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The necessity of using projection operators to avoid mixing of positive and negative energy Dirac
eigenstates in multiconfiguration Dirac-Fock calculations is discussed. It is shown that convergence
problems observed at high Z or when the magnetic interaction was introduced in the self-consistent
field (SCF) process are completely due to the absence of such projection operators in previous cal-
culations. It is found that the presence of negative energy states prevented the diagonal Lagrange
parameters (orbital energies) of correlation orbitals from approaching —oo when their weights be-
came very small, thus causing the SCF process to fail without projection operators. A method for
implementing these projection operators in Dirac-Fock programs is described. A detailed study of
the effect of the introduction of projection operators, and of the self-consistent magnetic interaction
in the ground state of heliumlike ions is reported. The relative importance of higher-order effects
and second-order quantum electrodynamics effects is discussed.

PACS number(s): 31.30.Jv, 12.20.Ds

INTRODUCTION

Difficulties due to the existence of negative energy con-
tinua in the solution of relativistic many-electron prob-
lems have been identified very early in the history of
relativistic calculations in atoms [1]. But it was only
in the early 1980s that solutions derived from quantum
electrodynamics (QED) were proposed by Mittleman [2]
and Sucher [3,4]. However, the works both by Mittleman
and by Sucher were done in the independent-particle ap-
proximation and as such were not applicable to the only
relativistic many-body method available at that time,
the multiconfiguration Dirac-Fock method (MCDF) [5,6].
Many-body calculations with proper treatment of the
negative energy continua became possible a few years
later, with the development of the relativistic many-body
perturbation theory (RMBPT) [7-14]. Broyles [15] pro-
posed a multielectron Hamiltonian based on the Feynman
propagator and on the Bethe-Salpeter equation and dis-
cussed continuum dissolution in his formalism [16]. I am
not aware of any practical calculation following his work.

The starting point of the MCDF approximation is the
no-pair relativistic Hamiltonian. The Hamiltonian ap-
proach is not a natural one for a many-body relativistic
problem because first, this problem is a multitime prob-
lem, and second, the possibility of electron-positron pair
creation, always present in a relativistic framework, can-
not be included in a Hamiltonian formalism. The no-
pair relativistic Hamiltonian is thus at best an effective
Hamiltonian, where multitime (the retardation interac-
tion) and some pair-creation processes (vacuum polar-
ization) are included through effective interactions (the
Breit interaction) and potentials (the Uehling potential).

There has been some controversy over the necessity
of using projection operators in Dirac-Fock calculations
based on the no-pair Hamiltonian. Sucher [3,4,17] has
been advocating the use of plane-wave projectors. It has
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been pointed out [12] that since negative energy con-
tinua are different for different potentials, using plane-
wave or hydrogenic wave functions could introduce some
unwanted negative continuum states from the “real” po-
tential, so that the approximate answer at the no-pair
level would be projection operator dependent. Such a
dependency would disappear only if an exact solution of
the problem is obtained. Mittleman [2] has shown that
starting from a Hamiltonian including projection opera-
tors and looking for projection operators that make the
energy stationary, one would get exactly Dirac-Fock pro-
jection operators, for single determinant Dirac-Fock wave
functions. Grant and Quiney [18] claim to have shown
(by a direct derivation from QED in Furry’s bound pic-
ture) that the normalization condition on the individual
wave functions in a Dirac-Fock calculation was alone able
to ensure that no negative continuum states would con-
tribute.

The latter approach, combined with Mittleman’s re-
sult, was easily accepted because it provided a plausi-
ble explanation of the success of the Dirac-Fock method
in the calculation of atomic energies. However, since
all those derivations are done in an independent-particle
approximation, none proposes a valid prescription for
the multiconfiguration case. As noted in Refs. [18-20],
MCDF calculations are prone to severe convergence prob-
lems when dealing with multiconfiguration cases. Up to
now those failures had been attributed to “numerical”
problems.

In a preliminary paper [21], where the formalism was
limited to the case with only one orbital of a given sym-
metry, it was reported that these convergence problems
are due to the influence of the negative continuum on cor-
relation orbitals and that projection operators, although
usually not needed in single-configuration Dirac-Fock cal-
culations, are mandatory in the case of MCDF calcula-
tions. In the present paper, I offer a complete account of
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a general method, applicable to any MCDF calculation.
I will show some results in two-electron ions as an illus-
tration. I would like to emphasize already that errors
on the energy, associated with the omission of projection
operators, are negligible for single-configuration calcula-
tions and occupied orbitals in MCDF calculations and
thus most available DF calculations are still very useful.

In Sec. I, I will recall the basics of the MCDF ap-
proximation and describe a method for solving MCDF
integro-differential equations. In Sec. II, I will show that
the absence of projection operators leads to an inconsis-
tency in MCDF calculations and I will propose a practi-
cal method to introduce them. In Sec. III, the effects of
the inclusion of projection operators on the correlation
energy of the ground state of heliumlike ions will be dis-
cussed. I will show how this modification of the MCDF
method enables one to calculate corrections of higher or-
der than what was possible before.

I. SOLUTION OF THE INHOMOGENEOUS
DIRAC-FOCK EQUATION ON A COMPLETE
FINITE BASIS SET

A. Fundamental equations of MCDF theory

The MCDF method is designed to provide approximate
solutions to the relativistic many-body problem, beyond
the one-particle approximation. It was introduced as a
direct generalization of the Hartree-Fock method. It pre-
supposes the existence of a proper, no-pair many-body
Hamiltonian. Initially such a Hamiltonian was built as
a direct analog of the nonrelativistic Hamiltonian. As
described in the Introduction, no such equation has been
derived directly from QED. For the time being I will thus
use the traditional formulation of the method and use as
a Hamiltonian

Hired = Zuu(n + ) V(ri—15)), ey

i<j

where Hp is a one-electron Dirac operator and V is an
operator representing the electron-electron interaction in
some suitable form (Coulomb or Gaunt interaction for
example), without any provisions for projection opera-
tors. The following will not depend on the particular
choice of V.

