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Alternative form of the linear-response contribution to the exchange-correlation
energy functional
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The linear-response contribution to the exchange-correlation energy functional E„,[n] of density-
functional theory is reconsidered. An alternative form for this functional is suggested that resolves
the convergence problems for finite systems inherent in the original form introduced by Hohenberg
and Kohn [Phys. Rev. 136B, 864 (1964)]. Within the exchange-only approximation in which
the linear response kernel is known exactly and the optimized-potential model serves as a rigorous
comparative standard, the present functional is applied to spherical atoms and jellium spheres. Self-
consistent results for these systems indicate that this functional might be worth a more detailed
examination.

PACS number(s): 31.10.+z, 71.10.+x

I. INTRODUCTION

During recent years a major e6'ort within density-
functional theory (DFT) has been directed towards the
construction of nonlocal corrections to the local-density
approximation (LDA) for the exchange-correlation en-
ergy functional E„,[n]. Systematic schemes for the con-
struction of nonlocal corrections have already been in-
troduced in the seminal papers on DFT [1,2]. There,
basically two routes have been suggested, diKering in
their degree of nonlocality. On one hand, the gradient
expansion [1] (GE) has been put forward that is based
on the smallness of the gradients of the density, i.e. , of
V'n(r)/[2kF(r)n(r)] [where kF = (3' n)i~ ], and the
corresponding higher gradients. On the other hand, as a
more nonlocal alternative to the GE the linear-response
correction E~P[n] to the LDA has been introduced [1—3].
This approximation allows for arbitrary variation of the
induced inhomogeneity bn(r) as long as bn(r) is suffi-
ciently small compared to the unperturbed density no.
It is thus complementary to the GE as here the size of
the gradients of the total density n(r) = np + bn(r) does
not restrict the applicability. Consequently the linear-
response (LR) correction seems particularly suited for the
description of extended systems.

Its actual application, however, su8'ers &om techni-
cal difhculties such that few investigations have been re-
ported in the literature [4—6]. Many of these difficul-
ties originate &om the elimination of the initial vari-
ables of EL, , i.e. , bn(r) and np, in favor of the complete
n(r). In particular, it has been shown [7] that one of
the most plausible choices for the elimination of no &om
the exchange-correlation kernel, i.e., np ——n[(r + v')/2],
leads to divergent exchange energies for atoms and sur-
faces. Moreover, even for other local substitutions of no
the application of the original form of ELR[n] (at least to
finite systems) suffers from the very slow convergence of
some integrals involved.

Here an alternative form of E~ [n] is suggested that
resolves this major problem with the original form: The

II. THEORY

For a weakly inhomogeneous electron gas, n(r) = np+
bn(r), one finds, as the linear-response correction to the
exchange-only energy [1],

dt3
E = — bn(q) bn( —q)

x[K(q kF) —K(O, kF)] (2.1)

present form gives 6nite E 's for all local substitutions
of no and considerably improves the convergence proper-
ties of ELR[n]. As a consequence the present functional
is technically much easier to handle than the original
one, which is demonstrated by an application to spheri-
cal atoms and jellium spheres [8—10] within the exchange-
only approximation [11—13]. In the present context the
restriction to the exchange-only limit overs two advan-
tages: On one hand, the exchange-only linear-response
kernel is known exactly [14—16], and, on the other hand,
the optimized potential model (OPM) [17,18) provides
the exact exchange-only results both for E as well as
the exchange potential v (r) allowing for an unambigous
analysis [19].

As the present E [n] allows for an even larger class
of local substitutions of no, the task of finding the most
adequate one is even more involved. Here two simple
substitutioiis for np, i.e. , np —— [n(r) + n(v')]/2 and
np ——n(r) ~ n(v') ~, are examined in order to demonstrate
the feasibility of the latter (which cannot be used in the
original LR functional for finite systems and surfaces)
and to check the importance of this input.

