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A complete, numerical calculation of the effect of the exchange of two virtual photons between
the electrons in the ground states of heliumlike systems is presented. Feynman diagrams with un-
crossed and crossed photons are evaluated, using the Furry interaction picture [Phys. Rev. Sl,
115 (1951)], neglecting nuclear recoil. The calculations are carried out in. the Feynman gauge as
well as in the Coulomb gauge, and the gauge invariance of this set of diagrams is verified with high
numerical accuracy. The numerical technique employed is similar to that recently developed for our
self-energy calculations [H. Persson, I. Lindgren, and S. Salomonson, Phys. Scrip. T46, 125 (1993);
I. Lindgren, H. Persson, S. Salomonson, and A. Ynnerman, Phys. Rev. A 47, R4555 (1993)]. An
explicit summation is performed over a complete set of intermediate states with positive and nega-
tive energy, generated with the technique of discretization. The photon propagators are expanded
in spherical waves, and the radial integrations are performed numerically using analytical Bessel
functions. Also the integration over the photon energy is performed numerically. The calculations
are performed for different values of the nuclear charge in the range Z = 2—92. Corresponding
calculations are also performed without retardation and neglecting the effect of negative-energy
states (virtual electron-positron pairs), thus simulating relativistic many-body calculations in the
no-virtual-pair approximation. The difference, which in this way is obtained with high numerical
accuracy, represents the "quantum electrodynamics (+ED) correction, " which should be added to
the many-body result in a combined +ED-many-body procedure. The various contributions to the
two-photon exchange have been analyzed in detail and compared with the analytical results to order
(Zo.) of Sucher [Phys. Rev. 109, 1010 (1958)]. From our analysis, general conclusions can also be
drawn concerning the accuracy of various relativistic many-body approaches.

PACS number(s): 31.10.+z, 31.20.Di, 31.30.Jv

I. INTRODUCTION

The interest in the application of relativistic many-
body perturbation theory (RMBPT) to atomic systems
has increased significantly in recent years, mainly due
to the development in heavy-ion spectroscopy. It is now
possible to study virtually any ion of the Periodic Ta-
ble up to hydrogenlike uranium [1]. Most RMBPT cal-
culations are based on the so-called no-virtua/-pair ap-
proximation, where the effect of negative-energy states
(virtual electron-positron pairs) as well as radiative ef-
fects are omitted [2—4]. Using the Coulomb gauge, this
approximation is for low Z correct to the order (Za)
hartree atomic units (hartree) or n (nZ) in relativistic
units. This accuracy is usually suf6cient for applications
on low-Z systems or when studying the outer electrons of
heavier systems (for which the "effective" nuclear charge
is still rather small). On the other hand, for heavy, highly
charged ions, or in studying inner holes on any heavy
system, effects beyond the no-virtual-pair approximation
become quite significant.

The single-electron Lamb shift is of the order Z(Zn)
hartree for low Z and becomes comparable to the electron

correlation already in the first half of the Periodic Table.
The virtual pairs have leading contributions of the orders
(Zn)sin(Zn) and (Za) and become comparable to the
electron correlation for high Z. Other effects that enter in
the order (Zo.) are the retardation effect and the many-
electron correction to the Lamb shift ("screening"). Also
the second-order Breit interaction (Breit-Breit) is of this
order [5—9].

We have recently developed a new technique of evalu-
ating the Lamb shift for heavy ions, applied to lithium-
like uranium [10], where new experimental information
has recently become available [11]. This technique is
based on the generation of a complete set of solutions of
the single-electron Dirac equation, using the method of
discretization, developed by Salomonson and Oster [12].
The technique is also well adapted for the evaluation of
other kinds of @ED effects and we present here a com-
plete evaluation of the two-photon exchange between the
electrons of He-like systems. Similar calculations have
recently been performed also by Blundell et al. [9], using
a different evaluation procedure and, where a comparison
can be made, the numerical agreement between the two
calculations is found to be very good. We are presently
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also involved in the evaluation of other two-photon ef-
fects in few-electron systems, such as the combined self-
energy vacuum-polarization and combined self-energy—
self-energy effects, which are reported elsewhere [13—15].

The work presented here represents a step toward the
construction of a combined many bod-y QE—D procedure
[16,17]. For very highly charged, heavy ions, single-
electron radiative effects dominate over the many-body
(correlation) effects and it is then a good procedure to
base the treatment entirely on the QED formalism, i.e. ,
treating successively one-, two-, etc. , photon effects in a
rigorous manner. For less highly charged systems, on the
other hand, the many-body efFects become more impor-
tant and they are usually slowly converging. It would
then be a hopeless task to perform an accurate calcula-
tion for such a system by evaluating all relevant diagrams
in a complete Feynman manner. We know, however, that
for such systems the many-body perturbation theory ap-
proach or the coupled-cluster approach yields quite ac-
curate results [18—24]. Here the most important many-
body efFects (in the no-virtual-pair approximation) are
included to high (essentially all) orders. It would then
be much more economical to use such a calculation as
the starting point and to add the remaining effects by
means of successive approximations. This can be done
in a rigorous way by means of effective potentials, based
on one-, two-, etc. , photon interactions between the elec-
trons [16,25].

Treating the nucleus as 6xed, i.e., neglecting nuclear
recoil, we can de6ne a Hamiltonian for an ¹ lectron
system in the following way:

m(n m(n(p

Here hD is the single-electron Dirac Hamiltonian andV, V „, . . . are effective two-, three-, etc. , electron
potentials, defined by means of QED. The efFect of the
three-electron potential (and beyond) can be expected
to be very small [26] and we shall restrict ourselves here
to the effective two-electron potential V . This can be
separated into one-, two-, etc. , photon contributions

(1.2)

The one-photon potential V is the interaction used in
the many-body calculation and the two-photon potential
V represents the remaining (irreducible) part of the
two-photon exchange, which is not taken care of by iter-
ating the one-photon potential, i.e., performing a many-
body calculation. In a similar way V can be de6ned
as the irreducible part of the three-photon interaction,
which is not taken care of by iterating V and V
etc. The analysis of the present work yields only a part
of the two-photon potential, which gives the lowest-order
QED energy correction to the RMBPT ground-state en-
ergy. Similar calculations will be performed for excited
states of heliumlike ions. In principle, it will be pos-
sible to calculate the three-photon potential in a simi-
lar way, although its effect on the level structure will be

quite small. Radiative effects (electron self-energy, vac-
uum polarization, etc.) can be treated separately and are
not considered in the present work.

It is well known that the results of QED are gauge in-
dependent in each order of the perturbation theory. This
is true also for certain subgroups of contributions in each
order. For instance, for two-electron systems the self-
energy contributions, where the photons interact with
only one electron, are gauge independent separately from
the contributions involving two electrons. Nevertheless,
a significant gauge dependence has been observed when
the electron correlation for heliumlike systems is eval-
uated by means of many-body techniques using differ-
ent efFective single-photon potentials derived from QED.
In particular, it was shown that potentials obtained in
the Feynman and the Coulomb gauges lead to different
numerical results in self-consistent-field (SCF) calcula-
tions of Dirac-Fock type for such systems [27]. The rea-
son for this was found to be due to the fact that SCF
methods, as well as any other method based on the it-
erative use of single-photon potentials, yield only a part
of the higher-order QED diagrams. In the second-order
the crossed-photon diagram [Fig. 1(b)] and a part of the
uncrossed-photon diagram [Fig. 1(a)] are omitted. It has
been shown that these efFects are significantly larger in
the Feynman gauge than in the Coulomb gauge and this
caused the observed discrepancy [28,29].

It can be argued that the combined many-body —QED
procedure, suggested here, is not gauge invariant since
the many-body effects are evaluated to high orders and
the QED effects only to low orders. This is certainly the
case, but this is not expected to cause any major difB-
culty in actual applications. In principle, it is possible to
apply the procedure &om a one-photon potential, derived
in any gauge, as long as the remaining parts are correctly
taken care of by the many-photon potentials. The main
point is that the many-body and the QED calculations
should be exactly compatible. The size of the QED cor-
rections, though, can be considerably different in differ-
ent gauges, as will be demonstrated in the present work.
This size can be used as an indication of the accuracy of
the procedure. For low- and medium-heavy elements the
one-photon potential &om the Coulomb gauge is known
to be a considerably better approximation than that of
the Feynman gauge and can therefore be expected to lead
to faster convergence.

In this work we have investigated the two-photon ex-
change between the electrons of heliumlike systems, us-
ing the Coulomb gauge, for the nuclear charge in the
range Z = 2 —92. For Z = 2, 10, and 80 the calcula-
tions are performed also in the Feynman gauge and the
gauge independence between the two gauges is demon-
strated with very high numerical accuracy. The im-
portance of the crossed-photon diagram, particularly in
the Feynman gauge, is verified. For Z = 10 this con-
tribution is of the order of 10%%uo of the leading second-
order Coulomb-Coulomb correlation. The calculations
are also performed without retardation and neglecting
virtual pairs, thus simulating a second-order RMBPT
calculation in the no-virtual-pair approximation without
retardation. By doing the retarded and unretarded cal-
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culations with the same numerical procedure, same grid
points, etc. , the difFerence is obtained with much higher
numerical accuracy than by taking the difFerence between
two independent calculations, using difFerent techniques.
This difference represents the lowest-order QED correc-
tion to be used in the combined many-body —QED proce-
dure, indicated above. The various contributions to this
correction, such as the efFect of retardation and single
and double virtual pairs, are analyzed in terms of an o.Z
expansion in order to compare with the available analyt-
ical results of Sucher [6] and Araki [30].

The paper is organized as follows. In the next sec-
tion we derive the formulas needed for the evaluation of
the uncrossed- and crossed-photon diagrams in the two
gauges. In Sec. III we present the numerical procedure
and the numerical results. The QED corrections to the
many-body results, evaluated in the way indicated above,
are analyzed in Sec. IV. Some general conclusions, which
can be drawn &om the present analysis, concerning the
accuracy of difFerent RMBPT approaches, are presented
in Sec. V.

II. EVALUATION OF THE TWO-PHOTON
DIAGRAMS

The exchange of two virtual photons between two elec-
trons is represented by the two Feynman diagrams in
Fig. 1, the first (a) with uncrossed photons ("ladder" or
"box" diagram) and the second (b) with crossed photons
("crossed ladder" ). The energy shift due to these effects
are given by the formula derived in 1957 by Sucher [6]
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FIG. 1. Feynman diagrams representing the two-photon
exchange between two electrons with (a) uncrossed and (b)
crossed photons.