The atomic wave function is obtained by solving

trad
HT ‘I’H,J,M (Tl, ey 77'm) )

(2)

where II is the parity, J is the total angular momentum
eigenvalue, and M is the eigenvalue of its projection on
the z axis J,. The MCDF method is defined by the par-
ticular choice of a trial function to solve Eq. (2) as a lin-
ear combination of configuration state functions (CSF’s):

Tm) = Ensm¥mam (r1,...

n
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The CSF’s also are eigenfunctions of the parity II, the
total angular momentum J2, and its projection J,. The
label v stands for all other values used to define unam-
biguously the CSF’s. The CSF’s, as antisymmetric prod-
ucts of one-electron wave functions, are expressed as

N, | YD) e Ya(r)
|WIUM) =3 di| 0 0 1, (4)
= Yirm) e Ym(rm)

i.e., as linear combinations of Slater determinants of
Dirac four-spinors. Each Dirac four-spinor is written as

() = l P,'("")X:c:: (Q)
Yi(r) = (iQi(T)X'fn,- (@) ) ’ ®

where x#(f2) is a two-dimensional vector harmonic. It
has the property that K;(r) = kv;(r), where K =
B (o -L+1). The d; are obtained by requiring that the
CSF’s are eigenstates of J? and J,. Writing

(Tn,gn |H"| O 7 m)

(n,,m|¥m,,0m)

(6)

Ensm =

and using a variational principle on the coefficients c,
and on the large and small radial components of the
wave function P;(r) and Q;(r), one obtains the fun-
damental equations of the MCDF method. Writing
OFEn,5m/0c, = 0 leads to a Hamiltonian matrix from
which the ¢, are determined by diagonalization. Varia-
tion with respect to the radial wave functions [formally
written as 8Fn s m/9f:(r) = 0, with f being either P or
Q] leads to a set of coupled integro-differential equations

( VBr(r)

d ki
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M
where Viip(r) is the sum of the direct Dirac-Fock poten-
tial and the nuclear potential, (X&(r), XQ(r)) are the
exchange potentials for the large and small components,
respectively, A; ; is the diagonal Lagrange parameter used
to enforce normalization, and A;; are off-diagonal La-
grange parameters used to enforce orthogonality con-
straints between orbitals of the same &:

/Oco dr [P;(r)P;(r) + Qi(r)Q;(r)] = 6 (ki, k5) 6 (niymj) .
(8)

B. Solution of the MCDF equation using a finite
basis set

The set of coupled integro-differential equations (7)
of Sec. IA is solved by a self-consistent field process
(SCF). A set of initial wave functions is chosen. Then
the coefficients ¢, are determined by diagonalization of
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the Hamiltonian matrix. Direct and exchange Dirac-Fock
potentials for a given orbital are calculated and Eq. (7)
is solved. Such a cycle is repeated for each wave func-
tion until all wave functions are stable to a given accuracy
(usually 1 part in 10° or better), while diagonal Lagrange
parameters are required to be stable to 5 x 10~7. Diag-
onalization and self-consistent cycles are repeated until
complete self-consistency is obtained.

Individual integro-differential equations (7) are often
solved by finite-difference or predictor-corrector meth-
ods, with some combined dichotomy-Newton-Raphson
algorithm to get the eigenvalue A, ,. The wave func-
tion must be regular at the origin and infinity and it
must be continuous. However, it is very often difficult
to achieve convergence for orbitals with very small effec-
tive occupations (the effective occupation of an orbital is
defined as the product of the number of electrons in the
orbital and c2, orbitals with small effective occupations
are called correlation orbitals). In that case the exchange
potentials are large and Eq. (7) has a solution very differ-
ent from the solution of the corresponding homogeneous
equation, obtained by setting exchange potentials and
off-diagonal Lagrange parameters to zero.

It is now widely accepted that one can use the Breit op-
erator beyond first-order perturbation theory, provided
projection operators are used. Thus it should be possi-
ble to include the magnetic interaction in the definition
of direct and exchange potentials to get magnetic corre-
lation effects. Also, since it is a small perturbation to the
Coulomb interaction, one would expect that it will not
change the difficulty of the calculation beyond the nec-
essary angular momentum algebra involved. However,
the magnetic interaction term was found to increase con-
vergence difficulties by orders of magnitude. This is be-
cause the magnetic interaction adds a large contribution
to the exchange potentials, causing most algorithms used
to solve Eq. (7) to fail.

In the rest of this section I will describe a general
method to solve Eq. (7) or any equation with the same
structure. The idea is to use a complete set of solutions of
the associated homogeneous equation. In order to sim-
plify the notation and to get a practical method I will
suppose at this stage that the atom is enclosed in a finite
box with a radius large enough to get a good approxi-
mation, with some suitable set of boundary conditions.
In that case one obtains a finite set, with the continuum
described by discrete functions. This is of no fundamen-
tal importance; it is just done as a matter of practical
convenience.

Let us denote by {q&i(r),i = 1,...,2N} such a set of
solutions where n is the level number and i the po-
sition of the solution in the set. For each n the set

{#i(r),i =1,...,2N} is complete. Each ¢¢ () obeys
Vir(r) -t ) i () = el & (7 9
L A S

It is very important to remember that in the relativistic
case, a complete set spans both positive and negative
energy solutions. Solutions i = 1,...,N represent the
continuum €, < —2mc? and solutlons i=N+1,...,2N

represent bound states (the few first ones) and the €, > 0
continuum using the conventions of Eq. (9).

Since the ¢}, form a complete set, the solution of Eq.
(7) can be expanded as a linear combination of basis set
wave functions and the exchange potentials read

(6:0)) =T won a0

( §5(3 ) Z Tidn- (11)

From Egs. (7) and (9)—(11) and the orthonormality con-
dition of the basis set, one gets

o = xp + Ei;‘:n Ai;n 8] (12)
- 1 _ .
a (e, = Ann)

It is important to notice that if s} are unknowns to be
determined in the calculation, sf, i # n, are results of
previous iterations and are fixed parameters. The z}
also depend on the solutions from previous iterations.

From the normalization condition of Eq. (8) the norm
of 1, (r) can be written as:

N(nn) =3 (4)°

l
1:;l + Z /\,-,nsf
i#£n
= _ . 13
Z (e, —Apn) (13)
l ’

Solving for N (A,,n) = 1 will enable one to get the solu-
tion of Eq. (7) provided that the off-diagonal Lagrange
parameters are known.