The paper is organized as follows. In Sec. II the present
E [n] is introduced and its properties are discussed in
comparison to the original functional. Results for atoms
and jellium spheres are presented in Sec. III. Some tech-
nical details are compiled in the Appendix. Atomic units
are used throughout this paper.
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II'(q, k~)

IIO(q, k~)
(2.2)

where Ilo i(q, k~) represent the static zeroth- and first-
order contributions to the irreducible density-density re-
sponse function of the homogeneous electron gas. In or-
der to rewrite E~R as a density functional both hn(r)
and no have to be eliminated in favor of n(r), which is
achieved in two steps. First, Fourier transformation al-
lows one to eliminate bn, which leads to the standard
form of the linear-response functional [1—3],

where

&.' [nl = ——fd'nfd'"In(n) —n(n')]'~([ln —n'[I, & ),
(2 3)

where one has used the fact that k&211 /[II ]2 only de-

pends on the ratio Q = Iql/(2k' ) rather than on q and k~
separately ((k&/vr)II (0, k~)/[II (0, ky)] = —1). G(x)
allows one to factorize K(r, ky) into a Coulomb interac-
tion and a screening function

K(r, ky) = ——G (2kFr)
2 I (2.8)

where G'(x) denotes the derivative of G(x) with respect
to x. As for the replacement ne —+ [n(r) + n(rI)]/2
the argument k~ in K(lr —r'I, k~) approaches the r'
independent value [3' n(r)/2]~ in the limit of large Ir'I,
the angular integration can again be performed

transform

dQ k~~ IIi(q, kz)
G(x) = cos(Qx) '„, (2.7)

d3
K(r, ky) = e'~" K(q, kp) .

27r s (2.4)
lizll dn' K(lr —r'I, kp. ([n(r) y n(r')]/2))

T ~OO

In the second step k~ inside K(Ir —r'I, k~) has to be
replaced by some appropriate functional of the inhomo-
geneous density n(r ) .

While a number of choices for this replacement have
been discussed in the literature [2—7,20], none of them
has been tested extensively up to now. Moreover, Gun-
narsson, Jonson, and Lundqvist [7] have shown that one
of the most simple and physically plausible possibilities
[2], i.e., no ~ n[(r + r')/2], leads to divergent exchange
energies for atoms and surfaces. The problem originates
&om the v' integration in the term

d p d7 ~7 ~ 7 —7 (2.5)

which for k~ = (3m2n[(r + r')/2]) s does not converge
for large lr'I (and arbitrary but finite r). In fact, as for
atoms n[(r + r')/2] vanishes exponentially for large lr'I
one finds (compare Appendix A of [7])

dfI' K(lr —r'I k~[(r + r')/2]) =-
7' MOO 3r'

such that the remaining r integration diverges. This di-
vergence is directly related to the violation of the identity

(2 6)

[which has been used to obtain (2.3)] after the local sub-
stitution of ky'.

Gunnarsson, Jonson, and Lundqvist [7] also analyzed
the replacement no —+ [n(r) + n(r')]/2 and showed that
it leads to 6nite E 's. However, the asymptotic form of
K on which they based this examination did not take
into account the correct behavior of II at q = 2k~
(see Ref. [16]). In the following it will be shown that,
while their basic conclusion about the existence of (2.3)
is not affected by the different asymptotic form of K,
(2.5) turns out to converge extremely slowly. For this
analysis it is most appropriate to de6ne the basic Fourier

[G(2k~ lr + r'I) —G(2k~ lr —r'I)] (2.9)rr'kp

From the asymptotic behavior of G(x) (completely given
in the Appendix),

it is thus obvious that the r integration converges ex-
tremely slowly and seems rather diKcult to evaluate nu-
merically in actual applications.

These difficulties with the functional (2.3) indicate that
this expression might not represent the optimum form
for E [n]. In particular, it seems advantageous to elim-
inate bn(r) without explicit use of Eq. (2.6). This can
be achieved by rewriting Eq. (2.1) as

Z [n] = —f d n f d~n' Vn(n) . '
(V')nn

xI (lr —r'I, k~), (2.10)

where

q, .„(q) p) —K(0& k~)
2~ 3 '

q

lim L(]r —r'l, kp) =
kF —+0 4k~2lr —r'I

Using this limit of L the angular integrations for v' are

and V'6'n(r) = Wn(r) has been used. It should be em-
phasized that this gradient form of the linear-response
correction is not restricted to the exchange-only approx-
imation, but could also be used in the more general case
of E„,[n].

