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We describe a class of periodic tiling that corresponds to toroidal arrangements of trivalent
atoms with pentagonal, hexagonal, and heptagonal rings. The relaxation of model carbon atoms in
molecules represented by these tilings is used to yield estimates of the energy per bond, the energy of
the least bound atoms, and the highest occupied and lowest unoccupied molecular-orbital energies.
The results support the point of view that stable toroidal carbon molecules can exist.

PACS number(s): 36.10.—k, 36.20.Fz

Fullerenes are carbon molecules that approximate
spheres [1]. It is natural to ask whether carbon also
forms stable molecules that approximate other surfaces.
Since closed two-dimensional surfaces are either spheres
or (in general, multihandle) tori, this is the same as ask-
ing whether carbon makes molecules that approximate
tori with one handle or more. All such molecules, if
they were to exist, would have an even number of carbon
atoms. Fullerenes are simply connected and have posi-
tive Gaussian curvature. It is reasonable to expect that
molecules that are multiply connected and have negative
curvature (i.e., have regions that approximate a saddle)
would have distinct physical and chemical properties [2].
For example, certain quantum and transport phenom-
ena depend on multiconnectivity [3] and it is known that
negative curvature has important consequences for dy-
namics [4]. Finally, the “holes” in the tori may be tai-
lored for the purposes of host-guest chemistry [5]. In this
paper we address the question of stability of toroidal car-
bon molecules (with one handle). Proposals that carbon
might make toroidal molecules have been made in [6].

Our main tool is a set of tiling rules [7] for construct-
ing molecules that approximate the family of tori with
Cartesian representation

R{(n—cosf)cos¢ ,(n—cosf)sin¢ ,sinb},

- <6, <m, (1)

with R > 0 and 1 > 1 fixed. Rn determines the size (2R
is the “height”) and 7 the shape. Large 7 corresponds
to thin tori and n = oo are tubules [8]. We focus on tori
with 7 near 2.

Using a phenomenological potential due to Tersoff [9],
we let the model carbon atoms represented by tiling relax
to a stable molecular configuration, for which the aver-
age energies per atom, the bindings of the least bound
atoms, and the energies of the highest occupied and low-
est unoccupied molecular orbitals (HOMO-LUMO) [10]
are computed. The results (see Table I below) support
the point of view that many toroidal carbon molecules
are stable.

A toroidal carbon molecule can be represented by a
periodic planar triangular tiling with vertices of valences
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5, 6, and 7. The atoms are associated with the centers of
the (triangular) tiles and the valence condition says that
the molecule has pentagonal, hexagonal, and heptagonal
rings [11]. Thinking of the tiling plane as (universal cover
of) the toroidal coordinates (8,¢), Eq. (1) induces the
metric and area

R~2ds? = (d6)? + (d)? (n — cosb)? ,

2

R72dA = dfd¢ (n — cosb). @

The metric suggests stratified patterns and tiles of dif-

ferent sizes: bigger tiles near # = 0 and smaller tiles

near § = w. A family of tilings that mimic these metric

properties and thus carry combinatorial and topological
information is the following.

(i) Al tiles are similar, right, isosceles triangles. See,
e.g., Fig. 1, which shows the unit cell of a tiling pattern.

(ii) The tiles come in generations: the largest tiles are
those of the first generation, those in the second genera-
tion are scaled by 1/v/2, etc.

(iii) There are two tiles in the first and third genera-
tions, related by a rotation by w, and four tiles in the
second and fourth generations, related by 7/2 rotations.

Remark 1. The number of generations m plays a role
analogous to 1/7: a cylinder can be built with one gen-
eration [8]. Fatter tori involve more generations.

Remark 2. The two tiles in the first and the third
generation serve to distinguish the @ direction from the ¢
direction: any tiling pattern has well defined horizontal
lines—latitudes—which can be labeled by counting, and
the border between the second and third generation is a
straight horizontal line.

In a periodic tiling, the number of latitudes in a
unit cell will be dubbed the “girth” and denoted by g.
The (horizontal) length of the unit cell is measured by
counting edges along a given latitude and is denoted by
L(j), 7 =1,...,9. The length is larger in high gener-
ation regions and is made to mimic the behavior of the
latitudes by approximating (n — cos ). The tiling pat-
terns we consider give a piecewise linear approximation to
this function with slopes 0, +1 (and we do not know how
to do better). We denote AL = max{L(j)}— min{L(5)}.