C. Evaluation of the off-diagonal Lagrange
parameters

Equation (8) for ¢ # n provides a system of equations
which can be solved to give all needed off-diagonal La-
grange parameters. The orthogonality relations from Eq.
(8) reduce to

0= Z spst
l
T'si+ 3 Ajnsis
j#En
= . 14
DD - (14)

This is a set of linear equations which can be recast as
3 s
151
> Aim 711 ) (E Z _/\M)) , (15)

j#n

if Nyt is the number of orbitals, different from 4, with
identical symmetry (which have thus to be kept orthog-
onal to one another). Equation (15) leads to a matnx
equation
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This equation is easily solved for the off-diagonal La-
grange parameters by usual matrix inversion techniques.
One is now faced with the simultaneous solution of Eqs.
(13) and (16) for both A, , and the off-diagonal La-
grange parameters. This is done by combining standard
dichotomy and Newton-Raphson techniques (see, for ex-
ample, [22]). At this stage it is useful to note that the
method just described is general and could be used in
nonrelativistic Hartree-Fock calculations as well.

D. Structure of the solution of the inhomogeneous
Dirac-Fock equation

In Secs. IB and IC, I have described the basic for-
malism for the solution of the inhomogeneous Dirac-
Fock equation on a basis set. But because it is possi-
ble to use a finite basis set by enclosing the atom in a
box, very important physical information can be deduced
from the structure of the solutions of this inhomogeneous
Dirac-Fock equation. In particular, one can easily high-
light the essential role of the negative energy continuum
Ann < —2mcl.

The study of the solution is best done by comparing
two different examples. In order to simplify the figures,
I have chosen two cases of orbitals for which no other
orbital of the same symmetry is present. In that case
only Eq. (13) needs to be solved since no off-diagonal
Lagrange parameter is needed. In Fig. 1 the evolution
of the norm of ¥, (r) has been plotted as a function of
the diagonal Lagrange parameter for the 2p,,, orbital
and Z = 100. The configuration set consists of 152, 252,
2p} /5, and 2p3 ;. The norm has a pole of order 2 for
the energy of each solution of the homogeneous equation.
This fact has been reported long ago by Griffin et al. for
the Hartree-Fock case [23]. Since a discrete basis set
has been chosen, there are also poles in the A,, > 0
and A, , < —2mc? “continua.” If a continuous basis set
had been used, there would have been two branch cuts
for these continua. Since the vertical scale of the figure
is very large compared to 1, there is only one solution
to Eq. (13) and it corresponds to a diagonal Lagrange
parameter A, , & —17672 a.u.

In Fig. 2 a very different case is represented. It is
the plot of the norm of a 5g/2 orbital in a calculation
involving a configuration set composed of 1s?, 252, 2p? /20
2p§/2,...,5g$/2, and 5g§/2, again at Z = 100. At first
glance one can see that there are no solutions of norm 1

in this case. The exchange potential for the 5g7/2 orbital
at Z = 100 is so large that no solution can be found for
any A, , < 0. The presence of the negative continuum
prevents the norm to become lower than 1 because there
are poles all along the axis for A,,. < —2mc?. This
contrasts with the Hartree-Fock case: because there is
no pole below the lowest bound state of the homogeneous
equation, N(A,,,) — 0 when A, , & —o0 and thus there
is always a solution, although it will be very negative if
the exchange coefficients are very large.

These two examples show very clearly the two differ-
ent possible cases when dealing with 24, If the mix-
ing coefficients ¢, are large (i.e., at low Z and/or small
n), there are solutions for the inhomogeneous Dirac-Fock
equation. If the mixing coefficients are small (i.e., at high
Z and/or large n), the solution may not exist because of
the Ap,n < —2mc? continuum.

As mentioned when discussing Eq. (9), the equation
that is solved at a given iteration depends on results from
all wave functions at earlier iterations. So one has to
be sure that this is not a local condition due to a poor
choice of initial wave functions. In order to avoid such
a problem, all results presented here have been done in
an incremental way. New configurations are added one

600
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FIG. 1. Norm of the solution of the inhomogeneous dif-
ferential equation (7), ¥n», as a function of the energy. The
configurations used are 1s?, 252, 2p? /2> and 2p3? /2 The wave
function presented is 2p;/; for Z = 100. Only the region
where bound solutions are present is plotted. Note that the
solution of N(E) = 1 can be met only at E =~ —17672 a.u.
> —2mc? = —37557 a.u. and that the vertical scale reaches
600.
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FIG. 2. Norm of the solution of the inhomogeneous differ-
ential equation (7), ¥», as a function of the energy. The con-
figurations used are 152, 252, 2pf/2, and 2p§/2,..., 5g$/2, 593/2.
The wave function presented is 5g7/5 for Z = 100. The in-
set represents the homogeneous equation’s bound-state area,
which is indistinguishable from the vertical axis at this scale.

by one and full self-consistency is achieved at each stage.
So only the last orbital that is being added can be very
different from its converged form. More checks for this
problem have been done and will be reported below.

When off-diagonal Lagrange multipliers are present,
there are no longer poles at the solutions of the homo-
geneous equations but only maxima. The same conclu-
sions hold, however, because when exchange potentials
are large the maxima are large compared to 1. The
disappearance of the poles can be easily deduced from
Eq. (16), in a case with only one Lagrange parameter.
Then, close to €9, An, n = —z§/ (sp") and the numerator
x3 + An, nSg* cancels as E — €p. A more complete calcu-
lation shows that N (), ,) is finite and has a maximum
for A n — €o.

II. PROJECTION OPERATORS IN MCDF
THEORY

A. Demonstration of the necessity of using
projection operators in MCDF calculation

The results of Sec. ID show the importance of the
role of the negative energy continuum in the existence
of a solution to the inhomogeneous Dirac-Fock equation.
In this section I will show the relationship between this
continuum and the convergence of the self-consistent field
process.

Once the method of solution described in the pre-
ceding section was implemented, it was tested on the
ground state of heliumlike ions. With the finite-difference
method that has been used up to now, it was possible
to achieve convergence with a set of configurations com-
posed at most of 152, 252, ..., 4d?, 4f2. This was obtain-
able with great difficulties (a lot of tuning of initial wave
functions and mixing coefficients) and only for atomic
numbers ranging from 10 to 66. In all these calculations

the aim is always to reach full self-consistency, i.e., no
orbital or mixing coefficient is kept frozen in any way.
Whatever was tried would not make the 4f2 configura-
tion converge for Z = 67. By the time uranium (Z = 92)
was reached, it was impossible to get any convergence
past 4s2. The new method, in contrast, is very efficient,
with almost no tuning of initial wave functions and mix-
ing coeflicients. I have been able to reach convergence for
a basis set as large as 152, 252, ..., 4d?, 4f2, 552,..., 5f2,
592, at low Z. The power of the method, which always
finds the orbital energy and which keeps all orbitals of
identical symmetry perfectly orthogonal at each stage of
the calculation, is then demonstrated. The method works
very well also if one takes the speed of light ¢ = 1/« to
infinity for any atomic number (this amounts to a mul-
ticonfiguration Hartree-Fock calculation). However, the
MCDF calculation still fails when the atomic number in-
creases. There are no normalized 5¢g orbitals to be found
above Z = 54 and no normalized 4f at Z = 67, exactly
as in finite-differences methods.