One can directly verify that for (2.10) the replacement
k~ ~ (37r n[(r + r')/2])i) s gives convergent E 's for
6nite systems. One first notes that for vanishing k~ the
new kernel L becomes particularly simple,
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easily carried through for spherical systems such that for
brevity the following explicit evaluation is restricted to
this situation:

lim dO' Vn v V'n v' L v —v', kF v +v' 2

0.4
I
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0.2
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x= 2K llDl
2 d

~ ~~ 4k~(r'/2)2, [r + r' —2rr'x]2
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The n'(r') in the numerator ensures convergence of the
subsequent r' integration in spite of the kJ; (r'/2)2 in the
denominator by which the asymptotic form of L differs
f'rom that of K. Thus in contrast to (2.3), the form (2.10)
allows for no ~ n[(r + r')/2].

For further analysis of (2.10) it is again advantageous
to introduce a dimensionless Fourier transform H(x),

dQ cos(Qx) k~~ IIi(q, ky )
vr Q2 vr [Ilo(q, k~)]2

which allows one to factorize L(r, k~) in the form

L(r, ky ) = — H'(2k' r) .
2k@ 2r (2.13)
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FIG. l. Exchange-only kernel G'(x), Eq. (2.g), and its
»ymp«t&«orm [the &erivative of (Al) with respect to x].

The kernels H'(x) and G'(x), which essentially character-
ize the screening of the Coulomb interaction in L(r, k~)
and K(r, k~), respectively, are plotted. in Figs. 1 and 2
[compare the evaluation of G'(x) for small x in Ref. [21]
and the corresponding kernels including correlation ef-
fects in Ref. [5]]. It is obvious from these figures that
H'(x) is more short ranged than G'(x), which is a fur-
ther reason for the improved convergence properties of
(2.10). For completeness also the asymptotic forms of
G'(x) and H'(x) (analytically given in the Appendix)
are shown in Figs. 1 and 2, indicating their accuracy for
smaller x values.

The exchange potential resulting from (2.10) reads

FIG. 2. Exchange-only kernel H'(x), Eq. (2.13), and its
asymptotic form [the derivative of (A2) with respect to x].

v (v) = —f d r' v'n(v') . VL(iv —v'~, k~)

d r' d r" V'n r' Vn v"
2

x
" (["]'"''"") "

L(I
' — "l, k~),

bn(r) dkp.

(2.14)

where k~([n], r', r") at this point could be any functional
of n which reduces to (3vr2ne)i~ for a homogeneous sys-
tem. However, a restriction of the density dependence
of kp ([n], r', r") seems unavoidable in order to allow for
the efficient application of the potential (2.14) in selfcon-
sistent calculations. In fact, all k~([n], r', r") suggested
in the literature until now are simple functions either
of n[(r' + r")/2] or of n(r') and n(r") separately such
that the functional derivative in (2.14) can be easily per-
formed. Restricting oneself to the latter case (the former
situation can be treated analogously) and assuming k~
to be symmetric with respect to n(r') and n(r") one can
rewrite v~R(r) as

LR( ) 2 ds i (r —r') . ~'n(r')

H" (2k~lr —r'I) H'(2k~lr —r'I)
k~lr —r'I (2k~ lr —r'I)'

(2.15)

vLR(r) becomes particularly simple for spherical systems,

(r) = — dr' s H(x+) —H(x )
iR z n(r)

2r 0 kF3

r'dr' H'(x ) + H'(x )
O

r'dr' H'(x ) —H'(x )r r F
(2.16)

where x~ = 2k~lr + r'I On the basis o.f (2.16) one can
directly analyze the asymptotic behavior of v R(r) for
finite systems. In particular, one finds by an expansion
of H(x~) in powers of x~ that
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(2.17)
kJ; —[3~ ri(i )] s [3'jr n(r')] e (LR2) (3.2)

F [a] = fd'r v (r) 3n(v) + v . vn(v) (2.18)

as is also obvious from all numerical results. The accu-
racy to which the E 's obtained directly via (2.10) agree
with the values calculated from the right-hand side of
Eq. (2.18) is even higher than that found in OPM calcu-
lations [23].