A. Feynman gauge: Uncrossed pbotons

We consider first the uncrossed diagram in Fig. 1(a).
The S-matrix element for this diagram is (5=1)

In the case of the ground state of He-like atoms, we can
restrict ourselves to equivalent electrons in the initial and
final states (same n, l, and j).

For the ladder contribution, intermediate states which
are degenerate with the initial (reference) state lead to a
singularity which is canceled by the squared second-order
S-matrix contribution. After removing the singularity,
such states also give rise to a finite contribution [31,8,g].
The degenerate states, both for the uncrossed and crossed
diagram, and the squared second-order contribution are
left out of the discussion in this section and are treated
separately in Appendix A.
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(2.2)

where the photon propagator in the Feynman gauge is
de6ned by

1 g4y ~
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and

g3 j ~ik. {Xg—Xl )

(2.4)

We have defined here the z parameter by Ic = (z/c, k).
The electron propagator is de6ned by

4, (z) = e "'C),(x). (2.6)

We use here the Furry interaction picture [32] with the
single-electron states 4, (x) being solutions of the time-
independent Dirac equation with a Coulomb nuclear po-
tential V,

hDC. (x) = e.c.(x), (2.7)

where g is a small positive number. The time-dependent
eigenfunction is given by
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where

hD = ca . p + Pmc + V. (2.8)

(This implies that nuclear recoil is neglected. ) The time
integrations in Eq. (2.2) are trivial to perform, leading
to energy conservation at the vertices (in the limit where
the adiabatic damping factor p —+ 0). The reInainder of
Eq. (2.2) reduces to a space integral M (the Feynman
amplitude)

dx1 dx2 d23 dx4

x O (x3)iecn3 iS» (x3 x1, e —z) iecn1 4'a (xl)
I I

x Ck&(x4)iecn4 iS» (x4, x2, es+ z)iecn2 4s(x2)
Z

x D» (x3 x4, z) D»—„„(x2—x1, z) (2.9)
c C

or alternatively, by using the explicit representation of
the photon and electron propagators, we obtain

('e2c2 ) a)z (ask' e'I ' (~2 —~4) ask e'I (~2 ~2)
V tu tu o."o.

X
[e —z —eq(1 —irl)] [eI, + z —e„(1—i'')] (2.10)

The standard procedure in evaluating expressions of this
type is first to perform the Fourier integration in the ma-
trix elements, which yields the effective electron-electron
interaction in the Feynman gauge

~ ~

dz 1 1I=
2vr (q —z + ir), ) (q' + z + iI)„)

1 1

[z —(ck' —iI)) ] [z2 —(ck —iI)) ]
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Ep

'QZ2+'q~„
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where the square root with a positive imaginary part is
chosen. Then the z integration is performed using a Wick
rotation in the complex plane. Here we shall instead fol-
low the procedure we developed in our self-energy calcu-
lations [10] and start with the z integration.

We begin by evaluating the integral

where q = e —ez and q' = ep —e„and gz and g„have the
same sign as e2 and e„, respectively. (We have used here
the fact that k = ~k~ is positive. ) For particular positiue
values of the intermediate energies eq and e„, the integral
becomes

I=
2ckck'(q + q') (ck + ck')

E

q' —ck —ck' q —ck —ck'x. . .+, . (2.13)
(q' —ck) (q' —ck') (q —ck) (q —ck')

Intermediate states degenerate with the reference state
are here omitted (see Appendix A). Multiplying the
Feynman amplitude by the imaginary unit i yields the
corresponding energy contribution

f' e3c2 ) (Pk ask'
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where ++ denotes that t and u are positive energy states. After the integration over the angular parts of k and k'
this becomes
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and by using the spherical-wave expansion
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we obtain
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The corresponding expression for general intermediate"
states will be discussed later.

In the z integration performed here there are contribu-
tiops &om the poles of the electron propagators as well as
of the photon propagators. If we consider only the poles
of the former, integrating over the upper and lower half
planes, we obtain

+ & &cd] V34(q) ltu& &tulV»(q) lab)
q+qlt,u
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el 2
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This can be approximated by using the potential

&«IV~3(q, q') Iab& = —(&tulV»(q)lob& + («IV»(q') lab&)

(2.20)

~. (cdlv, 4(q') lou&&tulv»(q') l~b&

q+ q'
(2.18)

in the standard expression of second-order perturbation
theory. These relations are valid in any gauge. When
the Coulomb gauge is used, the potential in Eq. (2.20) is
identical to the Mittetman, potential [33].

respectively, where Vq2(q) is an effective one-photon po-
tential and q+ q' = e + eg —et —e„. The two contribu-
tions are not identical because all poles are not consid-
ered. Taking the average of the two contributions yields
a more symmetric expression

B. Feynman gauge: Crossed photans

The Feynman amplitude for crossed-photon diagram
[Fig. 1(b)] can be evaluated in the same way as for un-

crossed photons

d &2 d X3 d X4 —4 Ã3 VeCQ!32 SE X3, 3C1& ea —Z 'teCO'g @a K12'
t s'. l
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In the Feynman gauge this becomes

(e'c') dz d3k' e'k' (~3-~4)
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The integration over z leads to the integral

dz 1 1 1 1

2m. (q —z+ irjq) (q' —z+ ig„) [z2 —(ck' —ig)2] [z2 —(ck —ig)2]

For positive values of the intermediate energies et and e„, this integral becomes

(2.23)

z ck
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and the corresponding energy contribution
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After the integration over the angular parts of the photon momenta we then get

e~&++ = —
l l ) (2&+ 1)(2$'+ 1) dk dk') ) {cia C jI (k r)lt) {'ul~ C jI'(k ")I~)
(27rzep )
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X {tl~"C'jI(kr)IG) . {dl ol„C'j I( kr )lu) (,), k)(, k)( k,)(, k, )

( . )

Here the reference state is also left out of the sum-
mation over the intermediate states, although there is
no singularity for crossed photons. However, there is a
large cancellation between reference-state contributions
for crossed and uncrossed photons. In the Feynman
gauge there is even a contribution of order Zo. hartree,
which is canceled when the two diagrams are added
[34,25]. In. addition, there is a residual contribution of
higher order, which will be treated in Appendix A.

So far we have considered only intermediate states with
positive energy. The corresponding results for intermedi-
ate states of negative energy are obtained with the sub-
stitution

I d3k eik (xg —x1)

Cp
qq tu

(2n)s (z —c k + ie)(—c k + ie)
ab

(2.32)

e2 c2

w'heI'e Q = e —eg and g = eb —e

I

If the orbitals are generated in a local potential, we can
replace cn. V' in the commutators by the imaginary unit
times the single-electron Dirac Hamiltonian hD, which
generates the difference between the orbital energies (q
or q') when acting on the orbitals. This gives the matrix
element

q -+ —q and/or q' + —q'. (2.27) Coulomb- Coulomb intet actions

By making both replacements, we get the results where
both intermediate states have negative energy. By mak-
ing one of the replacements (for q or q') we get, from the
expression for uncrossed photons, the result for crossed
photons where one of the states has negative energy and
vice versa. There is also a change of the overall sign for
each replacement.

6fz 1 1

2vr (q —z + iq, ) (q'+ z + iI7„)
1 1

(—c k + ig) (—c2k' + iq)
' (2.33)

The combination of two unretarded Coulomb interac-
tions leads to the z integral

C. Coulomb gauge

In the Coulomb gauge we have to replace the interac-
tion in the Feynman gauge

If the intermediate energies eq and e are both positive,
the integral becomes 1/(q + q') and if both are negative
—1/(q+ q'). If ez and e„have different signs, the integral
vanishes. There is no contribution Rom crossed photons
in this case.

d3k ~k' (x2 x& )

Ep(2'7I ) (z2 —c k2 + ie)
(2.28) 2. Coulomb- Gaunt inter actions

by the following three terms: (a) the unretarded
Coulomb interaction (scalar)

The z integral becomes, in this case for uncrossed pho-
tons,

'k. (x2-x&)

Ep (27I)s (—c k + ie) '

(b) the retarded Gaunt interaction (vector)

2 2 ([3k ik. (xQ —x& )

ep (2m)s (z2 —c k + ie) '

and the (c) scalar retardation

(2.29)
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'

which for positive intermediate energies becomes

(—2ck+ q+ q') 1
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For crossed photons the z integral becomes

' dz 1 1
Z
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1 1
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' (2.36)
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which for positive intermediate energies becomes

1

2ck(q —ck)(q' —ck) (—c k' )
' (2.37)

8. Coulomb-ecalav' mtardati on

The z integral is, for uncrossed and crossed photons,
the same as for the Coulomb-Gaunt interaction [Eqs.
(2.35) and (2.37), respectively] times —qq'/(ck)2. For
crossed photons there is an additional sign change since
the initial and 6na1. single-electronic states are exchanged
for one of the interactions.

Gaunt-scalar retardation

The z integral is, for uncrossed and crossed photons,
the same as in the Feynman gauge [Eqs. (2.13) and (2.24),
respectively] times —qq'/(ck) . For crossed photons there
is also an additional sign change.

5. Scalar mtardation —acalar star dation

The z integral is, for uncrossed as well as crossed pho-
tons, the same as in the Feynman gauge [Eqs. (2.13) and
(2.24), respectively] times qq'/(ck)2 x qq'/(ck')2. The
contributions for intermediate states with negative en-
ergy are obtained in the same way as in the Feynman
gauge [see Eq. (2.27)]. This applies to all the combina-
tions of interactions given in Secs. II C 2—IIC 5 above.

D. Unretarded contributions

In order to be able to compare the QED results with
those of standard RMBPT calculations, we have per-
formed the calculations also without retardation. This
is easily done in the formalism presented here simply by
setting z = 0 in the photon propagators. Leaving out the
eKects of the virtual pairs then yields results which are
exactly equivalent to the corresponding RMBPT results.

III. NUMERICAL PROCEDURE AND RESULTS

The basis functions used in this calculation are ob-
tained by solving the single-particle Dirac equation in
the nuclear potential (point nucleus), using the method
of discretization, developed by Salomonson and Oster
[12]. The radial integrals appearing here are identical
to those appearing in the self-energy calculation [10]
and have been evaluated in the same way. Analytical
Bessel functions are used and the radial integrations are
performed numerically. The integrations over the pho-
ton momenta are also performed numerically, as in our
self-energy calculations, using the method of Gaussian
quadrature. 70 —150 (in a few cases 200) grid points are

used in the radial integrations and 50 —75 (in a few cases
90) points in the momentum integration. The angular
factors needed are derived in Appendix B. Partial waves
up to L = 20 have been evaluated, which is sufhcient in
order to perform a reliable I extrapolation.

