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Relativistic many-body perturbation theory is applied to determine energies of [2p 3s] excited
states of neonlike ions with nuclear charges in the range Z =—10—92. These calculations start with a
V ~ Hartree-Fock potential and include correlation corrections. Core-hole corrections are treated
to all orders in perturbation theory while the core-core, valence-core, and valence-hole corrections are
treated to second order only. The Breit interaction is also included to second order, but the dominant
correlation corrections to the Breit interaction are identified and iterated to all orders. Frequency-
dependent corrections to the Breit interaction and mass-polarization corrections are treated to Qrst
order only. Lowest-order radiative corrections are included by evaluating the electron self-energy
and vacuum polarization in a local potential that approximates the Hartree-Fock potential. Detailed
comparisons are made with measurements and with other calculations.

PACS number(s): 31.30.Jv, 12.20.Ds, 31.25.Jf

I. INTRODUCTION

Over the years, there has been considerable experimen-
tal [1—41] and theoretical [42—51] interest in the energy
levels of excited states of neon and neonlike ions. Re-
cent interest arises in part &om the need for precise en-
ergy levels in plasma research and in part because the
energy levels of neonlike ions provide important tests
of relativistic and quantum electrodynamic (/ED) cor-
rections in multielectron systems. For the neutral neon
atom, the classical work by Paschen [52] in 1920 forms
the basis for all subsequent investigations; predictions of
neon energy levels have presented challenging tests for
atomic-structure calculations ever since. Neonlike ions
with Z ( 50 are important in plasma research due to
their stable closed-shell configurations; the correspond-
ing emission lines are essential for diagnostics over a wide
range of plasma parameters, &om those for Tokamaks
to those for solar Hares [2—35]. For neonlike ions with
Z ) 50, a series of high-resolution measurements has
been made recently [36—41]. Because the Coulomb and
Breit contributions to the correlation energy for high-Z
ions can be treated accurately, a systematic comparison
of experimental and theoretical transition energies oQ'ers

a method to test our understanding of /ED corrections
in highly charged many-electron ions.

Excited states of closed-shell atoms or ions, such as
those of the neon sequence, can be conveniently treated
using a particle-hole formalism [51,53] within the f'rame-
work of many-body perturbation theory (MBPT). An
electron is removed &om one of the closed shells, creat-
ing a hole. This electron is excited into a valence orbital,
leading to a particle-hole excited state of the closed-shell
atom. In a perturbation expansion, starting &om the
independent-particle approximation, one divides the cor-
relation corrections for particle-hole states into four sec-
tors: core-core, cere-hole, valence-core, and valence-hole.
Higher-order correction terms in each of these sectors

may be evaluated either by using an order-by-order ex-
pansion or by using all-order methods [54]. The valence-
core and valence-hole sectors must be treated by open-
shell MBPT, which is usually complex [55]. In particu-
lar, inclusion of the valence-core and valence-hole sectors
leads to the so-called redundancy problem [53], the non-
uniqueness of the valence correlation amplitudes.

In this paper, we notice that if a proper choice of the
starting potential is made the calculation can be con-
siderably simplified. Thus, if we start with a V(
Hartree-Fock (HF) potential, in which all virtual orbitals
are generated in the Held of the hole state [56], the doin-
inant contribution to the correlation correction comes
&om the core-hole sector alone. When correlation correc-
tions &om the core-core, valence-core, and valence-hole
sectors are taken into account to second order and corre-
lation corrections &om the core-hole sector are evaluated
to all orders, accurate results for excited-state energies
for neutral neon and neonlike ions are obtained. In this
way, the entire calculation is reduced to a problem that
is almost as simple as that for a closed-shell atom.

After determining the electrostatic contributions to the
excited-state energies by solving the all-order equations,
we evaluate the Breit contributions and the second-order
Breit-Coulomb correlation corrections. We find that the
second-order Breit-Coulomb correction is dominated by
a single term. This term is iterated to give the domi-
nant third- and higher-order Breit-Coulomb correlation
corrections, Next, the &equency-dependent corrections
to the Breit interaction and the lowest-order radiative
corrections are considered. These /ED corrections are
evaluated in a local potential that approximates the
V( ~ HP potential. Finally, reduced-mass and mass-
polarization corrections are determined in lowest order.

The resulting theoretical energies are in excellent
agreement with measurement for Z ( 50. We find that
the theoretical energy levels are systematically smaller
than the measured ones for each of the four states con-
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sidered. The energy difFerences grow &om 0.001 a.u.
near the neutral end of the sequence to —0.01 a,.u. near
Z = 50 and increase to 0.1 a.u. at Z = 90. Although
we have no explanation for the relatively large difFerences
near Z = 90, we note that 0.1 a.u. difFerences between
MBPT calculations and experiment have been reported
recently for other transitions in neonlike uranium [57].

The plan of this paper is as follows: In Sec. II, we
present the detailed MBPT formulas and describe our
treatment of the Breit interaction, mass polarization, and
/ED corrections. Then, in Sec. III, we present the re-
sults of our calculations and make comparisons with ex-
periment and with other recent calculations.

II. FORMALISM

We start our calculations using a set of unper-
turbed state vectors and energies obtained from the
independent-particle approximation [54]. In this approxi-
mation, each electron interacts individually with a spher-
ically symmetric model potential U(r) that accounts ap-
proximately for the interaction with the other electrons
of the system. Here, we choose the model potential to
be the V& ~ Hartree-Fock potential of the closed-shell
atom.

Relativistically, an N-electron atom is described by the
"no-pair" Hamiltonian [58], which may be written

and g,.~y~ is a two-electron matrix element of the Coulomb
interaction,

d pgcL F2
g;,ai =. V;(rl)0, (r2)9 k(r&)V l(r2). (2 7)

~12

In Eqs. (2.2) and (2.3), the quantities aJ and a, de-
note electron creation and annihilation operators, respec-
tively. The corresponding positron creation and annihi-
lation operators are excluded &om the no-pair Hamil-
tonian. The index i that accompanies these operators
represents the collection (n;, r;, m;), which are the prin-
cipal, angular, and magnetic quantum numbers, respec-
tively, of the corresponding orbital. To distinguish be-
tween difI'erent categories of orbitals, we use the following
index conventions: indices a and v represent the hole and
valence states, respectively; r, s, t, . . . represent virtual
states; b, c, d, . . . represent core states; n, p, p, . . . repre-
sent either hole or virtual states; and i, j, k, - repre-
sent all orbitals. We also introduce the notation that
a four-index quantity with a tilde represents an anti-
symmetrized form of the quantity. Thus, for example,
gijA:l = gijj l

—gijlA:.