III. RESULTS

While one should not expect a functional based on
linear response to give particularly accurate results for
atoms, an application of ELR[n] to atoms is nevertheless
interesting as a Grst check on its properties. In fact, due
to their very inhomogeneous density, atoms are among
the most critical systems a linear-response correction can
be tested for. In particular, one would expect atomic re-
sults to be rather sensitive to the local substitution of k~
inside the response kernel such that one would hope to
obtain some information concerning this choice. Without
aiming at a complete answer to this question, the func-
tional (2.10) is here applied to spherical atoms using two
difFerent siinple k~([n], r, v'),

1

~(r)+ ~( ')
3%

2
(LR1), (3.1)

if k~(n(v ), n(r')) vanishes exponentially for large r
While this asymptotic form of v~R(r) does not agree with
the exact 1/—r behavior [18,13], it is nevertheless inter-
esting that a proportionality to 1/r can be obtained from
the functional (2.10).

Finally, it is worth pointing out that the functional
(2.10) satisfies the virial relation for the exchange-only
E [n] [22],

While these k~([n], v, r') both belong to the class
k~([n], v', r') = k~(n(v), n(v')) for which the exchange
potential has been given in Sec. II, their comparison nev-
ertheless provides an idea of the variation of the LR re-
sults with difFerent k~([n], v', v'). Moreover, in several
studies [6,7,20] of the original linear-response functional
(2.3) the replacement (3.1) has been found to represent
the optimum substitution among the simple forms of
k~([n], v, v'). The choice (3.2), on the other hand, be-
longs to the class of substitutions that cannot be used in
the functional (2.3) for finite systems.

In Table I the E 's for spherical unpolarized atoms ob-
tained by insertion of exact OPM densities into (2.10)
using (3.1) and (3.2) are compared to the exact E 's

from the OPM [23] and the results of the LDA and
the second-order gradient expansion (GE2). As is ob-
vious from the percentage errors 4;, neither LR1 nor
LR2 improves atomic E 's over the GE2, with LR2 be-
ing slightly superior to LR1. The most pronounced dif-
ferences are found for the smallest atoms, while the er-
rors of the GE2 and LR1,2 for the more characteristic
large atoms are rather similar. This can be understood
&om the fact that the relevant gradients of the density,
i.e., V'n(v )/[2k' (v )n(v )] and V'2n(t')/[4k~(v ) n(v )], are
smaller or of the order of 0.5 over the most important
range of r for medium size and in particular large atoms
(compare Refs. [23,24]), while they become of the order
of 1 or even larger for the smallest atoms. However, the
GE2 represents a rather accurate approximation to LR
for gradients smaller than 0.5, as is obvious &om a com-
parison of the complete exchange kernel (2.2) with its
second-order expansion in powers of q.

However, as has become clear recently [24], the accu-
racy of total E 's partially results &om fortuitious can-
cellation of local errors (even in the case of the LDA).

TABLE I. Total exchange energies of spherical unpolarized atoms from the OPM, LDA, GE2,
LRl, and LR2 obtained by insertion of OPM densities (in hartrees) and the corresponding percent-
age errors A, .
Atom

He
Be
Ne
Mg
Ar
Ca
Zn
Kr
Sr
Pd
Cd
Xe
Ba
Yb
pt
Hg
Rn

OPM

1.026
2.666

12.105
15.988
30.175
35.199
69.619
93.833

101.S26
139.114
148.880
179.064
189.067
276.147
331.339
345.246
387.453

LDA

0.884
2.312

11.033
14.612
27.863
32.591
65.645
88.624
96.362

132.169
141.543
170.566
180.241
265.563
318.712
332.143
372.981

+LDA
(%)

-13.82
-13.26
-8.85
-8.61
-7.66
-7.41
-5.71
-5.55
-5.46
-4.99
-4.93
-4.75
-4.67
-3.83
-3.81
-3.80
-3.74