The calculations have been performed for a number of
nuclear charges, ranging from Z = 2 to Z = 92. The
Coulomb gauge is generally used and in a few cases the
Feynman gauge is also used in order to test the gauge
invariance. In Tables I—III we show some results for
Z = 2, 10, and 80 in the two gauges. Separate results
are given here for the angular momenta I of the inter-
mediate electronic states L = 0—5 as well as accumulated
results for L & 10 and L-extrapolated values. Contribu-
tions nondiagonal in L, which are rather small, have been
included here in the entry for the larger of the two L val-
ues. This means, for instance, that the 8-d contribution
is included in the entry for L = 2. Columns 3 and 4 show
the results in the Feynman and the Coulomb gauges, re-
spectively. Results are given separately for no virtual
pairs with retardation (NVP) and for virtual pairs.

In the Coulomb gauge the Coulomb-Gaunt interac-
tion and the Coulomb-scalar retardation (see Secs. II C 2
and II C 3) form together the Coulomb-Breit interaction.
The Coulomb-Gaunt part is closely related to the corre-
sponding part in the Feynman gauge, while the Coulomb-
scalar retardation corresponds to the retardation of the
Coulomb-Coulomb interaction in that gauge. The lat-
ter can be illustrated, for instance, by the L = 0 results
for helium in Table I, where the Coulomb-scalar retarda-
tion result in the Coulomb gauge is 2.99 phartree, which
is very close to the diEerence between the Coulomb-
Coulomb results of the two gauges (2.96 phartree).

It should be noted that the scalar retardation term
has a frequency-independent part, appearing in the
frequency-independent Breit interaction. Normally only
the effect of the frequency dependence of the Breit in-
teraction (see Sec. IID) is referred to as the retardation
and this is the convention we adopt in comparing our re-
tarded and unretarded results in the Coulomb gauge in
the tables.

The gauge invariance between the Coulomb and Feyn-
man gauges is demonstrated numerically with high ac-
curacy. The results we obtain in the two gauges agree
to 9—10 figures. This is a demonstration of the accu-
racy of the k integration. (Identical radial integrals are
used in the two calculations. ) For each photon interac-
tion we have separated out the scalar (AO) and the vector
(ALF) parts of n~n" = 1 —n n. As can be seen from
the tables, the gauge invariance is valid separately for
the scalar-scalar (AO-AO), scalar-vector (AO-ALF), and
vector-vector (ALF-ALF) parts of the two-photon inter-
action. The gauge invariance holds also for the individual
L, even for high Z, with the same degree of accuracy.

The contribution from the crossed photons are listed
separately. It is well known that this contribution is much
larger in the Feynman gauge than in the Coulomb gauge
[28,29], which caused the apparent gauge dependence in
RMBPT, where crossed photons are not included. For
Z = 10 the crossed-photon contribution is about 100
times larger in the Feynman gauge and for Z = 2 about
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TABLE I. Two-photon contributions for the ground state of the helium atom, using Feynman and Coulomb gauges (in
phartree). The reference state contribution is not included in this table. The unretarded results are compared with relativistic
many-body calculations with unretarded Breit interaction (RMBPT) taken from the work of Blundell, Mohr, Johnson, and
Sapirstein [9,35—37]. The abbreviations NVP for no virtual pairs and VP for virtual pairs are used.

L

0

Contribution
Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Feyn man
-125 353.14

-68.11

-0.02
-125 421.27

-0.06
-125 421.3284

Coulomb
-125 356.10

-68.16
2.99

-0.01
-125 421.29

-0.04
-125 421.3284

Unretarded
-125 356.10

-68.28
3.11

-0.01
-125 421.29

-125 421.29

RMBPT
-125 356.11

-68.28
3.11

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-26 481.45
-43.11

-0.03
-26 524.60

-0.47
-26 525.0729

-26 492.41
-43.43
11.04
-0.02

-26 524.82
-0.25

-26 525.0729

-26 492.41
-45.59
11.92
-0.02

-26 526.09

-26 526.09

-26 492.41
-45.59
11.93

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-3 901.55
-10.94

-0.02
-3 912.51

-0.20
-3 912.7106

-3 904.66
-11.06

3.15
-0.01

-3 912.58
-0.13

-3 912.7106

-3 904.66
-11.35

3.36
-0.01

-3 912.66

-3 912.66

-3 904.65
-11.35

3.36

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-1 075.45
-5.06

-0.02
-1 080.53

-0.12
-1 080.6572

-1 076.94
-5.13
1.52

-0.01
-1 080.57

-0.09
-1 080.6572

-1 076.94
-5.30
1.65

-0.01
-1 080.60

-1 080.60

-1 076.93
-5.29
1.65

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-404.76
-2.91

-0.02
-407.69

-0.09
-407.7761

-405.62
-2.97
0.89

-0.01
-407.71

-0.07
-407.7761

-405.62
-3.08
0.98

-0.01
-407.73

0.00
-407.73

-405.62
-3.07
0.98

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-184.12
-1.89

-0.01
-186.02

-0.07
-186.0899

-184.68
-1.93
0.58

-0.01
-186.04

-0.05
-186.0899

-184.68
-2.01
0.65

-0.01
-186.05

-186.05

-184.67
-2.01
0.65

&10 Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-157 617.50
-136.08

-0.18
-157 753.75

-1.23
-157 754.9873

-157 638.62
-136.85

21.38
-0.09

-157 754.18
-0.81

-157 754.9873

-157 638.62
-140.03

23.12
-0.11

-157 755.64

-157 755.64

-157 638.51
-139.97

23.10

Coulomb-Coulomb NVP
Extrapolated total

-157 659.55 -157 681.52 -157 681.52 -157 681.47
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Contribution
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
VP single Coulomb-Coulomb
VP single Coulomb-Breit
VP single Breit-Breit
VP single total
VP double Coulomb-Coulomb
VP double Breit-Coulomb
VP double Breit-Breit
VP double total
VP total
AO-AO

AO-ALF
ALF-ALF
Coulomb-Coulomb total
Coulomb-Breit total
Breit-Breit total
Grand total

Coulomb
-140.25

22.30
-0.17

-157 799.65
0.18

-0.63
0.28

-0.17
0.00

-0.06
-0.95
-1.02
-1.19

-157 659.40
-139.92

-1.53
-157 681.35

-118.64
-0.85

-157 800.8477

-0.34
-157 799.18

-0.01

-1.64
-1.65

-157 659.40
-139.92

-1.53

-15? 800.8477

TABLE I. (Continued ).
Feynman

-139.29
Unretarded

-143.87
24.39
-0.22

-157 801.22

-157 657.18
-143.56

-0.47
-157 681.52

-119.48
-0.22

-157 801.22

RMBPT
-144.46

24.59

Coulomb-Coulomb
No virtual pair
Virtual pairs
Total

Crossed photons

-1 659.31
0.08

-1 659.23

0
0.18
0.18

Coulomb-Breit
No virtual pair
Virtual pairs
Total

-0.43
-0.16
-0.59

-0.96
-0.38
-1.34

Breit-Breit
No virtual pair
Virtual pairs
Total

0.03
0.55
0.58

0.00
0.09
0.10

Total
No virtual pair
single pair
Double pairs
Total pair
Grand total

-1 659.71
-0.30
0.77
0.46

-1 659.25

-0.95
-0.18
0.08

-0.11
-1.06

1600 times larger.
In the fifth column of Tables I—III we give the unre-

tarded results in the Coulomb gauge, i.e., discarding re-
tardation and virtual-pair effects. These values should
be exactly equivalent to RMBPT calculations and for
Z = 2 and Z = 10 a comparison is made with the avail-
able RMBPT results of Johnson et aL [9,35—37]. The
agreement here is remarkably good, which also serves as
a test of the accuracy of the radial integrations. The con-
tribution from the reference state is not included in these
tables, but is separately given in Table IV.

In Table V the Coulomb-gauge results for all Z values
considered in this work are summarized. Again the un-
retarded results correspond to a many-body calculation,

omitting retardation and virtual-pair effects. "No virtual
pairs" represents the value toith retardation, but with no
virtual-pair effect. Thus the difference between the unre-
tarded and no virtual pairs results represents the effect of
retardation. The virtual-pair effect, separated into single
and double pairs, is given separately. We have also in-
cluded the contribution from the reference state, given in
Table IV. "Grand total" represents the entire two-photon
exchange effect and "@ED" is the part not included in
a many-body calculation, i.e., the difference between the
total effect and the unretarded result. The Brst part
of Table V represents the entire effect, i.e., non-crossed
and crossed photons. The separate contributions of the
crossed photons are displayed in the second part of the
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TABLE II. Same as Table I, but for heliumlike neon. The contributions are in phartree.