However, the reason for this lack of convergence is now
obvious from the discussion of Sec. ID: Eq. (13) has
no solution, i.e., N(A, ) is always larger than 1 because
of the presence of the negative energy continuum. The
finite-difference method failed for the same reason, except
that it would not give any insight into why it has been
failing.

The fact that A;; has to go to —oo for large princi-
pal quantum number correlation orbitals can easily be
derived from very simple physical arguments. Correla-
tion orbitals must be localized in the same area as the
occupied orbitals. Their radii must then be of compara-
ble size. To contribute to the correlation energy of the
ground state of a two-electron system, the ith correla-
tion orbital of principal quantum number n; must have
a radius r; comparable to r;,. Each correlation orbital
is described by an effective atomic number Z; .. Thus
r; = n?ao/Z; eq (@o is the Bohr radius). Orbital 1s radius
is 715 = ag/Z. From that one deduces that Z; .g ~ n?Z,
using 71, = 7r;. Thus the diagonal Lagrange parameter
is \ii = —Z2.g/2n? = —n?Z%/2. This very simple ar-
gument shows that when the principal quantum number
of a correlation orbital goes to infinity, the diagonal La-
grange parameter of the orbital must go to —oo. This is
always possible in the nonrelativistic case, but this cannot
happen in the Dirac-Fock case because of the existence of
the negative energy continuum.

Two options are now possible. Either one has to ad-
mit that in the MCDF case, the size of the configura-
tion set that may be used is finite and changes with the
atomic number, while it can be infinite in the nonrel-
ativistic case, or one must introduce a projection op-
erator that will remove the negative energy continuum
and allow A, , to become as negative as needed. The
first method introduces a very unappealing dissymme-
try between the nonrelativistic and the relativistic case.
Moreover, it makes it impossible to introduce the mag-
netic interaction in the self-consistent field (SCF) because
this interaction increases the exchange potential, which
leads to even more negative diagonal Lagrange multipli-
ers. This is not at all satisfactory, and the only reason-
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FIG. 3. Norm of the solution of the inhomogeneous differ-
ential equation (7), ¥, as a function of the energy in the same
case as in Fig. 2, but the projection has now been performed,
removing the negative energy continuum. The solution is now
at —51364 a.u. < —2mc>.

able solution, which is consistent with results obtained in
RMBPT calculations, is to introduce proper projection
operators.

The effect of projecting out the negative energy con-
tinuum can be seen in Fig. 3, which deals with the same
case as Fig. 2. The projection is accomplished simply
by excluding all negative energy continuum states from
the summation in the definition of the norm in Eq. (13)
and from the definition of the solution of the inhomoge-
neous Dirac-Fock equation (7). There are then no more
obstacles to prevent A, , from becoming smaller than
—2mc? and the real solution is found there, as can be
seen from Fig. 3. One obtains A,, ~ —51364 a.u.
< —2mc? = —37557.7 a.u. The magnetic interaction has
been used in defining the potentials and still a solution
is easily found, although it is a very high Z.

Obviously this way of showing the necessity of using
projection operators does not stem directly from QED.
Up to now nobody seems to have been able to do that
beyond the independent-particles approximation. One
can use, however, the obvious solution described above,
which is suggested by the finite basis set method itself
and was used in all RMBPT calculations. All summa-
tions are thus limited to basis functions of energy larger
than —2mc?. The downside of this empirical approach is
that the choice of projection operator is not unique be-
cause the definition of the homogeneous equation is not.
For example, some terms in Eq. (7) can be shifted from
the exchange potential to the Dirac-Fock potential. This
leads to a different basis set, but should leave the solution
unchanged if the method is to have some applications. I
have checked that the final results of the MCDF calcula-
tion are invariant in a limited number of transformations
of the exchange potential.

B. Practical implementation of projection operators
in MCDF theory

The method I have described up to now is completely
general. Except for transforming some discrete sums into
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an integrals and sums combination, it could even be ap-
plied to a continuous basis set. In this section I describe
briefly the implementation of the method in Desclaux’s
MCDF code [6]. For practical reasons, the set of solutions
is itself expressed as a linear combination of another ba-
sis set, chosen for easy numerical implementation. There
are thus two basis sets involved, a physical one composed
of solutions of the homogeneous equations (9) and a nu-
merical one.

Calculations done in the RMBPT framework have used
two methods to get a finite basis set and manageable fi-
nite sums rather than integrals over continua. One of
these methods is based on B splines as developed by
Johnson, Blundell, and Sapirstein [8] and the other is
based on a discretization of the equations as developed
by Salomonson and OsSter [14,24]. For the same practical
reasons I have built the program on the B-spline basis
set, for which integrations and projections of numerical
functions are very easy to handle.

The code I used and the derivation of the solutions of
Eq. (9) are thus exactly identical to those described by
Johnson et al. It has been described in detail in Ref. (8]
and will not be reproduced here.

In all the calculations presented in the following, I
have used ninth-order splines and 45 collocation points.
The mesh for tabulating the wave functions when using
the finite-difference method had around 400 points, 41 of
which were located inside the nucleus. Mesh points were
located following the relation nh = In[r(n)/r(1)] +ar(n),
with a = 0.1 and h = 0.03. The distance between mesh
points was thus exponentially increasing at short dis-
tances and turning progressively linear at large distances.

