32[ —35]
3.98[—35]

20000

2.87[—39]
1.99[—38]
9.98[—38]
2.83[—37]
9.37[—37]
2.20[ —36]
7.28[ —36]
1.70[ —35]
3.30[—35]
5.68[—35]

30000

4.28[ —39]
3.07[ —38]
1.56[ —37]
4.48[ —37]
1.49[ —36]
3.50[ —36]
1.16[—35]
2.74[ —35]
5.32[ —35]
9.16[—35]

50 000

6.19[—39]
4.58[ —38]
2.37[—37]
6.83[—37]
2.28[ —36]
5.36[—36]
1.79[—35]
4.22[ —35]
8.21[—35]
1.42[ —34]

TABLE VII. Emissivity J(A, , T) of Eq. (15) in units of Wcm /(pm sr). The wavelengths A, are in

units of pm, and the temperature T in K. Numbers inside the brackets indicate the power of 10.

K)

1.0
2.0
3.5
5.0
7.5
10.0
15.0
20.0
25.0
30.0

6.22[ —37]
4.63[—37]
2.30[—37]
1.31[—37]
6.53[—38]
3.89[—38]
1.88[ —38]
1.06[ —38]
6.99[—39]
4.77[—39]

10000

4.32[—36]
1.76[—36]
6.96[—37]
3.66[—37]
1.72[ —37]
9.97[—38]
4.57[ —38]
2.57[—38]
1.65 [ —38]
1.14[—38]

15 000

9.94[—36]
3.37[—36]
1.24[ —36]
6.37[—37]
2.94[—37]
1.69[—37]
7.60[—38]
4.27[ —38]
2.73[—38]
1.89[—38]

20000

1.66[ —35]
5.17[—36]
1.84[ —36]
9.35 [—37]
4.28[ —37]
2.44[ —37]
1.09[—37]
6.13[—38]
3.92[—38]
2.72[ —38]

30000

3.10[—35]
8.92[ —36]
3.09[—36]
1.55 [—36]
7.02[ —37]
3.98[—37]
1.77[ —37]
9.95[—38]
6.37[—38]
4 42[ —38]

50000

5.24[ —35]
1.44[ —35]
4.88[ —36]
2.43[ —36]
1.10[—36]
6.18[—37]
2.75[ —37]
1.55[—37]
9.90[—38]
6.88[ —38]

TABLE VIII. Comparisons of the absorption coefficients a(A, , T) of Eq. (12) in cm with other
theoretical works [5,7] and with the experimental values of Ref. [14]. Numbers inside the brackets indi-
cate the power of 10.

Present
(T=10000 K)
Ref. [5]
(T=10000 K)
Ref. [7]
(T=9700 K)
Expt. [14]
(T=9700 K)

2.0

9.72[ —39]

7.13[—39]

9.6[ —39]

29[ —39]

3.5

4.63[—38]

4.67[—38]

10[—38]

5.0

1.28[ —37]

8.97[—38]

1.31[—37]

2.6[—37]

10

9.66[—37]

6.68[—37]

Present
(T=5000 K)
Ref. [7]
(T=5040 K)

1.14

1.2[ —39]

1.09[—39]

1.52

2.5[—39]

2.28[ —39]

2.28

7.3[—39]

6.60[—39]

4.56

4.9[—38]

4.38[—38]
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the absorbed photon. At higher temperatures the
difference becomes smaller, and at 20000 K the two sets
are nearly identical. John [6] derived the free-free ab-
sorption coefficients involving various atoms and mole-
cules by means of the formula suggested by Dalgarno and
Lane [8]. The data of John for oxygen [6] are reported to
be in good agreement with those of Geltman [5], particu-
larly for A, & 1.0 pm.