L
0

Contribution
Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Fey nman
-125 833.89

-1 680.90

-8.74
-127 523.53

-9.44
-127 532.9645

Coulomb
-125 895.77

-1 686.29
63.87
-7.02

-127 525.21
-7.76

-127 532.9645

Unretarded
-125 895.77

-1 699.11
75.45
-7.81

-127 527.25

-127 527.25

RMBPT
-125 895.77

-1 699.11
75.45

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-26 217.33
-915.99

-14.76
-27 148.08

-47.88
-27 195.9593

-26 430.65
-947.63
220.59

-8.37
-27 166.05

-29.90
-27 195.9593

-26 430.65
-1 116.10

291.41
-10.68

-27 266.02

-27 266.02

-26 430.65
-1 116.09

291.41

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-3 815.85
-227.40

-7.03
-4 050.28

-20.17
-4 070.4432

-3 872.78
-238.20

60.09
-3.77

-4 054.66
-15.78

-4 070.4432

-3 872.78
-266.16

78.55
-4.99

-4 065.39

-4 065.39

-3 872.78
-266.14

78.54

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-1 036.35
-98.33

-4.75
-1 139.43

-12.10
-1 151.5241

-1 061.06
-104.13

26.49
-2.50

-1 141.19
-10.33

-1 151.5241

-1 061.06
-118.06

36.68
-3.48

-1 145.92

145.92

-1 061.05
-118.02

36.67

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-383.60
-52.69

-3.51
-439.80

-8.31
-448.1096

-396.64
-56.35
14.17
-1.83

-440.66
-7.45

-448.1096

-396.64
-65.06
20.73
-2.66

-443.64

-443.64

-396.64
-65.02
20.72

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Brei. t NVP
Total NVP
Virtual pairs
Total

-171.44
-31.77

-2.70
-205.90

-6.12
-212.0261

-179.14
-34.28

8.46
-1.41

-206.36
-5.67

-212.0261

-179.14
-40.28
13.01
-2.12

-208.52
0.00

-208.52

-179.14
-40.23
12.99

&10 Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

-157 653.09
-3 065.20

-48.90
-160 767.19

-120.04
-160 887.2335

-158 044.08
-3 130.71

408.72
-28.78

-160 794.84
-92.39

-160 887.2334

-158 044.08
-3 382.54

541.32
-38.00

-160 923.30

-160 923.30

-158 044.02
-3 382.04

541.16

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP

Extrapolated total
-157 686.86

-3 092.60

-56.68

-158 083.24
-3 162.57

415.21
-32.98

-158 083.24
-3 425.16

555.48
-46.01

-158 083

-2 870
-46
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Contribution
Total NVP
VP single Coulomb-Coulomb
VP single Coulomb-Breit
VP single Breit-Breit
VP single total
VP double Coulomb-Coulomb
VP double Breit-Coulomb
VP double Breit-Breit
VP double total
VP total
AO-AO

AO-AI. F
AI F-ALF
Coulomb-Coulomb total
Coulomb-Breit total
Breit-Breit total
Grand total

Coulomb
-160 863.25

26.63
-87.57
42.17

-18.82
-1.36

-13.28
-76.09
-90.73

-109.55
-157 667.48

-3 176.97
-128.22

-158 057.99
-2 847.78

-66.88
-160 972.6486

8.99

-145.67
-136.68

-157 667.48
-3 176.97

-128.22

-160 972.6487

TABLE II. (Continued. )
Feyn man

-160 836.10
Unretarded
-160 998.69

-157 535.91
-3 374.50

-88.48
-158 083.24

-2 869.67
-46.01

-160 998.69

RMBPT
-160 999

-160 999

Coulomb-Coulomb
No virtual pair
Virtual pairs
Total

Crossed photons

-7 262.93
10.87

-7 252.07

0
26.63
26.63

Coulomb-Breit
No virtual pair
Virtual pairs
Total

-39.72
-21.24
-60.96

-66.06
-54.95

-121.01

Breit-Breit
No virtual pair
Virtual pairs
Total

5.21
33.72
38.93

0.58
9.25
9.83

Total
No virtual pair
single pair
Double pairs
Total pair
Grand total

-7 297.40
-37.35
60.70
23.35

-7 274.06

-65.34
-25.12

6.65
-18.77
-84.11

table. The numerical uncertainty of the calculations pre-
sented here is estimated to be of the order of 0.1 phartree
for low Z and increasing to one or a few microhartrees
for high Z.

When available, we have, in Table V, also included
the results of Blundell et al. [9] for the entire two-photon
contribution as well as for the QED correction. It should
be noted that our calculations are primarily performed
with a point nucleus, while Blundell et al. use an ex-
tended nucleus. For low Z, where the effect of the nu-
clear extension is negligible, the agreement between the
two calculations is very good. For instance, for Z = 10,
Blundell et al. obtain a total two-photon contribution of
—0.160972 hartree and a RMBPT result of —0.160999
hartree, giving a QED correction of 0.000026 hartree.
Our corresponding results are, for the two-photon con-

tribution, —0.1609726 hartree, compared to the unre-
tarded (RMBPT) result of —0.1609987 hartree giving a
QED correction of 0.000026 2 hartree.

In order to estimate the nuclear-size effect for large
Z, we have performed calculations also with an extended
nucleus (uniformly charged) for Z = 54, 80, and 92. The
results are shown in Table V. The efFect of the extended
nucleus increases drastically for high Z &om 44 phartree
for Z = 54 to about 2500 phartree for Z = 92. Most of
that effect is present also in the unretarded contribution,
i.e., in a standard many-body calculation. The residual
QED effect, which is of more interest, is consequently
considerably smaller, about —2 phartree for Z = 54 and
about —280 phartree for Z = 92. For Z = 80 we can
compare our results with those of Blundell et al. We ob-
tain a total two-photon effect of —0.381263 hartree and
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TABLE III. Same as Table I, but for heliumlike mercury. The contributions are in p,hartree.

L

(10

Contribution
Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
Virtual pairs
Total

Feynman
-179 760
-110 131

-15 590
-305 481

-3 619
-309 099.5511

-21 736
-24 310

-13 637
-59 683
-1 037

-60 719.4636

-2 730
-4 094

-2 546
-9 370

428
-8 942.0446

-715
-1 338

-883
-2 936

-296
-3 232.2869

-269
-588

-404
-1 261

-224
-1 485.6871

-125
-308

-217
-650
-152

-802.0966

-205 496
-141 233

-33 619
-380 348

-5 205
-385 553.0750

Coulomb
-181 510
-111 376

1 958
-14 590

-305 518
-3 582

-309 099.5512

-25 979
-28 644

4 944
-8 419

-58 099
-2 621

-60 719.4637

-3 584
-4 936

989
-1 566
-9 097

155
-8 942.0446

-1 006
-1 628

344
-533

-2 824
-408

-3 232.2869

-397
-720
156

-241
-1 203

-283
-1 485.6871

-192
-378

83
-129
-616
-186

-802.0966

-212 930
-148 257

8 601
-25 678

-378 264
-7 289

-385 553 0749

Unretarded
-181 510
-113 694

3 679
-17 952

-309 477

-309 477

-25 979
-51 020
13 665

-16 164
-79 498

-79 498

-3 584
-7 687
2 467

-2 910
-11 714

-11 714

-1 006
-2 513

872
-1 063
-3 710

-3 710

-397
-1 116

403
-504

-1 615

-1 615

-192
-590
218

-278
-843

-843

-212 930
-177 527

21 647
-39 327

-408 137

-408 137

Coulomb-Coulomb NVP
Coulomb-Gaunt NVP
Coulomb-retardation NVP
Breit-Breit NVP
Total NVP
VP single Coulomb-Coulomb

Extrapolated total
-205 543
-141 408

-33 759
-380 709

-213 015
-148 476

8 651
-25 759

-378 599
8 092

-213 015
-177 881

21 781
-39 524

-408 640
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Contribution

VP single Coulomb-Breit
VP single Breit-Breit
VP single total
VP double Coulomb-Coulomb
VP double Breit-Coulomb
VP double Breit-Breit
VP double total
VP total
AO-AO

AO-ALF
ALF-ALF
Coulomb-Coulomb total
Coulomb-Breit total
Breit-Breit total
Grand total

Coulomb-Coulomb
No virtual pair
Virtual pairs
Total

Coulomb-Breit
No virtual pair
Virtual pairs
Total

Breit-Breit
No virtual pair
Virtual pairs
Total

Total
No virtual pair
single pair
Double pairs
Total pair
Grand total

TABLE III. (Continued ).
Feynman

22 858

-28 230
-5 371

-200 426
-157 190
-28 469

-386 084.1292

Crossed photons

-36 707
3 375

-33 332

-12 394
-807

-13 201

2 030
14 874
16 904

-47 071
9 888
7 554

17 442
-29 630

Coulomb
-14 233
15 653
9 513
-928

-5 316
-10 752
-16 996

-7 483
-200 426
-157 190
-28 469

-205 852
-159 376

-20 857
-386 084.1284

0
8 092
8 092

-9 302
-8 093

-17 395

1 349
4 396
5 745

-7 953
4 053

342
4 395

-3 558

Unretarded

-194 388
-156 533
-57 717

-213 015
-156 100
-39 524

-408 640

a @ED effect of 0.026657 hartree, compared with the re-
sult —0.381 28 hartree and 0.02664 hartree, respectively,
of Blundell et al.

TABLE IV. The reference-state contribution for the
ground state in He-like ions using both an extended and a
point nucleus (in phartree). The numbers in brackets denote
multiplication by powers of 10.

IV. ANALYSIS

AEKs = 2a lna(b'(rq2)). (4.1)

Araki [30] and Sucher [6] have evaluated also the (Za)
terms and the results of Sucher are summarized in Ta-

The various energy contributions to heliumlike ions of
orders (Zo.) and (Zn)sin(n) have been evaluated an-
alytically by Kabir and Salpeter [5], Araki [30], Sucher
[6], Ermolaev [38], and others. Kabir and Salpeter [5]
evaluated the leading contributions due to the exchange
of two transverse photons between the electrons of neu-
tral helium. They found that there is a contribution of
order (Zn) ln(n) in the exchange of two transverse pho-
tons due to the virtual pairs, which for neutral helium
becomes

Ion
2He
4Be
gC
gpNe

g4Si
isAr
24Cr
3oZn
3gKr
4gMo
48Cd
54Xe
SONd

yo Yb
soHg
92&

&rms

(fm)

4.230

4.826
4.915
5.273
5.475
5.860

Extended
nucleus

7.12913[1]

5.52862 [2]
9.45067 [2]
2.08079[3]
4.15025 [3]
8.63316[3]

Point
nucleus

3.71390[
1.18862[
9.02822 [
1.16192[
6.25630[
2.20146 [0]
9:30539[0]
2.85114[1]
7.12985[1]
1.55030[2]
3.04407 [2]
5.53110[2]
9.45709[2]
2.08379 [3]
4.16224[3]
8.69358 [3]
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Contribution

TABLE V. Summary of two-photon contributions for heliumlike systems (in phartree).