III. APPLICATION TO THE GROUND STATE
OF HELIUMLIKE IONS

A. Effect of the projection operator on the
ground-state energies of heliumlike ions

The ground state of heliumlike ions is a good test case
for the formalism described above. The electron-electron
interaction can be written as

Vi = V5 + V5 + ViR + VOF, (17)
where
1
C
o 0 o ——— 1
Vii o (18)

is the Coulomb interaction,

;-
vg = e (9
ij
is the Gaunt interaction,
yBR _ @ie (o ry) (@ - 7is) (20)
* 27‘,']‘ 27'ij

is the Breit retardation, and



1138

P. INDELICATO

_1.1 T T T T T T T T T
*\
12 Sossataaas & — —o— T
_________ .
—~ . \\‘-k\
R EN 1
2 K
%0 N
5 N FIG. 4. Comparison of elec-
-14 “x 1 . .
g trostatic correlation energy
B N with [Elec. Cor. (unproj.)] and
2 ) \\\ without [Elec. Cor. (proj.)] a
3 -1.5 f El%(‘i' Cor. (unproj.) —— N 7 projection operator. The con-
ec. Cor. (proj.) -+ 5 figuration set is 152, 2s2,..., 4f2.
-16 | N
_1'7 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Z
a; - o magnetic (or Gaunt) interaction V€ is treated as a first-
VgOR = ——— [cos (wijTi;) — 1] g ( )

Tij
cos (wijrij) =1 YBR
w2 ij
13T

—(e - V;) (e - V5)

(21)

represents higher-order retardation. Here r;; = |r; — v;|
is the interelectronic distance and w;; the energy of the
photon exchanged between the electrons.

In this section the Coulomb interaction V is used as
the two-body operator V in the definition of the rela-
tivistic Hamiltonian (1). Thus only this interaction con-
tributes to the direct and exchange potentials definition

and to the definition of the projection operators. The

order perturbation. The total magnetic energy is thus
EC = (¥nam | Xic; VG | Unom)-

With the implementation of projection operators in
the Dirac-Fock code, I have been able to achieve con-
vergence for all Z between 2 and 100, with a CSF set
extended to 5g2, while Z = 66 (for CSF sets extending
up to 4f2%) was the limit in previous calculations [19].
In Ref. [19] a standard finite difference technique was
used to solve the inhomogeneous Dirac-Fock equation.
In Fig. 4, I have plotted the results of both calculations.
The change in the shape of the correlation energy in the
vicinity of Z = 66, where the 4f2 diagonal Lagrange
multiplier reaches —2mc?, is pretty obvious. A small
part of the difference, however, could be due to the fact

TABLE I. Comparison between projected and unprojected orbital properties for Z = 92, the
diagonal Lagrange multipliers (a.u.). The following abbreviations are used: 4s only, only the 4s
orbital is calculated with projection operators; none (FD), all orbitals calculated without projec-
tion operators (using finite-difference method); none (BS), all orbitals calculated without projection
operators (using B spline method); all, all orbitals calculated with projection operators. All con-
figurations from 1s? to 4s? are included (maximum set where convergence could be achieved with

all methods).

Orbital 4s only None (FD) None (BS) All
1812 —4783.379 —4783.379 —4783.379 —4783.385
2p1/2 —8890.197 —8890.078 —8890.017 —10767.134
3ds;2 —9455.647 —8887.684 —9459.019 —19724.496
3pi1/2 —10409.011 —10405.833 —10405.532 —20978.298
281/2 —10704.968 —10719.765 —10719.874 —11408.896
2p3/2 —12617.515 —12617.499 —12617.519 —12970.090
3s1/2 —14054.748 —15332.277 —15328.908 —21529.479
3p3/2 —18977.477 —18977.680 —18977.555 —27111.285
3ds /2 —20168.409 —20168.372 —20168.414 —23431.608
4812 —39056.529 —21007.140 —21025.981 —41307.215

total energy —9637.378 —9637.378 —9637.378 —9637.383
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TABLE II. Comparison between projected and unpro-
jected orbital properties for Z = 92, the distance at which
the electronic density is maximum (a.u.). Only the Coulomb
interaction is included. The following abbreviations are used:
4s only, only the 4s orbital is calculated with projection op-
erators; none, all orbitals calculated without projection oper-
ators (using finite-difference method); all, all orbitals calcu-
lated with projection operators. All configurations from 1s2
to 4s® are included (the maximum is set where convergence

could be achieved with all methods).

Orbital 4s only None All
181/2 8.114x 107°®  8.114x 107°®  8.114 x 107
2p1/2 8.374 x 107°®  8.375x107%°  1.009 x 107°2
3ds3 2 1.205 x 107°% 1215 x 107°%  1.061 x 10~°2
3p1/a 3.675 x107%  3.675x107°%  4.005 x 10~°3
281/2 3.771 x 107°  3.767 x 107°*  3.622 x 107
2p3;2 1.216 x 107°%  1.216 x 107°%  1.174 x 1072
3s1/2 2.712 x 107%* 2517 x 107%®  2.166 x 107°°
3pa/2 6.246 x 107°%  6.246 x 107°°  5.495 x 107
3ds /2 1.241 x 107°2 1241 x 107°%  1.129 x 107°2
4812 1.444 x 1073 2.541 x 1073 1.353 x 1073

that the finite-difference method is more accurate (when
it works) than the spline method. Another difference is
due to the fact that in the new method it is not possi-
ble to enforce exactly the relationship between A;; and
Aj,i because of the presence of the pole and the necessity
to have an exact cancellation in both the numerator and
the denominator in Eq. (16). In contrast, the relation-
ship was exactly enforced in the finite-difference method.
However, the difference between the two off-diagonal La-
grange multipliers is small at convergence. The results
of the detailed example discussed in the following para-
graphs show that this approximation has negligible ef-
fects on total energies, diagonal Lagrange parameters,
and radial wave functions.

The results of different test calculations are presented
and compared in Tables I-IV. Different orbital proper-
ties (the radius of maximum density and diagonal and
nondiagonal Lagrange multipliers) as well as configura-
tion mixing coefficients for heliumlike uranium are tab-
ulated for three cases. The configuration set consists of
1s2,...,4s2% because 4s was the most excited orbital that
could be made to converge in uranium without projec-
tion operators. In the first column of these four tables
displayed are results from a calculation where 4s was the

only orbital calculated using projection operators. In the
second column no projection operators were used and in
the last column all orbitals, except for 1s, were evaluated
using projection operators. All the calculations are per-
formed using a Fermi model for the nucleus, with a rms
radius of 5.75 fm and a thickness parameter of 2.3 fm.

In Table I an extra column is devoted to an unprojected
calculation of diagonal Lagrange parameters, using the
finite basis set method of solution, to compare with the
finite-difference method. Most numbers are very close.
The value for 3d3,;, however, is different, but resembles
closely the finite-difference value obtained when the 4s
orbital alone is projected. The reasons for such a behav-
ior are not understood.