GE2

1.007
2.581

11.775
15.510
29.293
34.183
68.109
91.651
99.560

136.145
145.702
175.304
185.156
271.806
325.752
339.372
380.811

+GE2
(%%uo)

-1.86
-3.19
-2.73
-2.99
-2.92
-2.89
-2.17
-2.33
-2.32
-2.13
-2.13
-2.10
-2.07
-1.57
-1.69
-1.70
-1.71

LR1

0.982
2.582

11.814
15.581
29.275
34.176
68.328
91.953
99.932

136.747
146.354
176.026
185.931
272.572
326.536
340.162
381.591

+LRl
('%%uo)

-4.27
-3.14
-2.40
-2.55
-2.98
-2.91
-1.85
-2.00
-1.96
-1.70
-1.70
-1.70
-1.66
-1.29
-1.45
-1.47
-1.51

LR2

1.043
2.723

12.059
15.767
29.388
34.202
68.521
92.354

100.340
137.434
147.088
176.881
186.756
272.989
326.916
340.533
381.927

+LR2
(%)
1.70
2.13

-0.38
-1.38
-2.61
-2.83
-1.58
-1.58
-1.56
-1.21
-1.20
-1.22
-1.22
-1.14
-1.33
-1.37
-1.43
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More characteristic of the quality of some approximate
E [n] than these total E 's are the exchange potentials
obtained by self-consistent calculations as these deter-
mine, e.g. , the band structure and spin densities and
thus the magnetic phases of solids. Figures 3 and 4 show
the self-consistent v (r)'s from the LR1,2 in compari-
son to the exact v (r) for Pd and Rn (being char-
acteristic for all atoms examined). In order to extract
the interesting nonlocal part of v (r) the self-consistent
LDA potential has been subtracted &om all potentials.
Moreover, as the LDA and LR1,2 do not reproduce the
asymptotic —1/r tail of the exact v (r) [18,13,25], the
potentials in Figs. 3 and 4 have been shifted by the dif-
ferences between the highest occupied (HO) eigenvalues
&om OPM and LR1,2 calculations and the corresponding
LDA eigenvalues (i.e. , OPM in Figs. 3 and 4 represents
the potential v (r) —eH& + @Ho and LR1,2 corre-
spond to v ' (r) —&Ho

' + eH& ). In fact, the highest
occupied eigenvalues &om the LR calculations are rather
close to the LDA eigenvalues (see Table II) even for the
case of LR2, whose v (r) eventually approaches N/(3r). —
However, this asymptotic limit does not acct vLR2(r)
in the physically relevant part of the asymptotic regime
(1—4 a.u. ) such that the correction —e '

+&HO is neg-
ligible. The constant shift between vo (r) and vLDA(r)
induced by their asymptotic behavior, on the other hand,
does not afFect the structure and size of the oscillations
in the nonlocal part of v (r), which are the main objec-
tive of the present analysis [compare corresponding plots
without the modification of vopM(r) in Ref. [24]]. The
accuracy to which these oscillations are reproduced by
LR1,2, however, is more easily seen in comparison to the
shifted OPM potential.

Analyzing Figs. 3 and 4 one finds that, while the LR1
improves v (r) for small r, i.e. , the innermost shells, it
is not capable of following vopM(r) for intermediate and
large r. In accordance with this observation only the
innermost eigenvalues are improved, as can be seen &om
Table II. Comparing LR1 with LR2, the latter seems to

0.3

0.2A

0.1

0
A

-0.1
I

0 2

~ I I ~ ~ I III ~ ~ ~ I ~ ~ ~ ~
I

I ~ I ~ ~ ~ ~ I)

OPM--- LR1

I I I III ~ II I ~ ~ ~ ILIII I I I ~ 1I~ II I I I IIIII0 3~ M

0001 001 01 1 10
r (a.u. )

FIG. 4. Same as Fig. 3 for Rn.

