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Nuclear-polarization contribution to the Lamb shift in actinide nuclei
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The contribution of nuclear polarization to the Lamb shifts of bound electrons in the lsqgq, 2szf 2,
and 2piiz states is considered for various even-A nuclei (230 & A & 252 vritb 90 & Z & 98). Utilizing
the concept of efFective photon propagators with nuclear polarization insertions, the efFective self-
energy shifts due to virtual excitation of collective nuclear rotational and vibrational states and of the
dominant giant dipole resonance are calculated. The formalism is extended to odd-Z nuclei for which
the efFective interaction is derived within the single-particle approach. While the corresponding
energy shifts of the ls&~q state represent a considerable correction, the contribution to the 2s-2p
splitting is comparable to the current accuracy of high-precision experiments.

PACS number(s): 31.30.Jv, 12.20.Ds, 12.20.Fv, 32.90.+a

I. INTRODUCTION

Recent experimental abilities to prepare highly ionized
atoms and even bare heavy nuclei up to the actinides al-
low for a new generation of high-precision experiments.
One of the fascinating aspects is that studies with few-
electron systems provide new sensitive tests of quantum
electrodynamics in intense Coulomb fields. A direct mea-
surement of the Lamb shift in lithiumlike uranium per-
formed by Schweppe et al. [1] occurred to be more precise
than theory at that time. Recent calculations performed
by Blundell [2] are in fair agreement with experimental
data within a tenth of an eV. In future experiments with
hydrogenlike heavy atoms, the aimed precision in the de-
termination of the ground state Lamb shift will be at
the level of O. l eV. For comparison, the total 1s bind-
ing energy amounts to about 100 keV while the current
theoretical uncertainty is estimated to be about 1 eV.

This excellent accuracy in measurements necessitates
not only the inclusion of typical QED effects, such as self-
energy, vacuum polarization, electron correlations, etc. ,
even in higher order in a, together with finite-nuclear-size
corrections [3—5]. It turns out that non-QED effects such
as nuclear polarization can no longer be neglected [6, 7].
During the last decade the dominant QED corrections
[2, 8—12] have been calculated. These intensive research
activities are motivated by the fact that for atomic sys-
tems the underlying fundamental interaction is known.
Thus, the comparison between theoretical results of ab
initio calculations with corresponding experimental data
allows for a direct test of our understanding of heavy
few-electron systems. Therefore, any discrepancy be-
tween theory and experiment may either motivate an im-
provement of theoretical investigations and a refinement
of experiments, or it may indicate the possible infI.uence
of non-QED effects. In this context, the study of nu-
clear polarization contributions to the total energy shift
of atomic levels becomes important because, as a back-
ground effect, it represents a natural limitation of any
high-precision test, which crucially depends on a precise
knowledge of the spectrum of heavy electronic atoms.

In contrast to the QED-radiative corrections men-
tioned above, an ab initio evaluation of nuclear polariza-
tion is not practicable at the level of fundamental inter-
actions. Accordingly, any calculation of nuclear polariza-
tion is inherently phenomenological and depends on the
parameters of the nuclear model used to describe the in-
trinsic nuclear dynamics. During the past few decades,
a lot of experience has been developed in calculating the
nuclear-polarization effect for muonic atoms. There it
leads to corrections at the keV level mainly because of
the huge overlap of the muon-wave function with the nu-
cleus and because the transition energies in muonic atoms
are of the order of magnitude of typical nuclear excitation
energies (e.g., see the review of Boric and Rinker [13] and
references therein). Much less attention has been drawn
to nuclear-polarization effects in electronic atoms. They
turn out to be reduced by orders of magnitude, because of
the small electron rest mass. The few calculations known
to us were based on second-order Schrodinger perturba-
tion theory [14, 15]. In an earlier paper [7] we have pre-
sented a relativistic, field-theoretical treatment of nuclear
polarization utilizing the concept of effective photon in-
teractions with nuclear-polarization insertions. This for-
malism allows a convenient and systematic treatment of
nuclear polarization in terms of efFective QED-radiative
corrections with dressed internal photon lines. The more
important fact is that, as a direct consequence of the
relativistic approach, an additional vacuum contribution
is derived, which is missing in earlier calculations. Al-
though the formal setup is rather general, specific nuclear
models have to be applied in order to determine the po-
larization function. Evidently, only virtual nuclear exci-
tations with strong excitation strengths may contribute
considerably to an energy correction. In fact, the energy
shifts due to virtual collective nuclear excitations become
important as indicated in Ref. [7].