As expected from the discussion above, the diagonal
Lagrange parameter for the 4s orbital becomes more neg-
ative when its projection operator is included, if every-
thing else is kept constant. In Fig. 5 the large and small
radial components of 4s are displayed for projected and
unprojected calculations. The basis set method with-
out projector and the finite-difference method give radial
functions that are virtually indistinguishable. The effect
of including projection operators changes strikingly the
radial wave function, which is obviously correlated with
the energy change. One can also notice that orbitals with
j = 1 —1/2 are more strongly changed than those with
j =1+1/2, as expected for an effect of relativistic origin
(a p1/2 orbital, for example, exhibits a strong s behavior
for high Z), yet the changes in the total energy (Table
III) remain very small.

The electrostatic correlation energy is defined here as
the difference between the total energy for the largest
possible set of configurations (here 1s2,..., 5g2) and the
total energy for the single-particle Dirac-Fock approxi-
mation (here 152 only). The magnetic correlation energy
is defined as the difference between the total magnetic
energies between the same wave functions.

In Fig. 6, I have plotted the result of a calculation
including all configurations up to 592 and the exact non-
relativistic value from Ref. [25]. The effects of relativity
at high Z are strong, but beyond the reach of any experi-
ment that can be reasonably expected in the near future.
Moreover, much larger effects due to uncertainty in the
nuclear size, in nuclear polarization, and in uncalculated
QED terms would certainly conceal it.

In contrast, the magnetic correlation energy is very
large and dominates the total correlation energy for all
atomic numbers above Z = 54. This contribution reaches

TABLE III. Comparison between projected and unprojected orbital properties for Z = 92, the
off-diagonal Lagrange multipliers (a.u.). See Table II for definitions.

Orbitals 4s only None All
181/2281/2 —2.969x107%2 —2.966x107%% —3.045x107%2
181/2381/2 1.284x107%4 1.392x107% —2.259x107%4
1814812 —2.195%x107% —3.070%x107% —1.221x107%
28123812 —4.355x10%°2 —4.158x10%°? —6.503x10+°2
251/A481/2 —4.255%x10101 1.764x101°° —9.259x1019°
3814812 —3.419x10%%3 ~1.215x101%2 —2.615x10%%2
2p1/B3P1/2 1.091x10%°2 1.090x101°2 6.419%10%°2

2p3/23p3/2

9.168x10%°2

9.168x101°2

1.083x10%%3
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TABLE IV. Comparison between projected and unpro-
jected orbital properties for Z = 92, the configuration mixing
coefficients. See Table II for definitions.

Orbital 4s only None All
183/, 0.999998 0.999998 0.999998
2p2 )5 0.000606 0.000606 0.000604
3d3,; —0.000111 —0.000105 —0.000111
3p2 )2 0.000112 0.000112 0.000121
253, —0.001379 —0.001378 —0.001359
2p3 ), 0.001071 0.001071 0.001060
3s2); —0.000240 —0.000230 —0.000223
3p3/2 0.000256 0.000256 0.000232
3dZ ), 0.000264 0.000264 0.000251
4s} ), —0.000072 —0.000064 —0.000061

6 eV in uranium and thus should be an observable con-
tribution in the next generation of experiments.

As a final check that convergence problems encoun-
tered with the finite-difference method were not due to
poor initial wave functions, as discussed above, I tried
to use the self-consistent orbitals obtained with projec-
tion operators as initial wave functions for a new cal-
culation without a projection operator (using either the
method described here or the finite-difference method).
This provided very good initial wave functions for light
elements, for which the negative continuum does not in-
terfere. But calculation for large Z always failed. More-
over, the method that I just described never failed for
nonrelativistic cases, for any set of the reasonable initial
wave functions I tried. It would be surprising that such a
consistent behavior would have happened only by chance.

B. Effect of self-consistent magnetic interaction on
heliumlike ions ground-state energy

In the preceding subsection I described the effects of
a complete relativistic treatment and of the introduc-
tion of projection operators in the electrostatic and mag-
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netic correlation energy. As is customary for low Z or
for outer-shell electron calculations, I have treated the
magnetic interaction as a perturbation. There is, how-
ever, no fundamental reason to do so, and for very heavy
ions, this leads to the omission of cross terms that could
be important. In the past, several attempts have been
made to evaluate those crossed terms, but as explained
above, these attempts failed because the exchange poten-
tials were increased by a large amount even for elements
with moderate atomic numbers. With the use of the pro-
jection operators, such a problem vanishes and there is
no more difference in convergence between calculations
where the Coulomb interaction or the Gaunt interaction
is used in the SCF. It should be noted that when one
uses the Gaunt interaction in the SCF, the electrostatic
and the magnetic interactions are both treated on the
same footing and appear in the definition of the c, as
well as in the definition of the direct and exchange po-
tentials. Using the magnetic part of the interaction only
in the diagonalization of the Hamiltonian, as it has been
done sometimes, does not have the same impact on the
final result because it only slightly changes the exchange
potentials through mixing coefficients.

As an example, the single configuration ground-state
energy for heliumlike uranium is —9625.22 a.u., while
the final energy including all n = 1 to n = 5 shells
is —9625.39 a.u., giving a total correlation energy of
—0.1708 a.u. (including Coulomb, Gaunt, and Breit re-
tardation). The nuclear size was again taken to be 5.75
fm for comparison with other calculations (the exper-
imental value from Ref. [26] is 5.863 fm, which would
lead to —9624.84 a.u. and —9625.01 a.u., respectively,
but leaves the correlation energy unchanged). The diag-
onal Lagrange parameters for that calculation are listed
in Table V, with the radius of maximum electronic den-
sity for each orbital. All radii are of the same order of
magnitude as expected. Only 10 out of 25 orbitals have
diagonal Lagrange multipliers above —2mc?.

FIG. 5. Small (SC) and large
(LC) components of a 4s or-
bital radial wave function (con-
figurations 1s%, 2s%.., 4s2%,
. Z = 92), computed without
(finite diff.) and with a pro-
jection operator. Note that
| the unprojected radial wave
function computed with the fi-
nite-difference method or the B
spline method would be indis-
tinguishable on this plot.
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TABLE V. Examples of diagonal Lagrange parameters for
Z=92. Rmax is the radius of maximal electronic density for
the orbital (a.u.).