be somewhat superior for intermediate and large r, while
also not being really close to the exact result. However,
in view of the difFerences between LR1 and LR2 it seems
quite likely that more refined local substitutions for A;~

could lead to much better results.
In any case, it must be emphasized at this point that

other approximate E [n] also have substantial difficul-
ties reproducing v (r) [for gradient-based functionals
such as the GE2 or generalized-gradient approximations
(GGAs) see, e.g. , Refs. [23,24]]. The net effect of the er-
ror introduced by some approximate E [n] is most clearly
visible in the ground-state densities n(r) resulting from
self-consistent calculations. In Figs. 5 and 6 the dif-
ference between self-consistent LR2 and LDA densities
is compared to the exact nonlocal density contribution
nopM(r) —nLDA(r) and the result from a GGA (PW91
[26]) for Pd and Rn. Again the nonlocal shell oscillations
are only partially reproduced by the LR functional. Nev-
ertheless, LR2 turns out to be superior to the GGA. We
just remark that consistent with the results for atomic
v (r)'s, the densities from LR1 are less accurate than
those &om LR2 such that this comparison seems to in-
dicate that the latter choice is preferable (at least for
atoms). As to be expected, local quantities such as v (r)

0.3 ~ I I I III ~
I

~ I I I ~ IIII ~ ~ I I ~ ~ ~ If

0.2A

0.1

0
A

0
I

-0.2

OPM--- LR1 I ~I ~

I
1

I
l

-0.3
0.00 l 0.01 0.1

r (a.u. )

FIG. 3. Nonlocal contributions to the exchange potential of
Pd obtained by self-consistent LR calculations in comparison
to the exact OPM result: LR1, Eq. (3.1); LR2, Eq. (3.2). Note
that the potentials have been shifted by the difFerence between
the highest occupied eigenvalues obtained by the OPM-LR
calculations and the corresponding LDA eigenvalue.

nl
18
2s
2p
3s
3p
3d
4s
4p
4d
4f
5s
5p
5d
6s
6p

OPM
3207.2164

547.0778
527.7905
133.6096
124.3429
107.0813
31.5925
27.4265
19.7113
9.1529
6.0334
4.5480
2.0447
0.7517
0.4271

LDA
3204.6466

546.4904
527.4434
133.2938
124.0968
106.8677
31.1628
27.0410
19.3822
8.8861
5.8321
4.3518
1.8565
0.5808
0.2501

LR1
3207.0061

546.9339
527.5872
133.2765
124.0118
106.8517
31.2270
27.0867
19.4369
8.9026
5.8217
4.3391
1.8494
0.5853
0.2537

LR2
3207.6437
547.0804
527.4829
133.1997
123.9123
106.8648
31.2651
27.1149
19.4711
8.8944
5.8341
4.3507
1.8610
0.5765
0.2462

TABLE II. Eigenvalues —e ~ for Rn obtained from OPM,
LDA, and LR1,2 by self-consistent calculations (in hartrees).
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FIG. 5. Nonlocal contrxbutxon to t '
y

~ ~ the density of Pd
d b self-consistent LR calculations [using LR2,obtaine y se -co

Eq. (3.2)] in comparison to the exact OP resu an
(PW91).

or n(r) distinguish much more clearly between the varz-
)ous choices for A:~ than total E s.

While these results for atoms illustrate the limitations
of the functional (2.10) [at least for the choices (3.1) and
3.2)], an application to jellium spheres emphasizes its po-
tential power for sys emsf t that satisfy the linear-response

~ ~ ~ ~

criterion bn(r) « n'o (as jellium spheres in their interior
are Ref. ",8~~. Self-consistent LR potentials and

h loser to the exactties for ellium spheres are muc~ c.oser o e e
as is obvious from

Fi s. 7-10, where the LR1 is compared to the OPM andFigs. 7-10, w ere e
PW91. In particular, the much more nore nonlocal character
of (2.10) as compared to functxonals baseded on the GE al-
lows one to repro uce e pd th ronounced peak at the origin

) d y j Unfortunately, due to numeri-

able to report LR2 results for larger jellium spheres, so
no comparison o ist LR2 is given. However, it is particu-

ost sim lel atif in to observe that already the most simp e
choice LRl gives rather accurate results. n any
would expect jellium sphere results to be less sensitive to
this ingredient of (2.10) than those for atoms.

s Q4
Awk Q3

Q 2

A p1
I 0

-0.1
I

5

f
I I I I

10 15 20 25 30
r (a.u. )

FIG. 8. Same as Fig. 7 for Naq54.