In this paper, we shall perform a systematic study
of the nuclear-polarization contribution due to collec-
tive nuclear excitations (vibrations, rotations, and giant
dipole resonances) in even-A actinide nuclei in the re-
gion Z & 90 and A ) 230. Numerical results for the
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associated energy shift af 1szy2, 2s&~2, and 2pz~q states
are presented for these nuclei. We shall also discuss how
to include single-particle excitations of a valence proton
in odd-A nuclei. A possible extension of the formalism
based on a microscopic approach will be presented. Ex-
pressions for the transition density operator in terms of
electric multipoles and the corresponding effective prop-
agators will be derived. The single-particle basis used
for deriving the efFective propagator is specified within
the Weisskopf approximation. The formal steps, which
have to be performed in the case of a more general type
of boson expansion approach, may already become trans-
parent. Representing the polarization insertions in terms
of boson expansions provides an alternative &amework in
order to treat collective nuclear excitations as well.

This paper is organized as follows. In Sec. II, we shall
present a brief review of the basic formalism that allows
for the treatment of nuclear polarization as efFective ra-
diative corrections. The difFerent terms of the resulting
formula for the energy shift will be discussed in some
detail. Although the main purpose of this paper is to
generate further numerical results for the contribution
of nuclear polarization to the Lamb shift in even-A nu-
clei only, we shall present the formal extensions to odd-A
nuclei, especially for those with one valence proton, in
Sec. III. For collective nuclear models the expressions for
the nuclear polarization insertions and the correspond-
ing propagators will be summarized in the Appendix. In
Secs. IV and V, numerical results for the contributions
to the energy shift of electronic lsi~2, 2si~2, and 2@i~2
bound states will be presented.

II. FORMAj ISM

In a previous paper [7], we have demonstrated in de-
tail that nuclear polarization can be treated within the
&amework of QED-perturbation theory as an efFective
radiative correction. The basic idea is to replace, in a
given QED-Feynman diagram, the &ee photon propaga-
tor D„„(x—x') representing free internal photon lines

by the modified part 17„„(x,x') of the eff'ective interac-
tion 17„„(x,z'), which accounts for the nuclear degrees of

I

&eedom in terms of nuclear-polarization insertions. The
Dyson equation for the effective photon propagator,

17„„(x,x') = D„„(x—z') + 17„„(z,x')

xD„.(*-*,) n-~(z„z, ) D,„(*,—*'),

defines the modification 17~„and, thus, the (reducible)
nuclear-polarization tensor II P. The latter is given by
the vacuum expectation value of the nuclear transition
current density js„, (Heisenberg operator):

i II ~(zi, z2) = (O~ T js„.(xi) js~„.(z2) ~O). (2)

The vacuum state ~O) implies that the nucleus is con-
sidered to be in its ground state. However, the exact
transition current j&„, is not known &om first principles.
It can only be specified if particular nuclear models are
applied. As a consequence, the eff'ective interaction 17„„
becomes model dependent. A practicable evaluation re-
quires further approximations. When calculating 17„„,
we shall neglect possible distortions of the nuclear ex-
citation spectrum due to the presence of the electron.
These efFects have to be taken into account in the case
of muonic atoms. However, they are expected to be of
minor importance in electronic atoms. Accordingly, the
time evolution of the transition current j&„, is governed

by the nuclear model Hamiltonian 0„„,only, and II P

and 17„„become homogeneous in time. For our purpose,
we shall further neglect the contribution of the vector

current j&„,because the velocities associated with the in-
trinsic nuclear dynamics are mainly nonrelativistic. Tak-
ing into account electric nuclear transitions only, we have
to keep the component II o of the polarization tensor and
we thus have to deal with the longitudinal part 1700 of
the effective propagator.