A. Coulomb interaction

To obtain the Coulomb correlation corrections, we
must solve the time-independent Schrodinger equation:

a =Ho+VI

where, in second-quantized form,

(2.1)
Hi@(JM)) = Ei@(JM)). (2.8)

For the particle-hole case, we take our lowest-order model
space state vectors [60] to be

Hp= E;a.a, (2.2) C'.„(JM)) = F.„ota.~O.),

where the operator E „ is given by

(2.9)

Z.„= ) (-I)'----(~„m„,~. —m.
~
JM), (2.10)

VI =
2 .g'~aia;a, -a&aI. — U,,a, a,-.

ijA:l U

(2.3)

h(r) p;(r) = s;(p;(r), (2 4)

where the Dirac Hamiltonian h(r) includes not only the
interaction with the nucleus V„„,(r), but also the inter-
action with the model potential U(r),

h(r) = cn ~ y+ (P —l)c + V„„,(r) + U(r). (2.5)

The quantities n and P are 4 x 4 Dirac matrices in stan-
dard representation. The nuclear potential V„„,(r) is
taken to be that of a 6nite Fermi charge distribution
with 90—10% fallofF thickness t = 2.3 fm and with root-
mean-square radius taken from Ref. [59].

In Eq. (2.3), the quantity U,~. is a one-electron matrix
element of the model potential U(r),

In Eq. (2.2), e; is the eigenvalue of the one-electron Dirac
equation

i@(JM)) = ) C „0„[4 „(JM)). (2.11)

Equation (2.11) can be rewritten with the help of the
correlation operator y defined through

0 ~=1+y „. (2.12)

mome

and where [0,) denotes the closed-shell state vector for
the ground state of the neonlike ion.

In previous work [51], we assumed that there was no
mixing of states in lowest-order, so that, a and v could be
considered unique. In many cases of interest, however,
there is significant mixing between states with difFerent
quantum numbers. For example, in low-Z neonlike ions,
the states [2p~&~3szy2]z z and [2p~&~3szg2]J z are nearly
degenerate. In such cases, the solution to the Schrodinger
equation is obtained by letting the wave operator 0 act
on a linear combination of the nearly degenerate model
states [61]. The particle-hole state vector becomes

U;~ = (p~ r U r p~ r d r, (2.6) From Schrodinger s equation (2.8), with the aid of re-
lations (2.11) and (2.12), we obtain an equation for the
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correlation operator:

[X „,Hp]IC „(JM)) = VI(1+X „)IC' „(JM)) —) X „ IC' „(JM))(C' „(JM)IV(1+X „)I4 „(JM)), (2.13)
a' v't

and the eigenvalue equation

) H:,'„,.„C.„=ZC..„., (2.14)

where the efFective Hamiltonian H'+ is given by

H', „, „=(4 „(JM)IH(1+x „)IC „(JM)). (2.15)

Here, we approximate the correlation operator by considering single and double excitations only:

f Uaiajyj + —g aiajala
U kl

(2.16)

Applying this operator to the lowest-order state vector (2.9), we obtain

X-IC'-(JM)) = ).X"~.'~bo.'o-lO. ) + ).X ~ba.'IO. ) + ):X.a.'~-IO. ) + X.Io.)
rb bga rgv

+ ) X bti tt tibtt IO.) + ) X„bit,ohIO. )
reb ebgva

+—) Xb, atata, abata~IO, ) + ) Xb, ata, abat IO,). (2.17)
r she sbc

Equation (2.17) unveils an issue for open-shell systems
[53] referred to as the redundancy problem that has to do
with an ambiguity between difFerent sectors of the corre-
lation operator. On comparing the third and sixth terms
of Eq. (2.17), it is seen that the coefficients X"„and X„b
refer to the same state when 6 = a. The resulting am-
biguity is resolved by imposing the additional constraint
b g a on the pair coefficient X„b and adding the excluded
terms to the corresponding single-excitation coeKcients.
Thus, y"„ is replaced by y"„+y ".

Relations (2.13) and (2.17) lead to a system of coupled
equations for the correlation coefEcients:

I
H„'~, „=(s„—s )h„h' + W„" (2.25)

xs+ g gacgsgc g gcdgsgcd
scd

-st+ g gicstgjc&
etc

(2.26)

and the pair-excitation correlation term as

The single-excitation correlation term is de6ned as

R; =~;, +) ~;.X,
' —) ~.,X'. +) ~..X,".

(sb —e )Xb = Rb,

(Eb + 6'~ —G~ —EP)Xb = Rb
exp ap

(2.18)

(2.19)

U = tu u= gijkl + g gijtmXkl + P gcdkl+cd
tu cd

(s„—s, )X"„=R"„—) h

v'a'

I

(E~ + Gb E~ Eg)X b R b ) '5~~~ X IbW
v'a'

(s —e„)X„=R„—) X„W„"
v'a'

(2.20)

(2.21)

(2.22)

+ +ikXt + ) +itXbt ) +dbXdt
d

t ~ i+ gijtl Pk gdjkl Pd
t d

+ ) .qd'«Xb'd + (t =» = l)
td

(2.27)

(&e + &b —&~ —&.)X„b = R„b —) X„bW„", (2.23)
v'a'

where

where the notation denotes the terms identical to the
previous ones but with the corresponding indices inter-
changed. In Eqs. (2.26) and (2.27),

(2.24)
.gibj b +'i

b

(2.2S)

The efFective Hamiltonian can be written When U(r) is chosen to be the V~~ il HF potential, we



51 RELATIVISTIC MANY-BODY CALCULATIONS OF [2p 53s]. . . 1199

find that

g,kjk if i,j g core,
0 otherwise . (2.29)

Here, 6 is index of the the hole state used to generate the
V~ ~ HF potential. In our calculations, we construct
this potential with a hole in the 2p3y2 state.

To compute the correlation coefBcients, we iterate Eqs.
(2.18)—(2.23). Once convergence is obtained, these coeffi-
cients are used in the eff'ective Hamiltonian matrix (2.25).
On diagonalizing this matrix, we obtain the transition
energies and the mixing coeKcients between the states
under consideration.