Diagonal Lagrange

Orbital Rmax parameter (a.u.)
Single configuration
1s 8.13 x 10793 —4771.30
18?2 +..-5¢2
1s 8.13 x 1073 —4771.53
2p1/2 9.00 x 107°% —11265.69
2s 3.48 x 10793 —12299.58
2p3/2 1.03 x 1072 —14272.28
3d3/2 9.47 x 1073 —21438.51
3p1/2 3.72 x 107 —22570.07
3ds,2 1.03 x 107°2 —25824.24
3s 1.99 x 1073 —26625.70
3p3/2 4.96 x 1072 —30106.57
4fs/2 9.85 x 107%° —32110.41
—2mc? —37555.77
4d3/2 4.92 x 107° —38114.85
4fr/2 1.02 x 1072 —38398.55
4p1/2 2.12 x 1079 —39360.16
5g7/2 1.01 x 1072 —43315.68
4ds > 5.61 x 107°3 —45838.86
4s 1.29 x 1073 —46322.78
4p3;2 3.05 x 1073 —50745.68
5fs/2 5.69 x 107%° —51182.19
590 /2 1.02 x 1072 —51176.68
5d3/z 3.21 x 107 —57843.99
5p1/2 1.42 x 1073 —59578.14
5f12 6.06 x 107°° —60062.99
5ds5 /2 3.75 x 107 —67965.32
5s 9.26 x 107%* —68639.52
5ps/2 2.13 x 1079 —173224.75

In Fig. 7, I have plotted the electrostatic and magnetic
correlation energies calculated with both interactions sat-
isfying self-consistency. There is an ambiguity in the def-
inition of correlation in that case. The reference 1s? level
energy changes when including the Gaunt interaction in
the SCF'. Still it remains an independent-particle approx-
imation result. So if correlation is defined with reference
to the Coulomb-only energy, some contributions that are
not correlation will be included in the “correlation” en-
ergy. My results will thus refer to the Coulomb-Gaunt
energy, except when comparing them with results from
other calculations.

There are some striking features in these results, the
most obvious one being the change of sign of the electro-
static correlation at high Z. This is not a sign of some
problem in the calculation (the correlation energy calcu-
lated by variational means should be always negative) as
the total correlation energy, which is now the only mean-
ingful term, is still negative. What is called electrostatic
correlation energy is now in fact the sum of the electro-
static correlation energy and some cross magnetic and
Coulomb contributions since now the wave function con-
tains some magnetic contributions. The different kinds
of contributions are shown in Fig. 8. The MCDF method
enables a summation of the series of diagrams with paral-
lel photon lines (the ladder approximation). In those dia-
grams the electron lines represent bound electrons in the
field from the nucleus only. Single configuration Dirac-
Fock calculations sum the type-B diagrams of Fig. 8 to
all orders, but taking in account only the monopole part
of the interaction. When going to larger CSF sets, one
does a summation of more and more multipole compo-
nents of the interaction. When the Gaunt interaction
is not included in the SCF, only the diagrams of type A
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are included (one transverse photon and one or more lon-
gitudinal ones). Diagrams with at least two transverse
photons are included only if the Gaunt interaction is in-
cluded in the SCF. But they appear in both the Coulomb
contribution to the energy (through the wave functions)
and in the Gaunt contribution (through both the wave
functions and the operator). This is why individual con-
tributions to the total correlation energy lose their mean-
ing, which leads to the strange behavior of the Coulomb
contribution (which is still called Coulomb only for con-
venience and because in the calculation it comes from
Coulomb-type integrals).

Al A2 A3
B1 B2 B3
c3

FIG. 8. Contribution to the electrostatic and the magnetic
correlation energy. Double arrows represent bound electrons.
Diagrams of type Al contribute to the uncorrelated magnetic
energy. Diagrams of type A2 and A3 are successive contribu-
tions to magnetic correlation when only the Coulomb poten-
tial is included in the SCF process. Diagrams of type B2, B3,
etc., are contributions to the electrostatic correlation energy.
Diagrams of type C3 are computed only when both Coulomb
and Gaunt operators are included in the SCF process.

C. Discussion

The present results can be compared to other re-
cent relativistic calculations. The first one computes
exactly the second-order diagrams derived from bound-
state QED [27]. The second one is an all-order relativistic
many-body perturbation theory [28] and should give re-
sults very similar to the MCDF method. In both cases
the no-pair approximation is used, part of the retarda-
tion is included, and diagrams of order greater than two
are included. A sample of MCDF results for atomic num-
bers used in these two references and with identical nu-
clear radii [29] are presented in Table VI. In Fig. 9, I
have plotted the correlation energy from all three calcu-
lations from which the nonrelativistic correlation energy
has been subtracted. This thus shows the relativistic and
QED contributions from these calculations. The first-
order energy for getting the total energy from Ref. [27]
was obtained using the Dirac-Fock program with frozen
hydrogenlike orbitals. In order to get a consistent com-
parison with the correlation energy from Ref. [25], the
reference uncorrelated energy was chosen to be the Dirac-
Fock energy with only the Coulomb interaction in the
SCF. Care must be taken to do the reduced mass correc-
tion to the data from Refs. [27,28], in order to compare
them to the present results.

The curves in Fig. 9 can be best fitted by third-
degree polynomials. This is consistent with 1/Z ex-
pansion theory [30], which predicts that the relativis-
tic binding energy can be expanded as a sum of terms
of the form Z2?(Za)*/ZP, n > 0, p > 0 (in a.u.).
The terms with n = 0 are all contained in the nonrel-
ativistic correlation energy and those with p = 0 are
contained in the hydrogenic Dirac energy. The MCDF
relativistic correlation energy contribution is given by
AEncpr = (0.14886 — 0.017 3342 + 1.9318 x 10~422 —
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TABLE VI. Results for selected cases (eV). The following abbreviations are used: Coulomb, 15> Coulomb energy (Coulomb
+ magnetic self-consistent). Mag, 1s* magnetic energy (Coulomb + magnetic self-consistent). MP, mass polarization from Ref.
[33]; NRCE, exact nonrelativistic correlation energy from Ref. [25]; RECE, relativistic contribution to electrostatic correlation
energy; Mag. Corr., magnetic correlation energy; Ret. Corr., retardation correlation energy (order w?); Tot., total level energy,

Ion., Ionization energy.