A new theoretical treatment was subsequently offered
by John and Williams [7] in which they applied the mul-
tichannel theory [9] to obtain the free-free absorption
coefficients for the e-0 scattering system. For the contin-
uum orbitals, they used the scattering data from the
three-state ( P, 'D, 'S of the ground configuration) close-
coupling calculation of Saraph [10]. The bound states
were described by the three-configuration wave functions.
In Table VIII, we compare their absorption coefficients at
9700 K, computed by the velocity form, with ours at
10000 K. In making this comparison, two points should
be mentioned. First, we estimate our absorption
coefficients at 9700 K to be about 3% smaller than the
ones at 10000 K shown in Table VIII. Secondly, the
coefficients of John and Williams contain the contribu-
tions from cases other than the oxygen atom being in the
ground P state before and after the collision. However,
the P- P contribution is expected to occupy greater than
90% of the total at 9700 K, since its percentage is 90% at
12600 K and 99% at 5040 K (see Table 3 of Ref. [7]).
Thus, after accounting for the other contributions, the
absorption coefficients of this work and of Ref. [7] differ
by about 10% or less at 10000 K. In Table 5 of Ref. [7],
John and Williams also give the absorption coefficients
that include the factor for the stimulated emission. In
Table VIII of this paper, we include their values at 5040
K, adjusted so as to exclude the stimulated-emission fac-
tor and to be expressible in units of cm . These values are
seen to be about 10% smaller than our interpolated coun-
terparts at 5000 K. Thus the agreement is quite good.

From the solutions of Eq. (18), we have also calculated
the elastic cross sections at several energies so as to com-
pare with the cross-section calculations of Henry [13]
based on a similar polarized-orbitals approach. Our elas-
tic cross sections for electron impact on oxygen atoms are
somewhat (-25%) larger than those of Henry. For in-
stance, at 0.5, 1.0, and 4.0 eV, our elastic cross sections

re 3.7X10 ', 5.2X10 '~, and 7.6X10 ' cm respec-
tively, compared to the corresponding values of
3.0X10 ', 3.8X10 ', and 5.8X10 ' cm as read
from Fig. 2 of Ref. [13]. The difference may be attributed
to the differing approximations made in the present work,

within the method of polarized orbitals, and that of Hen-
ry [13]. Henry included the term arising from the Lapla-
cian acting on the step function [Eq. (25)] as well as the
exchange-polarization terms that were omitted in our cal-
culations. On the other hand, the differential equation
for the polarization correction to the orbitals in Henry' s
paper involves an approximation that is not used in our
work. Comparison with the experimental elastic cross
sections has been addressed in the earlier theoretical pa-
pers [10,13],but the scatter of the different sets of experi-
mental data are such that definitive conclusions are
difficult to draw.

From a shock-heated plasma experiment, Taylor and
Caledonia [14] obtained the absorption coefficients,
which are shown in Table VIII as "Expt." In a similar
experiment Kung and Chang [15] found the absorption
coefficients of 7.8X10 and 3X10 cm for A, =3.1

and 9.85 pm, respectively, both at the electron tempera-
ture of 9700 K. Those experimental values are about two
to three times larger than the present values and those of
Ref. [7]. Beyond the obvious difficulties associated with
the experiments that are discussed in Refs. [14] and [15],
we can offer no clear explanation for the discrepancy be-
tween the experiment and theory. In view of the general-
ly good agreement among different theoretical calcula-
tions, further experimental works would be valuable.

VI. CONCLUSION

In an electron-atom collision, the polarization of the
target atom is an important and yet difficult feature to in-
corporate into the theoretica1 formalism. In this paper,
we approached the problem of the target polarization
with the method of polarized orbitals. We found that
this method gives the dipole polarizability of 5.084ao,
which is quite comparable to the range of values 4.63 to
5.41 by other calculations [20].

With respect to the free-free absorption coefficients,
our values show very good agreement with the previous
theoretical calculations, particularly with the results of
John and Williams [7]. However, the theoretical absorp-
tion coefficients are smaller by a factor of about two or
three compared to the experimental values. Further ex-
perimental works are needed to clarify this discrepancy.
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