In lowest order, we write R' —L,j and 'Rk~l —gijkl.
Using t;hese values, we obtain as an approximation for
the efFective Hamiltonian,

II„', , „=(s„—s )b„„b + A„„h
i$„i„+gvi (2.3O)

E' —E' '
2

Using these expressions, we obtain second approxima-
tions for 'R' and Rkl'.

The eigenvalues of this matrix give us the first approxi-
mation to the energy. In Table I, we list the correspond-
ing eigenvalues as E~ ~ + E~ ~.

If we use the lowest-order approximation above for 'R'

and 'R'l to obtain a first approximation for the correla-
tion operators, we find

gi jkl
Ek + El —Ei —Ej

+
8

)+ gicj8+Bc
c —Escs

) gicet9etj c

stc Ej + ~c E'8 —&t

+CSgZSJ C+
E' —E' E'j + E'c ~i E'8

c cs

gcdj sgiscd

BCd
E'c + Ed ~i ~s

(2.31)

~ij ) ~ gij tugtvkl ) ~ gcdklgij cd
gi jkl + + El E't E'u Ec + E'd i jcd

+i k +j l +it gt jkl+
E'l —Ej Ek + El —Et —Ej

+dkgi jdl
E'd + E'l —Ei —8'j

& gijtl +tk ~ gdjkl +id ~ gdjtlgitkd+ — +
Ek + Ed —Ei —Et

d td
+ (z.

—j, k = I) (2.32)

For the special case of the V& ~ HF potential, these expressions lead to

R"'
v

gv'cetgetvc

stc v +E'c Es &t
)- g.d.g -d

~v'v + g + Ed —E'„—E,
8 BC

gcda' sgascd + gacst gsta'c

scd
E'c + E'd —E'a —E'8 E'a + E'c —E'8 —E't

stc

gav'tugtuva' ~ ~ gcdva'gav'cd+
~v + a t ~u Ec+ Ed ~atu cd

+ +.g vt gdv'ta' gatvd gdv'tv gata'd
E'v —E't E'v + E'd —E'a —E't E' + E'd —E'a —E't

(2.33)

(2.34)

+ v't gtaa'v
E'v + E' —E't —E

gdatv gv'ta'd
- E'. +Ed —E'. —Et

gdata' gv'tvd

Ev + Ed —E'v —Et
(2.35)

Substitut, ing Eqs. (2.33) and (2.34) into Eq. (2.24)
leads to a second-order approximation for the efFective
Hamiltonian. In our numerical calculations, the mul-
tiple sums over excited states u and t are carried out
with the aid of finite basis methods. [62] The eigenval-
ues of the second-order efFective Hamiltonian are written
E~ ~ + E~ & + E& ~. The resulting values of E~ ~ for the
states considered are listed in Table I. Formulas for the
second-order energies obtained &om the iterative scheme
outlined here agree precisely with results of conventional

second-order MBPT [51]. The next iteration of the cou-
pled equations, however, leads to results that difFer from
conventional third-order perturbation theory. The dif-
ferences are accounted for by the fact that we include
only single and double excitations here, whereas contri-
butions Rom triple excitations also occur in third-order
perturbation theory.

For highly charged ions, second-order MBPT energies
are found to be very close to the iterative results. This
is not, the case in neutral and low-Z systems. Therefore,
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for low-Z cases, we must carry the iteration further to
obtain accurate energies. For all Z, we found that the
dominant contribution to the second-order energy arises
Rom the core-hole contribution to the interaction energy
given in Eq. (2.34). Therefore, we can obtain the domi-
nant correlation corrections by iterating only that subset
of the equations corresponding to core-hole interactions
and using the lowest-order values for the remaining cor-
relation coefficients. Specifically, we iterate Eq. (2.18)

and those terms in Eq. (2.19) corresponding to n = a
or P = a, and replace all other correlation coefficients
by their lowest-order values. In this way, we obtain accu-
rate energies using only modest computer resources. The
higher-order energies, designated by E( +) in Table I, are
all calculated in this approximation.

The largest contribution in the right-hand side of
Eq. (2.19) is the term that describes the interaction be-
tween the hole and other core states. For neutral systems,

TABLE I. Contributions to transition energies (a.u. ) of the [2p~&23siys]2, (2); [2p~&s3siy2]i, (1L); [2pi&23siy2]0 (0)' aiid

[2p i 3siis]i, (1U) states of neonlike ions from zeroth- through second-order Coulomb energy, E + and Ei l, all-order

hole-core Coulomb correlation energy, E +, first- and second-order frequency-independent Breit energy, B( and B,RPA
correction to the frequency-independent Breit energy, B~ +l, first-order frequency-dependent Breit energy, AB, the QED
correction term, "QED", and the reduced-mass and mass-polarization correction, "RM." The sum of these terms, "Total, " is
the theoretical energy of the states relative to the ground state.

Z
10
10
10
10

State
(2)

(1L)
(o)

(1U)

E(o+i)
0.6614
0.6640
0.6659
0.6753

E(~)
—0 ~ 1590
—0.1602
—0.1595
—0.1674

E(3+)
0.1080
0.1085
0.1078
0.1100

B(i)
—0.0006
—0.0007
—0.0009
—0.0007

B(2)
0.0013
0.0013
0.0012
0.0012

B(3+)
—O.G006
—0.0006
—0.0007
—0.0007

AB
0.0000
0.0000
0.0000
G.OOOO

QED
0.0000
0.0000
0.0000
0.0000

RM
0.0001
0.0001
0.0001
0.0001

Total
0.6106
0.6124
0.6140
0.6177

20
20
20
20

(2)
(1L)
(0)

(lU)

12.8222
12.8661
12.9643
13.0053

—0.0673
—0.0716
—0.0697
—0.0761

0.0148
0.0153
0.0152
0.0159

—0.0102
—0.0105
—0.0145
—0.0144

0.0051
0.0050
0.0049
0.0049

—0.0007
—0.0007
—0.0008
—0.0008

0.0001
0.0001
0.0000
0.0000

0.0010
0.0010
0.0013
0.0013

0.0001
0.0001
0.0001
0.0001

12.7650
12.8048
12.9007
12.9361

30
30
30
30

(2)
(1L)
(o)

(1U)