Nuclear charge

Noncrossing and crossing photons

10

Coulomb-Coulomb
Unretarded
single pair
Double pairs
Total pair
Total

-157 681.52 -157 728.47
0.18
0.00
0.18

-157 681.35

-157 809.52
1.78

-0.06
1.72

-157 726.77

-158 083.24
5.97

-0.25
5.72

-157 803.78

26.63
-1.36
25.23

-158 057.99

Coulomb-Breit
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair
Total

-119.48
-117.96

1.52
-0.63
-0.06
-0.69

-118.64

-473.34
-462.88

10.46
-6.01
-0.77
-6.78

-469.61

-1 054.15
-1 022.78

31.37
-19.96
-2.74

-22.69
-1 045.44

-2 869.67
-2 747.36

122.32
-87.57
-13.28

-100.85
-2 847.78

Breit-Breit
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair
Reference state
Total

-0.22
-0.17
0.05
0.28

-0.95
-0.67
0.00

-0.85

-2.42
-1.77
0.64
2.67

-6.62
-3.95
0.00

-5.72

-8.93
-6.43
2.50
9.13

-19.77
-10.64

0.01
-17.05

-46.01
-32.98
13.04
42.17

-76.09
-33.92

0.12
-66.76

Total
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair

-157 801.22
-157 799.65

1.57
-0.17
-1.02
-1.19

-158 204.16
-158 193.12

11.04
-1.55
-7.46
-9.01

-158 872.49
-158 838.72

33.77
-4.85

-22.72
-27.57

-160 998.69
-160 863.25

135.44
-18.82
-90.73

-109.56

Grand total
Unretarded
+ED=total —unretarded

-157 800.85
-157 801 ~ 22

0.38

-158 201.99
-158 204.16

2.18

-i58 866.29
-158 872.49

6.20

-160 972.53
-160 998.69

26.16

Grand total extended nucleus
Unretarded extended nucleus
+ED extended nucleus

Blundell et al. extended nucleus [9j
Grand total
+ED

-160 972
26

Crossing photons

Coulomb-Coulomb
No virtual pair
Virtual pairs
Total

0
0.18
0.18

0
1.78
1.78

0
5.97
5.97

0
26.67
26.67

Coulomb-Breit
No virtual pair
Virtual pairs
Total

-0.96
-0.38
-1.34

-6.25
-3.78

-10.03

-17.99
-12.55
-30.54

-66.06
-54.95

-121.01
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Contribution

Breit-Breit
No virtual pair
Virtual pairs
Total

Nuclear charge

TABLE V. (Continued)

0.00
0.09
0.10

0.01
0.71
0.72

0.07
2.25
2.31

10

0.58
9.25
9.83

Total
No virtual pair
Single pair
Double pairs
Total pair
Grand total

-0.95
-0.18
0.08

-0.11
-1.06

-6.24
-1.76
0.48

-1.28
-7.52

-17.93
-5.86
1.52

-4.33
-22.26

-65.34
-25.12

6.65
-18.77
-84.11

Contribution
Nuclear charge 14 18 24 30

Noncrossing and crossing photons

Coulomb-Coulomb
Unretarded
Single pair
Double pairs
Total pair
Total

Coulomb-Breit
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair
Total

Breit-Breit
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair
Reference state
Total

Total
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair

-158 520 ~ 29
69.40
-3.98
65.42

-158 454.93

-5 515.00
-5 222.03

292.97
-225.13
-36.28

-261.40
-5 483.69

-136.37
-96.88
39.49

114.00
-181.00
-67.00

0.63
-163.31

-164 171.89
-163 839.43

332.46
-41.73

-221.24
-262.97

-159 138.0
140.0

-8.5
131.5

-159 006.5

-8 946.8
-8 393.7

553.1
-446.9
-75.8

-522.7
-8 917.1

-307.9
-216.8

91.1
237.5

-341.3
-103.8

2.2
-318.4

-168 393.9
-167 748.5

645.4
-69.6

-425.5
-495.1

-160 442.4
309.6
-20.6
289.0

-160 153.6

-15 491.0
-14 368.9

1 122.1
-960.8
-175.6

-1 136.4
-15 506.0

-785.9
-545.7
240.2
545.8

-693.9
-148.1

9.3
-684.5

-176 719.9
-175 356.9

1 363.0
-105.4
-890.0
-995.3

-162 257.5
567.1
-40.7
526.3

-161 731.5

-23 629.1
-21 719.9

1 909.2
-1 703.1

-334.4
-2 037.6

-23 758.3

-1 625.8
-1 114.7

511.1
1 031.8

-1 186.5
-154.7

28.5
-1 241.0

-187 512.4
-185 091.8

2 420.6
-104.3

-1 561.1
-1 665.4

Grand total
Unretarded
+ED=total unretarde—d

Grand total extended nucleus
Unretarded extended nucleus
+ED extended nucleus

Blundell et aL. extended nucleus [S]
Grand total
+ED

-164 101.74
-164 171.89

70.15

-168 242.0
-168 393.9

151.9

-176 344.0
-176 719.9

376.0

-186 730.5
-187 512.4

781.9

-186 730
780
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Contribution

Coulomb-Coulomb
No virtual pair
Virtual pairs
Total

Nuclear charge

TABLE V. (Cantinued)

14

Crossing photons

0
69.40
69.40

0
140.0
140.0

24

0
309.6
309.6

30

0
567.1
567.1

Coulomb-Breit
No virtual pair
Virtual pairs
Total

-151.51
-139.92
-291.43

-278.7
-275.4
-554.1

-554.9
-586.0

-1 140.9

-939.7
-1 029.3
-1 969.0

Breit-Breit
No virtual pair
Virtual pairs
Total

2.34
22.87
25.21

6.5
44.4
50.8

20.0
94.7

114.7

46.4
173.0
219.4

Total
No virtual pair
Single pair
Double pairs
Total pair
Grand total

-149.16
-64.32
16.67

-47.65
-196.81

-272.2
-124.4

33.2
-91.3

-363.5

-534.9
-252.0

70.4
-181.7
-716.5

-893.2
-410.7
121.6

-289.2
-1 182.3

Contribution
Nuclear charge

Noncrossing and crossing photons

Coulomb-Coulomb
Unretarded
Single pair
Double pairs
Total pair
Total

-164 655.5
924.6
-71.5
853.1

-163 802.9

-167 722.6
1 394.1
-115.3

1 278.8
-166 444.4

-171 565
1 988
-175

1 813
-169 752

-176 315
2 723
-254

2 468
-173 848

Coulomb-Breit
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair
Total

Breit-Breit
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair
Reference state
Total

-33 302.5
-30 393.0

2 909.4
-2 673.9

-562.9
-3 236.7

-33 629.9

-2 943.3
-1 995.0

948.3
1 725.1

-1 820.4
-95.3
71.3

-2 019.5

-44 489.7
-40 372.1

4 117.6
-3 860.5

-871.4
-4 731.9

-45 104.3

-4 856.1
-3 259.8
1 596.3
2 651.4

-2 595.9
55.5

155.0
-3 048.5

-57 209
-51 684

5 525
-5 241
-1 269
-6 511

-58 195

-7 487
-4 986
2 501
3 837

-3 510
327
304

-4 353

-71 521
-64 396

7 125
-6 786
-1 766
-8 552

-72 949

-10 966
-7 254
3 711
5 306

-4 562
744
553

-5 956

Total
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair

-200 901.2
-197 042.2

3 858.9
-24.2

-2 454.7
-2 478.9

-217 068.0
-211 356.2

5 711.8
185.8

-3 582.3
-3 396.5

-236 260
-228 236

8 024
585

-4 954
-4 369

-258 800
-247 967

10 833
1 244

-6 582
-5 338
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Contribution

Grand total
Unretarded
+ED=total —unretarded

TABLE V. (Continued).

Nuclear charge

-199 451.9
-200 901.2

1 449.3

-214 596.8
-217 068.0

2 471.2

-232 300
-236 260

3 960

-252 752
-258 800

6 048

Grand total extended nucleus
Unretarded extended nucleus
+ED extended nucleus

-252 708
-258 754

6 046

Blundell et al. extended nucleus [9]
Grand total
+ED

Crossing photons

Coulomb-Coulomb
No virtual pair
Virtual pairs
Total

0
924.6
924.6

0
1 394.1
1 394.1

0
1 988
1 988

0
2 723
2 723

Coulomb-Breit
No virtual pair
Virtual pairs
Total

-1 439.7
-1 602.9
-3 042.6

-2 060.6
-2 297.3
-4 357.9

-2 809
-3 098
-5 907

-3 693
-3 986
-7 678

Breit-Breit
No virtual pair
Virtual pairs
Total

90.6
289.4
380.0

156.8
458.3
615.1

250
698
948

373
1 033
1 406

Total
No virtual pair
Single pair
Double pairs
Total pair
Grand total

-1 348.9
-572.8
184.0

-388.8
-1 737.7

-1 903.8
-698.1
253.2

-444.9
-2 348.7

-2 560
-735
323

-411
-2 971

-3 319
-617
387

-230
-3 549

Contribution
Nuclear charge 60 ?0

Noncrossing and crossing photons

Coulomb-Coulomb
Unretarded
Single pair
Double pairs
Total pair
Total

-182 148
3 615
-356

3 259
-178 890

-194 928
5 521
-590

4 931
-189 998

-213 015
8 092
-928

7 164
-205 852

-246 022
12 443
-1 531
10 912

-235 110

Coulomb-Breit
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair
Total

-87 536
-78 624

8 912
-8 456
-2 371

-10 827
-89 452

-118 517
-106 205

12 312
-11 385
-3 649

-15 034
-121 240

-156 100
-139 825

16 275
-14 233

-5 316
-19 549

-159 376

-213 572
-191 655

21 917
-16 912
-7 943

-24 855
-216 513

Breit-Breit
Unretarded
No virtual pair

-15 429
-10 153

-25 474
-16 658

-39 524
-25 759

-63 366
-41 280
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Contribution

Retardation
Single pair
Double pairs
Total pair
Reference state
Total

Nuclear charge

TABLE V. (Continued).