In lowest order perturbation theory in a (formulated in
the Furry picture), the energy shift of an electron bound
state @; due to virtual nuclear excitations is given by
a corresponding effective self-energy contribution and a
vacuum-polarization term:

AE; = AE, (SE) + AE, (VP)

=so. d rgd r2,+- rg dE ~ rg)r2, E, —E Boo rg, r2)E p; r2

d rq d r2,- rx, rx Zoo rx, r2, E = 0 Tr p Sy r2, r"2, 0

The Fourier-transformed electron propagator S~ satisfies
the equation

(E —(i,p p . V' + eA,„,(r) + p rnj) Sy (r, r ', E)

(4)

The bound state g; is a solution of the Dirac equation in

the static external Coulomb field Ao„t of an extended nu-
cleus, which is described by a static, classical charge den-
sity distribution p „t characterizing the ground state. In
contrast to the situation in muonic atoms the particular
details of the ground-state charge density are again of mi-
nor importance here. We should also note, that the effect
of static nuclear deformation on the energy of electronic
levels can be treated separately by means of ordinary
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perturbation theory. In our calculations of nuclear polar-
ization, a homogeneously charged sphere is used to de-
scribe the nuclear ground-state charge distribution. Ac-
cordingly, the contribution of the vacuum-polarization
part [second term of Eq. (3)] becomes negligible. The
spherically symmetric external Coulomb field A t in-
duces a (renormalized) vacuum-polarization charge den-
sity p„,(r) = i (Tr[7 Sz(r, r", 0)])„„,which is spherical
too. It is easily verified by means of the angular mo-
mentum decomposition of the efFective propagator Dpp,
that a spherically symmetric vacuum-polarization charge
density can only couple to nuclear monopole excitations.
In the case of collective nuclear excitations with multi-
polarity L ) 0, this term in fact does not contribute
to the energy shift AENP. Thus, we are left with the
nuclear-polarization contribution, which corresponds to
the efFective self-energy [first term of Eq. (3)].

The derivation of the efFective interaction 17OO is per-
formed in the Coulomb gauge:

'Doo(r, r ', E)

d r, d r, II (rr, r2)E), . (5)

~ ~ ~ ~ ~

~

~

r ri r2 —r'
What is left so far is to specify the polarization function
IIoo. It can be formally represented as

where a complete set of excited nuclear states lv) has
been inserted. Normal ordering is indicated by::. For
later purposes, we shall assume that the states lv) are
eigenstates of the nuclear model Hamiltonian describing
the intrinsic nuclear dynamics. Under rather general con-
ditions, we can decompose the transition charge density
pfl, (r ) (one-particle operator) in terms of electric mul-

tipoles Q&M referring to nuclear transitions, which are
" (')

characterized by angular momentum L and projection
M (and perhaps additional relevant quantum numbers
abbreviated by i):

pfl..(r) = ).&'i(r) &~M(r) QiM.
LMi

Since pg„, transforms as a scalar under spatial rotations,
the operators Q&M transform as spherical tensors of rank

" (i)

L with the property Q&~'M~
——(—)+Q&~'~ M. They are re-

lated to the total electric multipole operator QL, M via

~ A

QiM = d'«'&Z M(r) pfl-(r) =):&i QiM
2

pfl„.(r, 0)
E—:H„„, :+ig
pfl„, (r ', 0)

E+:H„„, : —ig

p p pg T, o 0

& pauc ~) 0

(6)

where the radial parts 7V&(r) of the transition density are
strongly localized functions, such that the real constants
C& ——I dr r++2 7Z&(r) remain finite. Insertion of the
expansion (7) into Eq. (6) and performing integrations
according to the definition (5), we obtain for the modified
propagator,

~, („-„- ~) )- )- (&IQiM]v)(vl QiM I&)
E —E +ig

~ I

(r) +I, (r ) ILM(r) I L,I M~ (r ),

(~IQr ~ l~)(~l Qr~l~)
E+ E —ig

where E denotes the excitation energy of the nuclear
state lv). The radial functions I"r' are given by

r

2 + 1 f p
OO

+ r~ dr, r, +'7VL(ri) . (10)
r

At this point one has to specify the nuclear excita-
tion modes lv) to be taken into account. Any particular
nucleus und. er consideration requires an adequate choice
for the nuclear model to d.escribe relevant excitations. It
can be shown that Eq. (9) for the modified propagator
is valid under rather general conditions. A decomposi-
tion of the charge density fiuctuation according to (7)
is valid not only in the case of collective nuclear excita-
tions (surface vibrations, rotations, and giant resonances)
treated within collective nuclear models [17]. A similar

I

representation is also obtained within a microscopic ap-
proach provided the Weisskopf approximation for the nu-
clear single-particle states is applied. The latter implies
to represent operators and single-particle states within
the spherical basis and assuming that the radial part of
the wave functions are constant inside the nucleus. Un-
der these conditions, an equivalent consistent multipole
decomposition of the charge density fiuctuation (7) can
be easily derived. We refer to Sec. III, where explicit
expressions for the electric multipole operator QL,M and
the radial functions 'RL are derived. . Consequently, the
complete set of eigenstates

l v) of the nuclear Hamilto-
nian H„„, should be specified in the spherical represen-
tation as well, in order to achieve a direct evaluation of
the matrix elements involved. in the expressions for II
respectively, Bpp.