38.7013
38.7958
39.6160
39.6722

—0.0629
—0.0709
—0.0690
—0.0750

0.0079
0.0084
0.0084
0.0087

—0.0428
—0.0422
—0.0611
—0.0627

0.0121
0.0119
0.0120
0.0119

—0.0010
—0.0010
—0.0011
—0.0011

0.0006
0.0006
0.0001
0.0001

0.0047
0.0047
0.0067
0.0067

0.0001
0.0001
0.0001
0.0001

38.6200
38.7073
39.5120
39.5609

40
40
40
40

(2)
(1L)
(0)

(1U)

78.0421
78.1768
81.3375
81.4068

—0.0611
—0.0640
—0.0742
—0.0732

0.0054
0.0057
0.0060
0.0062

—G.1124
—0.1106
—0.1631
—0.1681

0.0222
0.0221
0.0226
0.0224

—0.0014
—0.0014
—0.0015
—0.0015

0.0028
0.0028
0.0004
0.0004

0.0135
0.0135
0.0200
0.0200

0.0001
0.0001
0.0001
0.0002

77.9112
78.0450
81.1479
81.2131

50
50
50
50

60
60
60
60

70
70
70
70

(2)
(1L)
(o)

(1U)

(2)
(1L)
(o)

(1U)

(2)
(1L)
(0)

(1U)

130.4621
130.6423
139.2705
139.3769

195.3867
195.6142
215.2916
215.4275

271.9485
272.2308
311.8748
312.0209

—0.0586
—0.0621
—0.0959
—0.0831

—0.0554
—0.0597
—0.0880
—0.0829

—0.0518
—0.0616
—0.0983
—0.0862

0.0041
0.0044
0.0049
0.0051

0.0033
0.0035
0.0043
0.0045

0.0027
0.0029
0.0040
0.0041

—0.2322
—0.2282
—0.3237
—0.3538

—0.4149
—0.4072
—0.6443
—0.6632

—0.6717
—0.6573
—1.0970
—1.1343

0.0351
0.0349
0.0372
0.0369

0.0509
0.0505
0.0565
0.0562

0.0692
0.0675
0.0816
0.0815

—0.0018
—0.0018
—0.0020
—0.0020

—0.0022
—0.0022
—0.0025
—0.0025

—0.0026
—0.0026
—0.0032
—0.0032

0.0091
0.0091
0.0011
0.0011

0.0236
0.0237
0.0024
0.0024

0.0526
0.0527
0.0040
0.0040

0.0293
0.0293
0.0445
0.0445

0.0526
0.0526
0.0826
0.0826

0.0846
0.0846
0.1345
0.1345

0.0001
0.0001
0.0002
0.0002

0.0002
0.0002
0.0003
G.0003

0.0002
0.0002
0.0005
0.0005

130.2473
130.4281
138.9368
139.0258

195.0447
195.2755
214.7029
214.8249

271.4317
271.7172
310.9010
311.0219

80
80
80
80

90
90
90
90

(2)
(1L)
(o)

(1U)

(2)
(1L)
(o)

(lU)

358.8185
359.1536
432.8908
433.0641

453.9185
454.3127
584.1959
584.3993

—0.0478
—0.0566
—0.1107
—0.0972

—0.0434
—0.0512
—0.1262
—0.1102

0.0023
0.0024
0.0039
0.0040

0.0019
0.0020
0.0040
0.0041

—1.0108
—0.9885
—1.7632
—1.8258

—1.4350
—1.4027
—2.7282
—2.8298

0.0898
0.0876
0.1145
0.1141

0.1120
0.1095
0.1579
0.1573

—0.0031
—0.0031
—0.0040
—0.0040

—0.0037
—0.0037
—0.0050
—0.0050

0.1047
0.1048
0.0046
0.0047

0.1907
0.1910
0.0004
0.0007

0.1265
0.1265
0.1961
0.1961

0.1810
0.1810
0.2543
0.2543

0.0002
0.0003
0.0007
G.0007

0.0003
0.0004
0.0012
G.0012

358.0802
358.4271
431.3328
431.4568

452.9223
453.3390
581.7544
581.8719
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this strong interaction led to convergence problems in
the iteration solution to Eq. (2.19). Therefore, for those
coeKcients with a = a and b or c = a or P = a and
b or c = u, we replace Eq. (2.19) with the mathemati-
cally equivalent expression

(eb + tc ea ep gbcbc)+bc = +bc gbcbcXbc . (2.36)np np cxP

The iterative solution to this equation converges more
rapidly than that of the original equation.

B. Breit interaction

The Breit interaction is introduced into the no-pair
Hamiltonian by adding the term

(2.37)

to the Coulomb interaction Hamiltonian Vl. Here b;~A, ~

is a two-particle matrix element of instantaneous Breit
operator b(r12),

1
b(1'12) [o'1 ~2 + ~11 r12o'2 r12] .

2p12
(2.3s)

The Breit interaction leads to small corrections to the
energy levels that are treated only to first order in V~
but to higher order in Vl.

The various corrections to the Breit interaction are ob-
tained by replacing VI with Vl + V~ in the many-body
Hamiltonian, carrying out an order-by-order perturba-
tion expansion for the energy, then linearizing (in VH)
the resulting terms in the energy expansion. In this way,
we obtain for the 6rst-order Breit correction

Once these equations have been solved, the RPA correc-
tion to the core-hole Breit energy is given by

2 ~ - (BHFA) bg. .b
RPA =

E'b —Gm
mb

(2.43)

If we ignore the Coulomb interaction, (BHFA) „
(BHF)„. In this approximation, b'ERFA = (BRFA)
The difFerence bEHFA —(BHFA) gives the third- and
higher-order RPA corrections to the Breit interaction.
%'e designate this difFerence as B~ +~ in Table I.

C. +ED corrections

The @ED efFects of electron self-energy, vacuum polar-
ization, and frequency dependence of the Breit interac-
tion were evaluated in a local potential that approximates
the V~ ~ HF potential. This potential is de6ned by

The second-order RPA correction contributes about 90%
of the entire second-order Breit energy. Moreover, the
second-order Breit interaction is a substantial fraction of
the first-order Breit interaction, ranging from 100% near
the neutral end of the spectrum to about 10'%%uo for Z = 92.