60

5 276
7 084

-5 750
1 333

946
-7 873

70

8 815
10 814
-8 043
2 770
2 084

-11 803

80

13 765
15 653

-10 752
4 900
4 162

-16 695

92

22 087
23 292

-14 656
8 637
8 694

-23 948

Total
Unretarded
No virtual pair
Retardation
Single pair
Double pairs
Total pair

-285 114
-270 925

14 189
2 244

-8 478
-6 233

-338 921
-317 791

21 130
4 950

-12 282
-7 332

-408 640
-378 599

30 041
9 513

-16 996
-7 483

-522 961
-478 955

44 006
18 824

-24 129
-5 305

Grand total
Unretarded
@ED=Total=Unretarded

-276 214
-285 114

8 900

-323 040
-338 921

15 880

-381 922
-408 640

26 718

-475 570
-522 961

47 391

Grand total extended nucleus
Unretarded extended nucleus
@ED extended nucleus

-381 263
-407 919

26 656

-473 113
-520 224

47 112

Blundell et al. extended nucleus [9]
Grand total
+ED

-276 140
8 890

-322 830
15 850

-381 280
26 640

Crossing photons

Coulomb-Coulomb
No virtual pair
Virtual pairs
Total

0
3 615
3 615

0
5 521
5 521

0
8 092
8 092

0
12 443
12 443

Coulomb-Breit
No virtual pair
Virtual pairs
Total

-4 718
-4 935
-9 654

-6 771
-6 569

-13 340

-9 302
-8 093

-17 395

-13 090
-9 340

-22 430

Breit-Breit
No virtual pair
Virtual pairs
Total

531
1 491
2 022

880
2 624
3 504

1 349
4 396
5 745

2 083
7 752
9 835

Total
No virtual pair
Single pair
Double pairs
Total pair
Grand total

-4 187
-264
435
171

-4 016

-5 891
1 122

454
1 576

-4 315

-7 953
4 053

342
4 395

-3 558

-11 006
10 943

-90
10 855

-152
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4--(~(»2))
3

(4.2a)

ble VI. Araki gives the following total contributions for
the Coulomb-Coulomb, Coulomb-Breit, and Breit-Breit
interactions, respectively (we are omitting the factor ns
below):

1641 14 2
~

—inn+
~
(S(r„))——Q ——M.(3 15) 3 3' (4.4)

The various contributions for He-like systems have
been summarized by Drake [39], who gives the follow-
ing o. contribution for the ground state:

4 t'8 4—
~

——»n~
~ (~(r12)) —-(~1 ~2&(r12))3 (3 ) 3

8 2——Q ——M',
3 3'

(17 8
~

———ln2+ 21nn
~

(b(ri2)))g 3 3
1+—(cri . ~2~(ri2)) —2Q,3

which give the total contribution

(4.2b)

(4.2c)

8 (5
r3 q6

2 II--(~i ~2) (~(»2)) ——M
3 37r

4&E . o& = —(&(ri2)),15

(4.5)

(4.6)

This contains also self-energy (vertex correction) and
vacuum-polarization contributions. These have been
evaluated by Araki with the following results:

(71 8 2
~

———in 2 ——in a
~

(b'(r]2)) —(cri cr2h(r]2))q9 3 3
14 2——Q ——M', (4.3)3 37r

where Q is the principal part of the logarithmically di-
verging quantity r 2 and M' is a part of the Bethe log-
arithm. These results agree with those given by Sucher.

where M" is a second part of the Bethe logarithm.
Adding these quantities to the total two-photon exchange
above (4.3) gives (M' + M" = M)

134 14 2 14 2

15 3 3
+ —ln n ——(o i o 2) (b(ri2)) ——Q ——M.

3 3~

(4 7)

TABLE VI. CoefFicients (in hartree units) for the (Zn) contributions for electron-electron inter-
action in heliumlike ions, evaluated by Sucher [6]. The entries should be multiplied by (b(ri2))/Z,
which for hydrogenic functions has the value 1j8n. The last column gives the expressions for sin-
glet states with (oi erg) = —3. We have omitted the ——1n(Zn) term occurring in the no-pair
contribution to the Coulomb-Breit interaction and the 21n(Zn) term occurring in the double-pair
contribution to the Breit-Breit interaction. The constant D has to be evaluated numerically and is
discussed in Appendix C.

Contribution
Coulomb-Coulomb

No pair
Single pair
Double pair
Total Coulomb-Coulomb

CoefBcient

-(=, + —,')
2

(-; ——.')

Singlet state

Coulomb-Breit
Unretarded
No pair
Single pair
Double pair
Total Coulomb-Breit

--:(-;+1)(oi ~2)
D + 3 ln 2 —

3 ( ~ + 1 + —,
' ln 2) (o i o 2)

-(1 + ln 2)(oi o2)
3(~ —1 —

2 ln2)(oi o~)
D+ s ln2 —-(o, og)

4(-; + 1)
D + 2' + 4 + —ln 2

—4(1+ ln2)
—4( ——1 ——' ln2)2 2

D+ 3 ln2+ 4

Breit-Breit
No pair
Single pair
Double pair
Total Breit-Breit

+ 1 + —ln 2 + —(——+ 1 + —ln 2) (o i o 2)
1 + 3 ln 2 + —(1 —ln 2) (o i o.q)—+ 1 ——ln 2 + —( ——1 + —ln 2) (o i o.2)

3 —2 ln 2 + -' (o., o2)

4ln2
—, + 2 ——',4 ln 2

2 ——ln2

Total
No pair
Single pair
Double pair

D —-4—+ ~ + 2 ln 2 —( 4 + 1+ 2 ln 2)(vari o~)
3(1+ ln2) + (s + ln2)(iri cr2)

—"————ln2+ (—————' ln2)(oi o2)4 3 6 4 3 2

D+ ~+ —', + —',4 ln2
—2

——7l. ——ln213 8
3 3

Grand total D+ s + 21n2 —(o.i . rr2) D+ 3 + 2ln2
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Q = —
~

ln(2Z) ——
~

(b (r g2) ),
(

2 I ( 16——M' =
~

——ln Z + D
~

(b(ry2)),
r3Ir ( 3

(4.s)

(4 9)

With (o'q o'2) = —3 this agrees with the results of Drake
[39].

To leading order in a 1/Z expansion, Q and M' can be
found to be given by

where D is a constant that has to be evaluated numer-
ically. With these expressions the Coulomb-Breit and
Breit-Breit contributions become, respectively,

S 8 4
~

D+ —ln2 ——ln(Zn)
~

(b(rq2)) ——(crq cr2b(rq2)),
r 3

l2 1
~

3 ——ln2+ 2ln(Zn)
~

(b(rg2)) + —(erg cr2b(rg2)),
3

(4.10)
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which give the total contribution

5 2+ -+""'—-'"( ~)
~
(~(»2)) —(~~ ~2~(r»))

3

(4.11)

We have evaluated the constant D to be —1.9091 (see
Appendix C), which is in reasonable agreement with the
value —1.88 obtained by Blundell et al. [9]. Our value is
expected to be accurate to the digits given.

In Fig. 2 we have displayed the Coulomb-Coulomb,
Coulomb-Breit, and total contributions after dividing by
(Zn) . The slope at the origin represents the coefficient
of the (Zn) term. In Fig. 3 the corresponding results are
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FIG. 2. Contributions to the two-photon exchange di-
vided by (ZcI) after subtracting the zeroth-order and the
(Zo.) ln(Zn) terms. The slope at the origin represents the
(Zn) coeKcient.

Nuclear charge

FIG. 3. Contributions to the two-photon exchange due to
the Breit-Breit interaction and to virtual pairs after dividing
by (Zn) . The points at the origin represent the analytical
values of Sucher.
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shown for the Breit-Breit contribution as well as for that
of the virtual pairs after dividing by (Za)s. The value at
the origin is the analytical coefficient of the (Zn) term.

In order to compare our numerical results with the
analytical results, we have made fits to a (Za)" expan-
sion by a least-squares procedure after subtracting ofF

the (Zn)s 1n(Zcr) terms. The zeroth-order nonrelativistic
value —157666.43 hartree, which is known with high ac-
curacy, has been used. The second-order terms (Zn) 2, on
the other hand, do not seem to be known with sufficient
accuracy and have been used as adjustable parameters.

The (Zn)s and (Zn)4 coefficients obtained in the fit
are given in Table VII. The parameters obtained in the
6t agree well with the theoretical predictions of Sucher
(using D = —1.9091), in most cases within a few percent.
We have also tried to fit the data to a (Zn)" expansion
with a (Za) ln(Zn) term, but this was not stable enough
to yield any sensible results.

In Fig. 4 we have plotted the one- and two-photon
contributions, divided by the single-electron energy. The
vertical scale is logarithmic, so that —1 corresponds to
n, —2 to o,2, etc. It can then be seen that the Coulomb
(one-photon) and Coulomb-Coulomb contributions start

at ere = 1 for low Z, while the Breit (one-photon) and
Coulomb-Breit contributions start at n~. The next-order
efFects, Breit-Breit contributions, and /ED efFects (re-
tardation and virtual pairs) start at ns. In the high-Z
region it can be seen that the single-photon contributions
tend toward o., while all two-photon contributions tend
towards n .

It can be seen from the figure that the @ED efFect is

quite comparable to the Breit-Breit contribution. This
is displayed in more detail in Fig. 5, where we show the
contributions &om retardation and virtual pairs and the
reference state separately. The efFects of retardation and
virtual pairs have opposite signs and largely cancel each
other for low Z.

In Fig. 6 we have, in addition, displayed the separate
contributions &om single and double pairs and in Fig.
7 the contributions from crossed photons. In the latter
6gure we have also indicated the corresponding effect in
the Feynman gauge in a few cases. This dexnonstrates

clearly, as emphasized previously, the large difFerence be-
tween the two gauges for low Z. For high Z, on the other
hand, the contributions &om crossed photons tend to the
same limit in the two gauges.

TABLE VII. Coefficients for (Zn)" from the least-squares fit of the numerical data Th. e (Zn)
coefficients are compared with theoretical predictions of Sucher [6] using D = —1.9091. The term
"unretarded" represents results without retardation and without virtual pairs (negative-energy

states); "no virtual pairs" represents results with retardation, but without virtual pairs (in hartree

units).

Contribution
Coulomb-Coulomb
Unretarded=NVP
Virtual pairs
Total

(Zn)

-0.0692(2)
Numerical

-0.129(2)
0.075(2)

-0.054(2)

(Zo.)'
Sucher

-0.12881
0.07576

-0.05305

(Za)
Numerical

0.07(2)
-0.16(2)
-0.09(2)

Coulomb-Breit
Unretarded
No virtual pairs
Virtual pairs
Total
+ED=total —unretarded

-0.5670(2)
0.410(3)
0.460(4)

-0.300(5)
0.159(4)

-0.250(3)

0.40915
0.46190

-0.30516
0.15674

-0.25242

-0.27(3)
-0.52(2)
0.66(4)
0.14(2)
0.41(2)

Breit-Breit
Unretarded
No virtual pairs
Virtual pairs
Total
+ED=total —unretarded

-0.093(3)
-0.070(5)
0.128(3)
0.058(3)
0.151(3)

-0.09085
-0.06250
0.12369
0.06119
0.15204

-0.43(3)
-0.34(4)
-0.03(3)
-0.37(3)
0.06(1)

Total
Unretarded
No virtual pairs
Virtual pairs

-0.6362(3)
0.186(5)
0.260(6)

-0.099(5)

0.18950
0.27058

-0.10570

-0.64(3)
-0.78(8)
0.46(5)

Grand total

+ED=total —unretarded

-0.6362(3) 0.162(3)

-0.023(3)

0.16488

-0.02462

-0.32(3)

0.31(3)

This value is deduced from the other unretarded values in this column.
This value is taken from Ref. [9].
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FIG. 4. Contributions due to one- and two-photon ex-
change divided by the one-electron energy. The vertical scale
is logarithmic, so that 0 corresponds to unity, —1 to o., —2 to
n, etc.