Valence plays the role of curvature: vertices with va-
lence 5 (7) are associated with positive (negative) curva-
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ture. Since metric and curvature are related, we are led
to a rule that dictates where pentagons and heptagons
should be placed.

5-6-7 rule. Heptagonal vertices are at the interfaces
between the first and the second generation with a ma-
jority of generation 1 and pentagonal vertices are at the
interfaces between the last and the next to last gener-
ation with a majority of the last generation. All other
vertices are hexagonal.

An example of a unit cell for a periodic tiling with
four generations of tiles is shown in Fig. 1. The bound-
aries between the 1-2 and 3-4 generations are diagonal
line segments and between 2-3 horizontal. All the zigs
and zags are parallel and those between the 1-2 and 3-
4 generations touch the horizontal 2-3 boundary. (This
is a consequence of the 5-6-7 rule.) The tiling is deter-
mined by three integers (g1, gm, 2) (g1 even). g1 and g,
are the respective widths of the first and the last gener-
ation, measured in latitudes along any vertical line; z is
the length of a 1-2 zig, measured in edges. Except for
the restriction that g; is even for ¢ odd, any quadruple of
integers m, g1, gm, and z is allowed.

The following general properties apply.

(i) There are two heptagons and two pentagons per
unit cell.

(ii) A tiling is determined by the interfaces between
generations.

(iii) The tilings have mirrors of symmetry at the (ver-
tical) planes that contain the pentagons and the hep-
tagons, and centers of inversion midway between the hep-
tagons (or pentagons) that are located at different zigzag
lines.

(iv) The girth g, the number of tiles in a period, and
AL are functions of (g1, gm, 2).

Starting from any given tiling, one can, by simple ge-
ometric operations, construct an infinite tower of other
tilings. Leapfrogging [12] enlarges the class of admissi-
ble tilings and generates a molecule with three times as
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FIG. 1. A unit cell of a tiling with four generations. The
tiles are numbered by generation. In this example the girth is
6 and the tiling has labeling (2,1, 1). g1, g4, and 2z are shown.
The border between generations is drawn thick.

many carbon atoms, which is guaranteed to be a closed
shell [13]. Similarly, inflation, which is the discrete ana-
log of scaling, gives an infinite tower of tilings from an
initial parent. Inflation by a factor ¢ replaces all the
tiles by “supertiles” where each new tile is made of £2
scaled copies of the old tile (and its 7w rotated image). It
takes (g1, gm,2) to (£91,29m,£z) and generates a family
of molecules for which the number of pentagons and hep-
tagons and their relative positions remain fixed. Inflation
by 3 is the square of a leapfrog.

Given a periodic tiling, one can construct from it many
different tori. For example, in [14] a large family of (chi-
ral, in general) tubules is constructed by identifying the
edges of strips in the plane of graphitic tiling. (The var-
ious tubules depend on the width and orientation of the
strip.) Here we consider only tori constructed by iden-
tifying (opposite edges on) the boundaries of a region
obtained by n horizontal shifts of a unit cell. The cor-
responding tori have symmetry D, 4 and are labeled by
five integers (m, g1, gm, 2, ).

Because of the way the tilings were constructed, the
period n is not a free parameter: in Riemanian geometry
the big and small perimeter of a torus and the height are
related. This leads to the relation n = 2g/AL. (For the
tiling pattern of Fig. 1, g = 6, AL = 2, and 2g9/AL =
6.) Indeed, the largest binding energies were found for
molecules with n close to 2g/AL. However, the optimal
value of n depended on the criteria used: for example,
for the tiling in Fig. 1, the largest binding energy of the
entire molecule was obtained for n = 6, while the largest
binding energy of the most strained atoms for n = 5.

The tilings determine the coordinates of all the atoms
through Eq. (1), where for R and n we take

n=1+2z/AL, R=25A4 5";. (3)

The positions of the atoms, as determined by the tiling,
are allowed to vary in three-dimensional space to mini-
mize the total potential energy of the bonds. Good tilings
flow to a nearby local minimum. Bad tilings and, in gen-
eral, uncontrolled guesses for the initial coordinates of
the atoms result in atoms being lost to infinity.