Because of the relatively large size of the second-order
RPA correction, we also include third- and higher-order
RPA corrections in our calculations. These higher-order
contributions are included by solving the Breit RPA
equations,

(BRPA)mb[gn amb + gabam]
BRPA) na = ( HF) na + g

mb

(2.42)

B ' = ). (BHF) —(BHF).o & „
av

+ ~v'aa'v +a'v' +av (2.39)

U(r) = ) (2jb+ 1)vo(b, r) —vo(h, r),

where h designates the 2p3y~ state and where

(2.44)

where C are the expansion coefBcients from the 6rst-
order Coulomb energy and

(BHF)ij = ) bicjc = ) hiccup ' (2.40)
(2.45)

(2) y ~ ~ (BHF)mbgamab
RPA&«

~b —~mmb

(2.41)

Numerical values of B~ & are listed in Table I. For
particle-hole states in neonlike ions, the doxninant contri-
bution to B~il is from the term (BHF), which accounts
for between 80% and 90'%%uo of the entire term.

The second-order Breit correction B~ ~, also listed in
Table I is obtained by linearizing the expression for the
second-order Breit + Coulomb energy in the Breit in-
teraction. This correction is also dominated by a sin-
gle term, which can be identi6ed as the second-order
random-phase-approximation (RPA) correction to the
core-hole Breit interaction. For a single channel case,
this particular contribution is given by

Here, G (r) and I', (r) are the large and small compo-
nents of the radial Dirac orbital for state c. The potential
U(r) and the core orbitals are calculated self-consistently
using standard methods.

Emquency-dependent Breit cot acti on

Since U(r) is a local potential, the frequency depen-
dence of the Breit interaction can be obtained by calcu-
lating one-photon exchange in Feynman gauge and then
subtracting the instantaneous Coulomb and Breit inter-
actions. The 6rst-order corrections calculated in this way
are designated by LB in Table I.
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g. Self e-nergy and eocanrn polarization

D. Reduced mass and mass polarization

Reduced mass corrections are given by

gEzM — @(o) + @(i) + @(~) + E(s+)
M

y ~(') ~ s(') ~ ()( +) ~ ~~ ) (2.46)

The electron self energy and vacuum polarization were
calculated using methods described in Ref. [63]. The only
significant di6'erences in the method described in that pa-
per is that we include 17 partial waves here rather than 13
and carry out a more accurate evaluation of the vertex di-

am in momentum space. To check the calculation, weagram in mom
~ 0

1let U(r) = 0, replaced V„„,(r ) with a Coulomb potentia,
and obtained good agreement with the values tabulated
by Mohr and Kim for the 3siyq states [64] and by Mohr
[65] for the 2pi~q and 2ps~q states. Explicit calculations
were carried out at Z = 25, 35, 50, 60, 70, 80, and 90. In-
terpolation was used for intermediate Z values. Below
Z = 25 scaled values of the Coulomb results were used.
Because two-photon @ED effects were not included, this
part of the calculation has the largest theoretical error,
which can be taken to be of order 1/Z of the Lamb shift.
In Table I, we list the sum of the self-energy and vacuuxn
polarization under the heading "@ED."

'U —381/2 & 383/2 &
or 385/2. Next, the eigenvalue prob-

lem Eq. (2.30) is solved to give the lowest-order approxi-
mation for the expansion coefficients together with the
energies E~ & + E( ~. In Fig. 1, we show the results
of this preliminary calculation for Z = 10 —90. From
the upper panel of this figure, it is apparent that the
[2 3a ] state remains isolated &om the four remain-81/2)2
ing states for all Z. By contrast, for J = 1, the two states
[2 3s ] and [2p 3sqgq]q are nearly degenerate atP1/2 1/» 3/2
low Z, while the states [2pz&&3sr~z]q, [2p~&~3ds~~]i) and

[2 3d ] interact strongly near Z = 50. Prom theP3/2 5/2i 1

lower panel, we see that the [2p&&&3szyz]o state is well

isolated from the [2pz&&3dsgq]0 state except near Z = 50.
With these observations in mind, we adopt the follow-
ing computational scheme: For J = 2, we carry out a
one-channel calculation starting &om the configuration
[2 3s . For J = I we carry out a two-channel ca—1-P3/2 81/2 2.
culation starting &om configurations L2p1/2381/2j1

—1 and

[2ps &3s1yq]q except in the range 40 ( Z ( 60, whereP3/2 81/2 1

we carry out a full five-channel calculation. oFr J=O
we carry out a one-channel calculation starting &om
[2p

&
3sqgq]0 except in the range 40 ( Z ( 60, whereP1/2 81/2 O

we carry out a two-channel calculation using configura-
tions [2p&&&3sly~]0 and [2pz&&3dsyq]o. In our discussion,

Is

=1 . ttHMp = —
p;&Ic~ a a.a~aA, ,M

ijkl
(2.47)

p', a =i(i~l» x ~lk&&.

where M is the nuclear mass in atomic units. Since this
correction is included explicitly, the infinite mass Ryd-
berg constant must be used to convert experimental en-
ergies to atomic units for comparison with our calcula-
tions. Additionally, we include mass-polarization correc-
tions, which are also inversely proportional to the nuclear
mass. Assuming that the nuclear motion is nonrelativis-
tic the mass-polarization corrections are obtained &om
the Hamiltonian

c5

N

1

LLJ
+

LLj

CO

0.9

0.8—

07—

1.0

0.9

0.8

0.7

0.6

(PD)
A

(ps)

(PD)
h

(ps)

(P1~Zda~}-

(p lg»)

(p,d,)-
(pard»)

(p»s», )
I i » I

(P1/2 1/2)-

p»d~~
p»d»

(P»S1~}I, i i I

This correction is calculated to first-order only. The sum
of the first-order mass-polarization correction and the
reduced-mass correction is designated by "RM" in Ta-
ble I.

III. RESULTS

1.0—

0.9

0.8

0.7

(Po)

(PS}

J=O

(p„,s, )-

(p ,d )-

~r(N —1)As a first step in our calculation, we solve the V
HF equations to obtain the 181/2, 2s1/2, 2p1/2, and 2p3/2
core orbitals and the 381/2, 3d3/2, and 3d5/2 valence or-
bitals. We then construct the unperturbed state vec-
tors for J = 0, 1, and 2 states as linear combinations
of particle-hole states having a = 2p1/2 or 2p3/2 and

0.6
0

I

20
I I

40 60
2

s a i I

80 100

FIG. 1. Sum of the lowest- and Qrst-order energies
E( ) +E( } for the J = 0, J = 1, and J = 2 states of neonhke
ions from a V HF calculation. All states obtained by
coupling a 2p hole with a 38 or 3d excited electron are shown.
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FIG. 2. Electrostatic correlation energy E +E +E +

for the J = 0, J = 1, and J = 2 states of neonlike ions ob-
tained from the iteration solution to the all-orders equations.