Nuclear charge

FIG. 6. Same plot as in Fig. 4, but for the virtual-pair
effects from Fig. 5 separated into effects of single and double
virtual pairs.

V. CONC LU SION 8

Several important general conclusions can be drawn
from the analysis presented here. As mentioned in the
Introduction, the Breit interaction becomes quite impor-
tant for highly charged ions, also for moderately high
Z. For the heliumlike systems studied here, the first-
order Breit interaction dominates over the electron cor-
relation (Coulomb-Coulomb) already at Z = 25. The it-
erated Breit interaction (Breit-Breit), on the other hand,
is about two orders of magnitude smaller and of the same
order as the retardation and virtual-pair effects.

The iterated Breit interaction is also considerably
smaller than the effect of a single Breit interaction,
combined with one or several Coulomb interactions
(Coulomb-Breit) at least for low and medium-high Z.
Therefore, the standard no-virtua/-pair approximation
(NVPA), where one Breit interaction is included together
with the iterated Coulomb interaction, neglecting retar-

dation and virtual-pair effects, is quite a good approxi-
mation for such systems. The same can be expected to be
true for heavy ions that are moderately highly charged,
i.e., with a medium-high effective nuclear charge for the
outer electrons.

Several attempts have been made to include the retar-
dation of the Breit interaction in an approximate way
by means of a modified potential. The present analysis
ind. icates strongly, however, that such a procedure is not
meaningful, unless also virtual-pair effects are considered.

In order to go beyond the standard NVPA, discussed
above, it is, according to the present analysis, necessary
to include retardation and virtual-pair effects together
with the iterated Breit interaction. To include only the
latter, leaving out the /ED efFects (retardation and vir-
tual pairs), would not represent any major improvement
over the simpler standard NVPA.

It should be emphasized again that radiative effects
(Lamb shifts) are not considered in this work. The single-
electron Lamb shift is, for high Z, of the same order

OJ -2 5--
Cg
CJ
CO

-1.5--

-2--

Feyn man gauge

2--8
~& Coulomb-Bi eit

~ 'p+I -3--
Cg
bG
Q

3-- a
1

6
~ IH

OD
O

I-3- 3-- 6
-3.5

0 20
I

40
I

60

Nuclear Charge

I

80 100 -3.5
0 20 40 60 80 100

FIG. 5. Same plot as in Fig. 4, but for the +ED effects
separated into effects of retardation, virtual pairs, and refer-
ence state. For comparison the unretarded Breit-Breit effect
is also included.

Nuclear charge

FIG. 7. Same plot as in Fig. 4, but for the part of the +ED
effects coming from crossed photons. The contribution from
the reference state is not included.
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as the single-photon contributions. This shift is known
with high accuracy [40] and can easily be added to the
energy level. The two-body Lamb shift (screening effect)
is comparable to the @ED effects considered here and
consequently also has to be taken into account in going
beyond the standard NVPA in a sensible way.
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APPENDIX A: THE REFERENCE-STATE
CONTRIBUTION

Consider the two-photon electron exchange contribu-
tions given by the energy shift formula in Eq. (2.1). The

I

degenerate states, both for the uncrossed and the crossed
diagram, and the squared second-order counterterm give
rise to a Gnite contribution. This contribution, which is
gauge independent, is derived in this section. For simplic-
ity we shall use the Feynman gauge when writing down
the expressions.

The ladder contribution to the energy shift is given
by Eq. (2.2). We restrict the discussion to the reference-
state contribution &om the ground state of He-like atoms,
i.e., eo ——e = eg ——e = eg. For simplicity we define a
function

d3g ik (xg —xl )
d I dPd b (*) = 1 2 f (2 )3 (~R ~2/2 y~~)

x O~t(x, )a.„4,(x3)Cst(x, )a"4 (x,), (Al)

where the functions C, Cb, 4', and Cp may diHer in
the spin part. The angular integrations, considered in
Appendix B, give further restrictions on the spin direc-
tions. We use the subscript lad to indicate the angular
characteristic of the ladder diagram, which shall be dis-
tinguished &om the angular characteristic of the crossed
ladder diagram. Adopting this notation, we can write
the ladder contribution as

O 4
2K 27 27t. 27r

1 1
X ) gd, s (z3)gg 3 (z, )

[z3 ep (1 —iq)] [Z4 —ep (1 —i)l)]

—a(z4+z~ —ep )t4 —p l t4 l g~
—z(zg —zg —ep )C3

X dg,
—i(zl —z4+ep)~& ~ &l&& I dg

—~(ep —z3 —zl)tl
&

—&l&1 I

~ (A2)

We now introduce a L~ function de6ned by

which has the properties

lim b,~(x) = b(x),
p —+0

(A4)

lim urged~(x) = b
p-+0

Thus the ladder part can be expressed as

OO OO OO 1 1
dzy dz3 dz3 dz4 . . ) gd'c'b'a'(z3)gdcba(zl)

z3 ep 1 —1'rI z4 —ep 1 —'lrj
lad

(ep —z4 —z3) + p (ep —z4 + z] ) + p (ep —z3 —zl) + 7 (ep —z3 + z3) + p

By using the integral identity

~

~

1 y 'Y

f~(z3, zg) = dz
[z —ep(l —i)7)] (ep —z —z3) + p (ep —z + z) ) + p

vr7 (z3 —z„ —4ip)
(z3 + z))3 + 4p3 (z3 —ip)(zg + ip)
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we can perform the zs and z4 integrations, yielding the expression

~2~4
(@ ) && zz (

4 ) =
z dzz f dz fz~(z zz )fz(zz zz )z) gz, z (zz)gz, z (z~).

lad
(A8)

In a similar way we can obtain the crossed ladder contribution

4 oo oo Oo Oo

(@ I
S o I@ ) = dzq dz2 dz3 dz4

1 1
X ) gg, ( (z, )gg, g (zx)

I.z3 —ep(& —'&)] [z4 —ep(& —~)7)l

'y 'Y y

(ep —z4 + z2) + P (ep —z4 —zz) + P (ep —z3 —zz) + P (ep —z3 + z2) +
~2~4

dz] dz2 p Z2 ) Zy p Z2 ) Zy g(g c' $ ~ Z2 ggcg~
Cre

(A9)

where the subscript cro indicates the angular characteristic of the crossed ladder contribution.
In order to handle the divergent part of the ladder diagram, we focus on the squared one-photon counterpart, which

has to be subtracted in order to obtain the finite ladder contribution. Following standard rules, we can write the
one-photon counterpart as

Oo 4 2

(C iS„d iC) )= —i dz gg, g (z).2~ z'+7' ' (A10)

Consider the sum

f ( ) f ( )
7( p (z2 —z j —4 d p ) (z g

—z2 —4ap ) 2

( .+ )' + 4~' ( .—~)( + 7) ( —~)( + ~) (
' + ~')( .+ ~')

and the square of the sum

1 —2' 2p4-[f ( )+f ( )1'= ~, . . .), .

By using the above identity we can rewrite the squared one-photon counterpart as

(A&2)

4 oo &Oo 4 2 4 2

(C i S,.~ i
C ) = dzg dz3. . . , , . ..) gg g (z2)gd g (zg)4vr2 (z2 + p2 3 (zz + p2 2

lad

2 4 Oo

dzg dz2[f~(zz, z))+ f~(z„z2)]') gg, y (Z2)gg, b (zg)—Oo —Oo lad
(A&3)

and since the ladder contribution is given by

~2~4
(C".

I
Si'.a,, I

C".) =

fd. ,

dZ2 fp(Z2& Zy) f&(zj & Z2) ) ggzzz(zi&~ (ZZ)gdzgzg(zy)
lad

d' —[f ( ')+f (z z)]1 2

2

——[f,'(z2, zi) + f,'(», z2)] ) g~ .s .(Z2)g~.s.(zi),
lad

(A&4)

we can directly subtract the squared one-photon counterterm from it to obtain

(4(c' iSia, i@ ) —2(c' iS,',~ ic )') = ~2~4
dzz dzz2[f (z2& zl) + f (zy, zz)] ) gg~, ~(,~~~ (z2)g&g~g&z(zy).

lad

Thus we can write the Rnite reference-state contribution &om two-photon exchange as
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az'"' = lim —,i~((4(~.' I
s'. , I

c".) + 4(~'.
I s.'..., I

e'. ) —2(e.'
I
s,'. , I

e.')')}
1 . —c e2 4

2 2= liin —zp 4 dzi dz2 2[f~(z2, zi) + f&(zi, z2)] ) gdI, IsI~I (zz)gd, i~(zi)p~o 2
lad

—4f (Z2, Zl) ) gd I (Z2)gd I (Zl)
)cro

(A16)

or, since

and

fp( z2& zi) = f, (zl) z2) (A17)

~.~ (z) = a~.~ (-z) (A18)

we can rewrite Eq. (A16) as

—e4

4 «y «2 4 ~ z2, z~ gd, g z2 gd, q z~ —4 ~ z2, zy gg g z2 gq q

lad cro

(A19)

Apart &om the sign, the only thing that divers between the finite ladder and the crossed ladder contribution is
the angular structure of the diagrams. Thus, since the angular part of the respective diagrams differs only for the
vector-vector (v, p = 1 —3) interaction, there will only be finite reinainder from the vector-vector part.

To obtain an expression that is appropriate for numerical calculations we also perform the z2 integration analytically.
By extracting the z2- and zz-dependent parts out of g~ p we can use residue calculus in the lower half plane, with
poles at z2 ——gc kz —ie and z2 ———zi —2ip, to obtain

2 1

dz2

~

~ ~ ~

[(zz + zi)'+ 4p ] (z2 —ip)'(zi + ip) (z, —c'k', + ie')(z,' —c'k, + ie)

(—44ip —5ipc k22 —44' zi —ck2zi + 13ipzi + zi)
4 (3ip+ zi)(4p2+ c2k2z —4ipzi —ziz)z(zi + ip)2

p (-4ip+ ckz —zi)' 1

ck2(ip + c kz) [4/2 + (ck2 + zi) 2]z(zi + ip) 2
] (zi —c2k2i + it) (A20)

In a similar way we perform the zq integration, with
poles at zi ———gc2k22 —ie and zi ———ck2 + 2ip, and
finally we take the limit p —+ 0, which yields

—ic2e4
lim «2 dz~4
pm 0 2'

1
X

(z2z —c2k22+ ie') (zi2 —c2k2 + ie)

e4 (ki2 + kikz + kz)
2cz kiskzs(ki + kz)

The reference-state contribution for the crossed ladder
diagram can also be obtained by letting q, q' ~ 0 in Eq.
(2.26), since the singular reference part appears only in
the ladder diagram. Since the ladder and crossed ladder
contributions only difFer by simple angular factors, the
total reference-state contribution can thus also easily be
achieved &om the crossed ladder part.