Tersoff’s interatomic potential [9] associates with the
atom 7 the energy

1
E; = 5 ;[A exp(—/\lrij) — Bbij exp(—)\zrij)] s (4)

where the sum is over the three atoms j adjacent to i,
r;; is the distance between these atoms,

bi; = (1+ 67 173_)—1/27’

Gj =Y _{1+c%/d®—c/[d® + (h—cosbii)’]}, (5)
k

0;jk is the angle between bonds ij and ik, k runs over
the two neighbors of ¢ other than j, A = 1393.6 eV,
B = 346.74 €V, \; = 3.4879 A~1, A, = 2.2119 A1,
B =1.5724 % 1077, v = 0.72751, ¢ = 38049, d = 4.3484,
and h = —0.570 58.
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TABLE I. Energetic and geometric values for several toroidal molecules, according to Hiickel’s
theory and Tersoff’s potential. The last column gives the corresponding data for Ceo. All the
molecules have five unit cells and symmetry group Ds4. The second to fourth columns are inflations
of the first. ep ¢ is the energy of the highest occupied or lowest unoccupied molecular orbital, € is the
average energy of delocalized electrons, E is the average geometric energy per atom, Eg = —7.40 eV
is the geometric energy per atom of an ideal graphitic plane, and Eworst is the geometric energy

associated with the least bound atom.

m 2 2
g1 2 4
gm 2 4
z 2 4
Number of atoms 120 480
en(B) 0.43 0.16
e(B) -0.27 -0.22
&(B) 1.56 1.57
E — Eg(eV) 0.91 0.24
Eworst — Eg (eV) 1.34 0.84
Inner radius (A) 4.05 8.33
Outer radius (&) 7.29 14.21
Height (A) 2.93 5.68

2 2 2 4 Ceo
6 8 2 2
6 8 4 1
6 8 4 1
1080 1920 400 120 60
0.08 0.10 0.24 0.04 0.62
-0.02 -0.11 -0.21 0.04 -0.14
1.57 1.57 1.57 1.55 1.55
0.12 0.10 0.42 0.56 0.67
0.80 0.84 1.03 0.90 0.67
12.57 16.22 10.09 2.02
21.17 28.22 14.43 6.02
8.00 11.41 4.66 4.57 7.38

We have used Powell’s method [15] to flow to a lo-
cal minimum of the molecular energy. Even for large
molecules, tiling provided initial guesses for the atomic
positions within the basin of convergence of the mini-
mization algorithm.

Table I collects the results for a few of the molecules
we have studied and, for the sake of comparison, also
the corresponding values for Cgo. All the data in the
table are for molecules with n = 5, i.e., molecules with
ten pentagons and ten heptagons. (The corresponding
values for molecules with n = 6 are close to those in the
table.) Tersoff’s energies are given relative to that of an
ideal graphitic plane, which is —7.40 eV per atom and is
denoted by Eg. The table also contains the results for
the HOMO-LUMO energies obtained from Hiickel theory
[10]. In some cases, the HOMO-LUMO gap turns out to

FIG. 2. Three-dimensional view of the molecule
(m = 2,91 = 4,92 = 4,z = 4, n = 5), according to Tersoff’s
potential. The molecule is seen from “above” (0 < 6 < 7).
For clarity, only atoms in the foreground are shown.

be independent of the period n. The average energy per
delocalized electron is insensitive to the period n.

Figures 2 and 3 show three-dimensional views of two
(relaxed) molecules corresponding to tiling with two gen-
erations (g1, gm,2) = (4,4,4) and with four generations
(2,1,1), and periods n = 5 for both. The molecule shown
in Fig. 3 was studied also in [6].

Inflating m = g; = g2 = 2z = 2 shows that the con-
figurational energy per atom rapidly approaches that of
graphite and large tori have larger binding energies than
Ceo. However, the energy of the least bound atoms sat-
urates. This effect is probably due to the fact that the
number of pentagons is fixed and they bear the entire
burden of curvature. (For all the cases considered, the
most strained atoms belong to the pentagons.) Figure 2
clearly shows pentagons sticking out.

The geometric method described here can be used to

FIG. 3. Three-dimensional view of the molecule
(m=4,g1 = 2,94 =1,z =1, n = 5), seen from above.
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“design” toroidal molecules with prescribed dimensions.
We did not find a privileged molecule that stands out in
the way that Cgg does. From the energetic point of view,
several toroidal molecules are comparable to Cegg.
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