FIG. 4. Breit-Coulomb correlation corrections B ~+B +

for [2p 3s] particle-hole states of neonlike ions.

we refer to the [2pz&&3sqg2]q state as the J = 1(I) state

and to the [2p~&&3sqy2]q state as the J = 1(U) state.
The labels (L) and (U) refer to lower and upper energy
states. The values of E~ ~+E~ ~ obtained &om such cal-
culations are listed at intervals of Z = 10 in Table I. The
higher-order correlation corrections E& ~ and E~ +~ ob-
tained by iterating the all-order equations are also listed
in Table I and the total electrostatic correlation energy
E~ ~ + E& ~ + E~ +~ is plotted against Z for each of the
four states in Fig. 2. The irregularities in the correlation
corrections for the two states J = 0 and J = 1(U) seen
in this figure are due to the near degeneracy of levels
discussed above.

For highly charged ions, the largest correction to the
energy is from the first-order Breit interaction B~ ~. This
correction is shown in Fig. 3. Since the first-order Breit
interaction is dominated by (BHF), as discussed previ-
ously, the values are essentially independent of J and, as
seen in the figure, the interaction energy depends princi-
pally on the hole state a. Numerical values of B~ ~ and
the higher-order Breit-Coulomb corrections, B&2~ and
B~ +~, are give in Table I and the sum B~ ~+B~3+~ is plot-
ted as a function of Z in Fig. 4. The &equency-dependent

Breit correction AB and the @EDcorrections are shown
in Figs. 5 and 6, respectively. These corrections are also
listed in Table I. Finally, the sum of the reduced-mass
and mass-polarization corrections are given in Table I,
along with the resulting theoretical energy levels.

In Table II, we give theoretical energies for each of the
four [2p 3s]~ states for the 46 ions considered here.

The previous calculation that is closest in approach
to the present one is the nonrelativistic coupled-cluster
calculation for neutral neon of Kaldor and Haque [49].
In that calculation, electrostatic correlation corrections
were treated more completely than here, but relativis-
tic and @ED corrections were ignored. The predicted
values of the two J = 1 state energies were larger than
those &om the present calculation by about 0.001 a.u. ;
the energy of the singlet state agrees to four figures with
experiment, while the triplet state energy disagrees with
experiment at the 0.001 a.u. level. In the present calcu-
lation, the situation is reversed; the three triplet state
energies agree with experiment at the 0.0002 a.u. level
while the singlet state energy disagrees with experiment
at the 0.001 a.u. level (Fig. 7).

We also find excellent agreement with the semi-
empirical calculations of Hibert, Le Dourneuf, and Mo-
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0.05

~ J=O
~ J=1(L)
~ J=1(U)
~ J=2 0

0
0
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80 100
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0 0, o P
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FIG. 3. Lowest-order Breit interaction H for [2p 3s]
particle-hole states of neonlike ions.

FIG. 5. Correction for frequency dependence of the Breit
interaction b,H for [2p 3s] particle-hole states of neonlike
lons.
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han [47] for their entire range of values 10 & Z & 36;
the disagreement being of order 0.005 a.u. through-
out this range. Our calculations difFer &om the 1y'Z-

expansion values of Saf'ronova, Safronova, and Bruch [46]
by amounts ranging &om 0.001 a.u. at Z = 18 to 0.1 a.u.
at Z = 54. We difFer &om the Dirac-Slater calculation
of Sampson et al. [45] by amounts ranging between 0.03
a.u. for Z = 26 and 0.15 a.u. for Z = 56. Relatively
good agreement is found with the MCDF calculations of
Cogordan and Lunell [44] over their range 20 & Z & 54;
within this range, the difFerences increase &om 0.01 to
0.04 a.u. . DifFerences from 0.03 to 0.05 a.u. are found
with the relativistic configuration-interaction (CI) calcu-
lations of Kagawa, Honda, and Kiyokawa [50] over the
range 18 ( Z & 42. Finally, we difFer with the CI cal-
culations of Biemont and Hansen [42] by 0.01—0.03 a.u.
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FIG. 6. +ED corrections for 3siy2, 2piy2, and 2psyq states
of neonlike ions.

TABLE II. Theoretical transition ener gies for the [2p~ &23s q y2] 2, (2); [2p~
&
~3s i g ~]q, (1L);

[2p i 3sqy2]o, (0); and [2p~&23sqy2]q, (1U) states of neonlike ious. Units: a.u.

(2)
Z E Z E Z
10 0.6106 19 10.9295 28
11 1.2062 20 12.7650 29
12 1.9380 21 14.7375 30
13 2.8079 22 16.8470 31
14 3.8163 23 19.0931 32
15 4.9630 24 21.4755 33
16 6.2479 25 23.9941 34
17 7.6708 26 26.6486 35
18 9 2314 27 29 4387 36

32.3641
35.4247
38.6200
41.9497
45.4137
49.0114
52.7426
56.6069
60.6039

Z
40
42
46
47
48
50
51
52
53

77.9112
8?.3503

107.7796
113.2067
118.7611
130.2473
136.1780
142.2329
148.4111

Z
54
56
57
60
63
68
70
72

E
154.7120
167.6783
1?4.3421
195.0447
216.7936
255.2821
271.4317
287.9936

Z E
74 304.9550
78 340.0147
79 349.0045
80 358.0802
82 376.4766
83 385.7929
90 452.9223
92 472.6117

(1L) 10 0.6124 19
11 1.2096 20
12 1.9435 21
13 2.8161 22
14 3.8279 23
15 4.9786 24
16 6.2679 25
17 7.6955 26
18 9.2611 27

10.9642
12.8048
14.7823
16.8967
19.1477
21.5349
24.0583
26.7175
29.5122

28
29
30
31
32
33
34
35
36

32.4423
35.5075
38.7073
42.0417
45.5101
49.1124
52.8481
56.7170
60.7186

40
42
46
47
48
50
51
52
53

78.0450
87.4933

107.9413
113.3733
118.S323-
130.4281
136.3637
142.4234
148.6065

54 154.9124
56 167.8886
57 174.5575
60 195.2755
63 217.0400
68 255.5561
70 271.7172
72 288.2908

74 305.2643
78 340.3487
79 349.3449
80 358.4271
82 376.8366
83 386.1597
90 453.3390
92 473.0437