PIG. 7. Nonlocal contribution to the exchange potential of

E . (3.1)] in comparison to the exact OPM resu an a
PW91 . Note that the potentials have
q. . in

ve been shifted by the
h h hest occupied eigenvalues obtaineddifference between t e ig es oc ' ' ed

by the 0PM-LR-GGA calculations and the correspon ing
I DA eigenvalue.
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FIG. 6. Same as Fig. 5 for Rn.

10 FIG. 9. Nonlocal contnbutxon too the density of Na9$
obtained by self-consxsten t LR calculations [using LR1,

d GGAxact OPM result an aEq. (3.1)] in comparison to the exac
(PW91).
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FIG. 10. Same as Fig. 9 for Naq54.

IV. CONCLUDING REMARKS

In this work an alternative form for the linear-res onse
o e exchange-correlation energy func-

p ica e o both exchange and correlation [with a
suitable kernel L&r Ic all explicit results presented
here have been obtained within th he

'
i n e exc ange-only ap-

e present formproximation. It has been shown that the
resolves the divergence problem [7] of the ori in

unc ional [1,2] for certain local substitutions
of no inside the response kernel. Quite enerall
present form leadeads to faster convergence of all integra-
tions involved, allowin for rng or much easier application of
this runctional. t
chan e

~ ~

h r" al. t seems worth mentionin th t th
ge potential resulting &om this E 'n' is

ing a e ex-
is I'n~ is nnite both

systems.
a nuc ear sites and in the asymptotic regime of 6 teo nie

As far as the optimum local substitution for no is
I

concerned two sim 1p e forms have been examined, leav-
ing a more detailed investigation of th

e u ure. n particular, the original suggestion [1,2]
no ——n[(v + v")/2], which the present E [n allon a ows one

e, as no een studied yet. The comparison of the
two substitutions for n consid d h
t"at at least for in

onsi ere, owever, indicates
inhomogeneous systems such as atoms,

u a ions epen ratherthe results of self-consistent calcul t' d
sensitively on this input. It seems that some room for
improvement is left in this respect.

The present functional has been applied to both
and 'eBium s

p ie o ot atoms

the 1
j spheres. While the former pro d 'd frovi e an i ea of

e imitations of this functional, the latter im
demonstrate its

e a er impressively
ra e i s power for those systems for which the

underl in liney g
' ear-response approximation is satis6ed at

least to a limited e
consis

xtent. Nevertheless even th lf-
istent ground-state densities obtained in the atomic

examination.
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APPENDIX: ASYMPTOTIC FORM
OF EXCHANGE KERNELS

In this appendix the leading two orders of the expan-
sions of G(x), Eq. (2.7), and H(x), Eq. (2.12), for large
x are given to facilitate use of E Th '

eir evaluation
proceeds as discussed in Sec. III f R f 16o e . such that we
only list the final result here (for x = lml

G(x),=,

sin x ( ) (' & f' 3+, 3 l(2
& —»I2xl

I
+3l ——& —»12xl

I

32 m~ 29 4(2 2
~ (3

) E2

)I I 2
—G —'" I2*I I

——&(3) ——+ —+ -J (A1)

where C = 0.577. . . represents the
th' 'tu 1' """ 'ter f 1

As a o (A1) l
rame er or arge x is ln I 2x I ~x rat '

mi
~ ~ ~ ~

mig ave expected.

b bo t2% t*=102 008%%u

The asymptotic form f H( d
%%u

e ig. , t e percenta e

o x i ers from Al only in its first-order cont

e i g

g
)

ont an singu arities of

H(x) = G(x) + bH(x),

cos(x) f 3 vr
H(x) =, 4I ——C —lnl2xl

I

———5

(A2)

The accuracy of (A2) is very similar to that of (Al' 'see also Fig. 2).
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