zZ Coulomb Mag. MP NRCE RECE Mag. Corr. Ret. Corr. Tot. Ton.
10 -2557.332 0.329 0.001 -1.243 0.004 -0.048 0.012 -2558.277 -1195.929
20 -10603.202 2.779 0.001 -1.257 0.022 -0.211 0.052 -10601.816 -5130.333
30 -24274.154 9.603 0.001 -1.261 0.062 -0.496 0.122 -24266.123 -11870.873
40 -43806.473 23.206 0.001 -1.263 0.135 -0.916 0.224 -43785.086 -21532.055
50 -69560.432 46.241 0.001 -1.264 0.249 -1.489 0.361 -69516.332 -34289.866
60 -102056.486 81.751 0.001 -1.265 0.412 -2.236 0.540 -101977.284 -50399.569
70 -142032.974 133.380 0.001 -1.266 0.633 -3.190 0.767 -141902.649 -70224.090
80 -190546.041 205.715 0.001 -1.266 0.923 -4.402 1.056 -190344.016 -94283.193
90 -249132.783 304.828 0.001 -1.267 1.297 -5.953 1.426 -248832.451 -123333.726
100 -320114.771 439.291 0.001 -1.267 1.775 -7.975 1.908 -319681.039 -158518.806

5.256 x 107523) eV. For the all-order RMBPT calcula-
tion I obtain AFE,; = (0.14822 — 0.0174727Z + 1.5844 x
10~%Z2-5.280x 107%23) eV. The second-order RMBPT
calculation gives AFE2,q = (0.12758 — 0.018194Z +
1.8029 x 107422 — 5.537 x 10762Z3) eV.

The all-order RMBPT calculation and the MCDF cal-
culation have very close values for the coefficients of Z°
and Z!, while they differ in the Z2 value. One can in-
terpret those differences by noticing that both RMBPT
calculations include the Breit retardation of Eq. (20) to
second order only. In our calculation both the Gaunt
interaction (19) and the Breit retardation (20) are in-
cluded to all orders. The second-order RMBPT calcu-
lation, in contrast, has different values for all four co-
efficients, showing the effects of three and more photon
exchange. The all-order and the second-order RMBPT
calculations are very close (0.13 eV at Z = 100), showing
that the higher-order Coulomb photon exchange is very

small indeed. The difference between the MCDF value
and the all-order RMBPT calculation shows that higher-
order terms in the Breit approximation play a larger role.
Both effects, however, are a small fraction of the contri-
bution of the QED correction (higher-order retardation,
virtual-pair correction, and box diagram).

Finally, to give a more precise meaning to the discus-
sion of the preceding paragraph, I have evaluated the
error in the MCDF results due to the truncation of the
configuration space to n < 5. The contributions to the
correlation energy of different angular quantum number
! have been plotted. For each [ this contribution is very
well represented by a a(l)n~*® law, with k ~ 5. Each
contribution has thus been fitted to extrapolate to infin-
ity. Contributions from values of | > 4 have been deduced
by extrapolating the behavior of a(l) and k(l). Those ex-
trapolations have been done for both the nonrelativistic
MCHTF correlation energy and the MCDF correlation en-
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FIG. 9. Comparison of total
correlation energies. MCDF,
4 this work, all-order RMBPT,
Ref. [28]; second-order
RMBPT, Ref. [27]; exact sec-
. ond order, complete
second-order QED calculation
from Ref. [27]. Solid lines rep-
resents the fits given in the text.
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ergy at Z = 10 and Z = 100. The differences between
extrapolated MCHF values and the MCHF results are
—0.021 eV (Z = 10) and —0.023 eV (Z = 100), while
the differences between the exact nonrelativistic and the
MCHF values are —0.032 eV and —0.038 ¢V, respectively.
The differences between the MCDF extrapolated values
and the MCDF values are, respectively, —0.012 eV and
—0.136 eV. So most of the effect of the truncation of the
configuration space is taken into account by using the
exact nonrelativistic correlation energy in place of the
MCHF value for low Z, while a sizable error comes from
the evaluation of relativistic correction at high Z. The fi-
nal correction on the MCDF value can then be estimated
to —0.001 eV at Z = 10 and —0.113 eV at Z = 100. The
extrapolated MCDF value for Z = 100 can be deduced
from the above discussion and is AEycpr = —6.321 eV.
The all-order value is AE,; = —6.588 eV, the second-
order RMBPT value is AE3,9 = —6.725 eV, and the ex-
act second-order QED contribution is —4.890 eV. From
this I conclude that at Z = 100 the effect of second-
order QED corrections is +1.835 eV, which is larger than
the sum of higher-order relativistic Coulomb corrections
(4+0.137 eV) and higher-order magnetic and (Breit) retar-
dation corrections (+0.267 eV). Finally, I have evaluated
the effect of higher-order retardation from Eq. (21) and
found +0.296 eV. The second-order part of this contri-
bution is already included in the QED correction from
Ref. [27] and should not be included simultaneously.

I want to stress again that those values are for a refer-
ence state with only the Coulomb interaction included in
the SCF, while the correlation contributions in Table VI
are calculated for a reference state with the Gaunt in-
teraction in the SCF. Obviously this is just a matter of
convention and leads to the same total level energy.

CONCLUSION

In this paper an alternative method for computing cor-
relation contribution using the MCDF approximation has
been described. In the process of exploring the proper-
ties of this method, it has been found that one needs
to include proper projection operators onto states with
E > —2mc? to get meaningful results at high Z. This is
in complete agreement with what has been advocated for
years by Sucher [3] and Mittleman [2]. I have shown that
the inclusion of these projection operators leads to nu-
merically significant effects and enables one to compute
higher-order corrections, which up to now could be ob-
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tained only by relativistic many-body perturbation the-
ory. A complete calculation of the lower level in two-
electron ions using this method is in progress and will
be published separately. I have been able to compare
our results for Z = 100 with second-order and all-order
RMBPT and second-order QED calculation and I have
shown that all-order Gaunt and Breit effects are larger
than all-order Coulomb effects at high Z. Both effects are
relatively small compared to QED corrections (=~ 30%),
but larger than what had been estimated from extrapo-
lation of the low Z leading three-photon exchange con-
tribution [31,32]. For practical purposes, the best theo-
retical value can be obtained by combining the present
MCDF calculation with the AEggp from Ref. [27]. This
will lead to a result exact to second order and including
all Coulomb, magnetic, and retardation corrections from
three and more photon exchange in the ladder approxi-
mation. If the ratio between the non-QED part and the
QED part of those higher-order diagrams is of the same
order as in the second-order diagrams (a likely hypoth-
esis), higher-order QED correction should be completely
negligible. The nonradiative part of the ground-state en-
ergy in two-electron heavy ions can thus be considered
to be as precise as the one-electron energy. Computing
the two-electron self-energy and higher-order radiative
corrections to the same accuracy, however, is going to re-
quire a major effort, which has been undertaken by many
workers.
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