10 0.6140 19 11.0355 28
11 1.2123 20 12.9007 29
12 1.9479 21 14.9089 30
13 2.8233 22 17.0604 31
14 3.8392 23 19.3560 32
15 4.9958 24 21.7961 33
16 6.2933 25 24.3816 34
17 7.7322 26 27.1129 35
18 9.3128 27 29.9908 36

33.0161
36.1896
39.5120
42.9844
46.6075
50.3825
54.3102
58.3919
62.6285

40
42
46
47
48
50
51
52
53

81.1479
91.3705

113.7987
119.8278
126.0290
138.9368
145.7238
152.6224
159.7145

54
56
57
60
63
68
70
72

166.9939
182.1192
189.9696
214.7029
241.2701
289.8650
310.9010
332.8999

74 355.9000
78 405.0692
79 418.0557
80 431.3328
82 458.7846
83 472.9748
90 581.7544
92 616.1665

(lU) 10 0.6177 19 11.0697
11 1.2233 20 12.9361
12 1.9647 21 14.9454
13 2.8448 22 17.0982
14 3.8642 23 19.3950
15 5.0235 24 21.8365
16 6.3232 25 24.4232
17 7.7637 26 27.1560
18 9.3458 27 30.0353

28 33.0620
29 36.2370
30 39.5609
31 43.0347
32 46.6593
33 50.4357
34 54.3649
35 58.4480
36 62.6860

40
42
46
47
48
50
51
52
53

81.2131
91.4384

113.8711
119.9012
126.1035
139.0258
145.7815
152.6736
159.7507

54 166.9801
56 182.2894
57 190.1113
60 214.8249
63 241.3873
68 289.9847
70 311.0219
72 333.0219

74
78
79
80
82
83
90
92

356.0229
405.1S32
418.1797
431.4568
458.9083
473.0982
581.8719
616.2809
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TABLE III. Comparison of the present MBPT calculations of [2p~&23sq~2]2 energies (a.u. ) for

Ag +, Xe +, La +, Nd +, and Eu + with the MCDF calculations and experiments of Ref. [37].

Z=47 Ag +

MBPT
MCDF
DifF.

Z=54 Xe +

MBPT
MCDF
DifF.

Z=57 La"+
MBPT
MCDF
DifF.

Z=60 Nd +

MBPT
MCDF
DiK

Z=63 Eu53+

MBPT
MCDF
DifF.

@Coulomb

113.337
113.305

0.032

154.919
154.886

0.033

174.588
174.556

0.032

195.335
195.302

0.033

217.132
217.099

0.033

@Breit

—0.154
—0.161

0.007

—0.244
—0.253

0.009

—0.291
—0.300

0.009

—0.343
—0.352

0.009

—0.399
—0.410

0.011

0.024
0.025

—0.001

0.038
0.040

—0.002

0.045
0.049

—0.004

0.053
0.057

—0.004

0.061
0.067

—0.006

113.207
113.169

0.038

154.712
154.673

0.039

174.342
174.304

0.038

195.045
195.006

0.039

216.794
216.755

0.039

@Expt

113.215 (6)

154.720 (5)

174.352 (7)

195.057 (8)

216.813 (21)

A (Theor —Expt)

—0.008 (6)
—o.o46 (6)

—0.008 (5)
—0.047 (5)

—0.010 (7)
—0.048 (7)

—0.012 (8)
—0.051 (8)

—0.019 (21)
—0.058 (21)

over their range of values 20 & Z & 34.
For high Z, the most reliable calculations appear to

be the 36 configuration MCDF calculations reported in
Ref. [37]. In Table III, we compare values of the elec-
trostatic, Breit, and @ED contributions to the energies
of the J = 2 states given in Ref. [37] with correspond-
ing values &om the present calculation. We 6nd that the
electrostatic energies of the four ions considered differ by
0.033 a.u. , the Breit corrections differ by about 0.01 a.u. ,
and the +ED corrections differ by less than 0.006 a.u. .
By including correlation corrections, the differences with
experiment of 0.05 a.u. found in Ref. [37] are reduced to

0.01 a.u. .
In Tables IV-VII, we compare in detail the theoretical

and experimental energies. We see that the theoretical
energies are systematically smaller than the experimen-
tal ones; the differences ranging &om 0.001 a.u. near the
neutral end to 0.01 a.u. near Z = 54, and then increas-
ing more rapidly to 0.1 a.u. at Z = 90. In Fig. 8,
we plot the differences between theory and experiment,
together with the estimated error bars. These differences
can be 6tted by the weighted least squares polynomial,
—0.001636(2 + 0.000498( —0.000047( with ( = Z/10,
which is also shown in the figure. The present calcu-

TABLE IV. Comparison of theoretical and experimental energies for the [2p~&~3sqy2]q state of
neonlike iona. Units: (a.u. )

Z Theory Expt
10 G.6106 G.61G7
11 1.2062 1.2071
12 1.9380 1.9394
13 2.8079 2.8096 (1)
14 3.8163 3.8183(1)
15 4.9630 4.9657 (5)
16 6.2479 6.2503 (5)
24 21.4755 21.479 (9)
26 26.6486 26.652 (7)
28 32.3641 32.368 (20)
29 35.4247 35.436 (13)
36 60.6039 60.602 (9)
47 113.2067 113.215 (6)

ef.
[1]
[19]
[11
[2o]
[4]
[5]
[6]
[26]
[11]
[29,13]
[14]
[16]
[36]

Theor —Expt R
—0.0001
—0.0009
—0.0014
—0.0017
—0.0020
—0.0027
—0.0024
—0.003
—0.003
—0.004
—0.011

0.002
—0.008

Z Theory
54 154.7120
56 167.6783
57 174.3421
60 195.0447
63 216.7936
68 255.2821
72 287.9936
74 304.9550
78 340.0147
79 349.0045
80 358.0802
82 376.4766
90 452.9223

Expt
154.720 (5)
167.688 (7)
174.352 (7)
195.057 (8)
216.813(21)
255.317(7)
288.013(11)
304.998 (14)
340.073 (15)
349.070 (32)
358.124 (23)
376.504 (19)
453.029 (32)

ef.
[371
41]
[37]
37]
[37]
[41]
[41]
[41]
[41]
38,41]
41]
41]
4o]