APPENDIX B: EVALUATION OF THE
ANGULAR FACTORS FOR T%0-PHOTON

EXCHANGE

We want to evaluate the angular part of the two-
photon Feynman diagrams given in Fig. 1. As a first
step we evaluate the angular part of the first interaction
at the bottom of the ladder diagram in Fig. 1(a), which
has the mathematical expression

(2L+ I)(~ I
o"jL,(kr)&

I o) (& I
o„jL(k~)+ I ~)

(B1)

Using angular-momentum graphs the angular part can
be expressed as

(—I)'+'(2L + 1)(~i II
&'

ll ~-) . (~- II
c'

ll ~~)

x(2 II cr+ II 2) x Al,
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where Al is the angular-momentum graph shown in Fig.
8. Here S = 0 for the scalar part and S = 1 for the vector
part of o.

&
o.„2 ——1 —cxq .n2. The minus sign of the alpha

part is included in the integral and not in the angular
factor. The /s convention is employed. The square of the
reduced matrix element of the spin part is

(B3)

The graph Al in Fig. 8 can be transformed into the graph
A2 in Fig. 9 with a summation over K and v' and the
expression in Eq. (B2) can be rewritten as

) (-1) +'+'-+"+"+"+'2(2S+1)(2L,+1)

+ S

+
5 Ps

+
lp

JE K

lb'

jb

(B4)

where A3 is the angular-momentum graph shown in Fig.
10(a) and [K, K', . . .] = (2K+ l)(2tc'+ 1) ~ . The reduced
matrix element in the jm scheme is given by

FIG. 9. Same angular momentum graph as in Fig. 8, but
with the spin of the outgoing electron coupled with the or-
bital angular momentum of the incoming electron to K and
K', respectively, in the two vertices.

provided /, L, and /b satisfy the triangular and parity
conditions.

The angular factor associated with the radial integral
with large components of states a and 6 is denoted by
AFF, the angular factor associated with the large com-
ponent of a and the small component of b is denoted by
AFG, etc. Therefore, in AFG ls is, in Eq. (B4), replaced
by /p

——2j~ —/b, in AGF, / is replaced by / = 2j
and in AGG both these replacements are made. Since the
radial part of the small component is purely imaginary,
there is a sign change when the small component appears
in the bra state. This is compensated for by keeping /

and /b in the phase factor.
The graph in Fig. 10(a) can be reduced by coupling the

momenta L and S to a resulting momentum K giving

) (2EC+1)( + ~g )( +, & ) xA4, (H6)

where A4 is the angular-momentum graph in Fig. 10(b).
The final reduction of the angular factor in Eq. (B2) then
becomes

) ( 1) + + +1+ + + 2(2g+1)(2L+1)

S j K' S jzX [KK,j,js] 1
~

1 1
/

1
A b

x &g, II
~'

ll ~-& &i- II
C'

ll
&'-

& ) (2' + 1)

x ' " xA4 (B7)

In a similar way we get the angular factors for the
second interaction at the top of the ladder diagram in
Fig. 1(a), which has the mathematical expression

JE jL1

L
lt AE Z.

)g K'
)1 lu

)b S

(a)
jb jb

FIG. 8. Angular momentum graph corresponding to a
one-photon exchange. I is the tensor rank of the interac-
tion in the orbital space and S the tensor rank in the spin
space.

FIG. 10. (a) Angular momentum graph from the reduction
of the graph in Fig. 9. (b) Angular momentum graph resulting
from further reduction of the graph in (a) when the orbital
and spin ranks of the interaction have been coupled to K.
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( I)la+2a+2g +2„+K+K' 2t ju gt
Jp K' j. g& Z g

(89)

For J = 0 this reduces to

[j~ & ~- jul '~(i-i~)~(i~, i )~(i.,i~) = [j~,j-]
(810)

For the crossed photon diagram in Fig. 1(b) we evalu-
ate the two one-photon interactions

(2I + l)(t
~

cx"jL,(kr)C
~
a} . (d

~
a„jl,(kr)C

~
u)

(811)

(2L + l)(c
~

a"jL,(kr)C
~
t) . (u

~

o.„jL,(kr)C
~
6}

(812)

by similar replacements as for the ladder diagram. The
angular-momentum graph corresponding to the crossed
photon Feynman diagram is given in Fig. 11(b). The
reduction of this graph gives

'K
~qq&+q. +K+K'+J

~ 2t
ga

2~ 2d
K' j
ja

(2L+ 1)(c [ a"jl,(kr)C
~
t) (d

~

o.„jl,(kr)C~
~
u)

(88)

by making the replacements a m t, t -+ c = a and b —+ u,
u —+ d = b. Since the angular factor AFF is associated
with the radial integral with the large components of the
states a and b, etc. , I and ls in the formula [Eq. (84)] are
replaced by lt and l„, respectively. In the phase factor /t

and E„should appear for the same reason as before.
The angular-momentum graph corresponding to the

Feynman ladder diagram is given in Fig. 11(a). The re-
duction of this graph gives

For J = 0 this reduces to

(-1)"+'"+ +
(&- &-1 '~(&- &s)~(&. ~d).

(814)

APPENDIX C: EVALUATION OF THE BETHE
LOGARITHM

The expression for M in Eq. (4.3) is given by Araki
[30] and Sucher [6] as

(H —E)M'= 4 pg H —E ln p2 4 +pq~pq,
A )

where 4 = @o+4q+ . is the nonrelativistic two-electron
wave function that is an eigenfunction with the eigen-
value E = Eo + Eq +.. . of the Schrodinger Hamiltonian
H = Hp + V where V = I/rq2. In Sucher's treatment
this term comes from one transverse photon exchange
including an arbitrary number of NVP Coulomb ladder
interactions. It corresponds to the retardation efI'ects for
the low photon energies up to a cutofF A, where the elec-
tron excitation energies are neglected compared to A.
The dependence on A cancels when combined with the
corresponding contributions from photon energies larger
than A. For simplicity A is set to 1 a.u. in the de6nition
of M', although the average electron excitation energy
is much larger. Efr'ectively, M' thus has contributions
from both low and medium photon energies. Usually
M' is combined with a similar expression M", which is
diagonal in the p, operators, to form the full Bethe log-
arithm M. M" originates &om the self-energy diagram
with Coulomb-ladder interactions on the internal (vertex
corrections) and/or the external lines. Here we are inter-
ested in evaluating M' separately to leading order in a
1/Z.

Without the logarithmic factor, Eq. (Cl) can be eval-
uated analytically to be 4vr(h(r&2)}. It can be shown that
M' can be expanded as

M' = 4m(b(rq2)) [ln(Z ) + aq + a2/Z + .
]

= 4'�(b(r,2)}ln(Z ) + Z (A', + A2/Z + .). (C2)

K'
jt )E 4ju

FIG. 11. Angular momentum graphs corresponding to the
(a) ladder and (b) crossed two-photon exchange diagrams
where the orbital and spin ranks of the interactions have been
coupled to K and K', respectively.

To compare with our calculation we are interested in
the leading term in the 1/Z expansion. Neglecting
higher-order terms in this expansion, we obtain the ex-
pression for M', which is given by Eq. (4.9), where
D =—(8/3)aq ———(16/3)A~. A~ can be determined by
evaluating M' numerically to leading order in 1/Z. There
are contributions from the 1/Z perturbation of 4'p orig-
inating from the ladder diagram in Fig. 1(a), as well as
from the 1/Z perturbation V of the Hamiltonian opera-
tor originating from the crossed photon diagram in Fig.
l(b). The perturbation of Ep of leading order in 1/Z
does not contribute to M' due to the nondiagonal struc-
ture in the p operators. For M", which is diagonal in
the p operators, this last perturbation corresponds to
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the reference-state part of the self-energy diagram with
a Coulomb interaction on the outer line.

The expression for the 1/Z perturbation of 4'p is
straightforward to achieve and can be expanded in one-
electron states. The evaluation of the perturbation in
the Hamiltonian operator, however, needs more care. We
evaluated the latter by using the expansion

integral (as mentioned Eq does not contribute)

OO dxq', +ln q.(q'+ *)(q+ *)

Performing the z integration we obtain, for q g q',

ln(H —E) = ln(Hp —Ep)
OO

. 1+ dz (V —Eg)
p p+

1
X

Hp —Ep+ x

for the logarithmic factor and get to leading order in 1/Z
for the perturbation of the Hamiltonian operator

1 1
(Hp —Ep) dx (V —Ei)

Hp —Ep+ x Hp —Ep+ x
+(V —Eg) ln(Hp —Ep), (C4)

where x is a real integration variable. Before the x in-
tegration is performed we insert identity operators, ex-
pressed in one-electron states, around the perturbation.
Only

[ Isnp) and
[
n'pl )estates contribute for @p ——

[
1s2)

and we can replace Hp —Ep with q = e „—e~, and
q' = e „—ez„respectively. The perturbation in Eq.
(G4), for particular n and n', now becomes V times the

, ln(q) +, ln(q').
q —q'

(C6)

For q = q' the corresponding result is 1+ ln(q).
We have evaluated all the 1/Z contributions to

both M' and M" and have reproduced the coeKcient
Aq(ls2 S) calculated by Goldman and Drake [41I for
the sum of the two. We obtain —6.16740 compared
to their value —6.167410(5). For the part correspond-
ing to M' separately we obtain Az ——0.35796 leading to
D = —(16/3)AI = —1.9091 to be used in Eq. (4.9). We
have also achieved the same result from our two-photon
exchange program by taking the Coulomb-Breit NVP re-
tardation effect (retarded minus unretarded), making the
dipole approximation and taking the limit when Z goes to
zero. The low energy photon contribution is then taken
by integrating the photon energy from zero to 1 a.u. and,
which is important, neglecting the electron excitation en-
ergies q and q in the upper limit. As already mentioned,
this leads to unphysical results for the low photon energy
contribution, but is consistent with the de6nition of M .
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