Theor —Expt R
—0.008
—0.010 [
—0.010
—0.012 [—0.019
—0.035
—0.019
—0.043
—0.058
—0.065 [-0.044 [
—0.027 [—0.107 [
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Z Theory Expt
32 45.5101 45.518 (22)
33 49.1124 49.158 (25)
34 52.8481 52.890 (28)
35 56.7170 56.740 (32)
36 60.7186 60.720 (9)
42 87.4933 87.573 (140)
47 113.3733 113.381(6)
54 154.9124 154.919(5)
56 167.8886 167.895(7)
57 174.5575 174.572(13)
60 195.2755 195.291(8)
63 217.0400 217.072 (21)
68 255.5561 255.585(14)
72 288.2908 288.308(11)
74 305.2643 305.303(14)
78 340.3487 340.398 (18)
79 349.3449 349.412 (32)
80 358.4271 358.448(23)
82 376.8366 376.837(19)
83 386.1597 386.155 (44)
90 453.3390 453.434 (27)

6.2705 (5)
7.6977 (20)
9.2646 (5)

10.9683 (18)
12.8074 (30)
14.786 (2)
16.900 (2)
19.149 (7)
21.540 (9)
24.063 (9)
26.722 (7)
29.516 (9)
32.446 (20)
35.520 (13)
38.715 (10)
42.060 (20)

6,7]
21]
22]
23]
24]
8]
25]
g]
26,10]
27]
11]
12]
29]
14,15]
30
31]

16 6.2679
17 7.6955
18 9.2611
19 10.9642
20 12.8048
21 14.7823
22 16.8967
23 19.1477
24 21.5349
25 24.0583
26 26.7175
27 29.5122
28 32.4423
29 35.5075
30 38.7073
31 42.0417

—0.0026
—0.0022
—0.0035
—0.0041
—0.0026
—0.004
—0.003
—0.001
—0.005
—0.005
—0.005
—0.004
—0.004
—0.012
—0.008
—0.018

TABLE V. Comparison of theoretical and experimental energies for the
neonlike ions. Units: a.u.

Z Theory Expt
10 0.6124 0.6127
11 1.2096 1.2106
12 1.9435 1.9450
13 2.8161 2.8180 (1)
14 3.8279 3.8300 (1)
15 4.9786 4.9814 (5)

Theor —Expt Ref.
—0.008 [32]
—0.046 [33]
—0.042 [34]
—o.o23 [as]
—0.001 [16]
—0.080 [17,18]
—0.008
—0.007
—0.006
—0.015
—0.015
—0.032
—0.029
—0.017
—0.039
—0.049
—0.067
—0.021
—0.000

0.005
—0.095

a6]
37]
41]
37]
37]
37]
41]
41]
41]
41]
38,41]
41]
41]
39]
40]

[2p~&~as~~~]q state of

TABLE VI. Comparison of theoretical and experimental energies for the
neonlike ions. Units: a.u.

[2p~ &~as x y2] o state of

z
10
11
12
13
14

Theory
0.6140
1.2123
1.9479
2.8233
3.8392

Expt
0.6143
1.2133
1.9495
2.8252 (1)
3.8413 (1)

Theor —Expt
—0.0003
—0.0010
—0.0016
—0.0019
—0.0021

Ref.
[1]
[»1
[1]
[2o]
[4]

z
15
16
26
29
36

Theory
4.9958
6.2933

27.1129
36.1896
62.6285

Expt
4.9986 (5)
6.2960 (5)
27.113(7)
36.195 (13)
62.628 (9)

Theor —Expt
—0.0028
—0.0027
—0.000
—0.005

0.000

Ref.
[5]
[6]
[28]
[14]
[16]

TABLF VII. Comparison of theoreticaj and experimental energies for the [2p~&23sqg2]q state of
neonlike ions. Units: a.u.

Z Theory
10 0.6177
11 1.2233
12 1.9647
13 2.8448
14 3.8642
15 5.0235
16 6.3232
17 7.7637
18 9.3458
19 11.0697
20 12.9361
21 14.9454
22 17.0982
23 19.3950
24 21.8365
25 24.4232
26 27.1560

Expt
0.6192
1.2246
1.9662
2.8464 (1)
3.8661 (1)
5.0262 (5)
6.3257 (5)
7.7656 (20)
9.3501 (5)

11.0730 (18)
12.9395 (30)
14.948 (2)
17.103 (2)
19.397(7)
21.839 (9)
24.426 (9)
27.160 (7)

—0.0015
—0.0016
—0.0019
—0.0027
—0.0025
—0.0019
—0.0043
—0.0033
—0.0034
—0.003
—0.005
—0.002
—0.003
—0.003
—0.004

[2]
[3]
[4]
[51

[6,7]
[21]
22]
23]
24]
8]
25]
g]
26,10]
27]
ll]

Theor —Expt Ref.
—0.0015 [1]
—0.0013 [19]

Z Theory
27 30.0353
28 33.0620
29 36.2370
30 39.5609
31 43.0347
32 46.6593
33 50.4357
34 54.3649
35 58.4480
36 62.6860
42 91.4384
47 119.9012
54 166.9801
57 190.1113
60 214.8249
83 473.0982

Expt
30.037 (9)
33.067 (20)
36.246 (13)
39.565 (10)
43.053 (22)
46.675 (23)
SO.434(27)
54.412(30)
58.490 (33)
62.686 (9)
91.491 (140)

119.894 (6)
166.972 (6)
190.125 (8)
214.861 (15)
473.114(55)

Theor —Expt
—0.002
—0.005
—0.009
—0.004
—0.018
—0.016

0.002
—0.047
—0.042

0.000
—0.053

0.007
0.008

—0.014
—0.036
—0.016

Ref.

[29]
[14,15]
[30]
[31]
32]
33]
34]
3S]
16]
17,18]
36]
37]
37]
37]
39]
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FIG. 7. Comparison of energies of the J = 0, 1, and 2 states
of neonlike ions with other theories.
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lation improves the agreement between ab initio theory
and experiment for the isoelectronic sequence by roughly
an order of magnitude.

We have no explanation for the residual differences be-
tween theory and experiment at high Z. They are most
likely the result of our approximate treatment of the @ED
corrections. It should be noted that in another recent
MBPT calculation of 2s —+ 2p transitions in neonlike
uranium, differences between theory and experiment of
the same order of magnitude were found [57].

FIG. 8. Differences between theoretical and experimental
energies for the J = 0, 1, and 2 states of neonlike ions. The
dot-dashed curve represents a least-squares fit to the energy
di8erences.
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