When evaluating Bpp in the single-particle approach,
we have to distinguish between even A (even Z) and be-
tween odd-A (odd-Z) nuclei. In the case of even-A nuclei
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the ground state IO) has zero total angular momentum,
i.e., J~ ——0. The excited states lv) = IJ M„) are in
principle arbitrary linear combinations of one-particle-
one-hole states (neglecting higher particle-hole correla-
tion terms for simplicity) coupled to total angular mo-
mentum J„ forming the collective states. In the case of
odd-A nuclei the ground state IO) has a finite angular
momentum equal to that of the valence proton. For rea-
sons of simplicity, let us consider nuclei with a ground
state of the form IO)—:lv):= IJ„M„) = at@ M IO).
Here, IO& denotes the vacuum of the even-A core and

a& M denotes the creation operator for the valence pro-
ton in its ground state characterized by an angular mo-
mentum J . It should be mentioned that the evaluation
of matrix elements involving this odd-A. vacuum state im-
plies a summation over all projections M due to possible
degeneracies of the ground state. Two types of nuclear
excitations now contribute to the summation over inter-
mediate states in Eq. (9). First, the valence nucleon can
undergo transitions into an excited state lv'&, while the

core remains in its ground state IO). Second, the core can
be excited, similar as the neighboring even-(Z-1) nucleus,
while the valence proton remains unefFected. Collective
core excitations now give rise to characteristic multiplets
in the excitation spectrum according to the coupling of
the angular momentum referring to the core excitation
and that of the valence nucleon. The polarization func-
tion and, thus, the efFective propagator decomposes into
a collective part describing collective nuclear excitations
of the core and a single-particle contribution due to exci-
tations of the valence nucleon. Thus, the modified prop-
agator can be written in the form

Dpp(r", r', E) = ) ) B (EL;I —+ 0)
LM coll

E' —&L2+ Zg

I"L' is determined by the one of the transition charge
density R.l (here the label i distinguishes between col-
lective and single-particle excitations, respectively). As
we have mentioned above, the details of the r dependence
of the ground-state charge distribution p,„q is of minor
importance for the energy shift in electronic atoms. Sim-
ilar arguments hold concerning the r dependence of RL
and, thus, for the functions FL. The common feature
of these functions is that they are strongly localized in-
side or near the surface of the nucleus. In the study
of even-A nuclei, we are mainly interested in the con-
tribution to the Lamb shift due to virtual excitations of
collective surface vibrations, low-lying rotational modes,
and the giant (dipole) resonance. In the case of even-A
nuclei, collective nuclear excitations are of major impor-
tance. These modes can be treated employing the con-
cepts of boson expansions (see, e.g. , [16])or geometrically
motivated collective models [17). Following the geomet-
rical and hydrodynamic description [17] expressions for
B(EL) values and FI, can be derived (see Appendix). In
our calculations we shall use experimental values for the
transition strengths and excitation energies, if available.
Let us only mention that an application of Eq. (11) in-
cluding single-particle excitations would be the relevant
calculation of the nuclear-Polarization effect for 2sPsPBi.

Having derived the expression for 'Voo, we are now in
the position to evaluate the efFective self-energy contri-
bution. Inserting the representation (11) together with
the eigenfunction expansion for the Dirac propagator S~,

4~( ) Pa( ')
E —EI, + sgn(EI, —E~)iq'

E~ ———1, (12)

and using the spherical representation of the Dirac states
(vq denotes the principle quantum number of bound
states, respectively, the energy of a continuum state)

+B (EL; J„-+J„) E —E~ + ig

X FI. (r)FI (r') YgM(r)YIM(r'),

Bcou(EL. L ~ 0) ( i )
2L+ 1

I &Oil&I IIL& I'
2L+ 1

the following expression for the effective self-energy shift
of a given bound state g „„characterized by a princi-
pal quantum number v and angular momentum quantum
numbers v and p due to collective nuclear excitations is
obtained after some algebra:

(11)2J +1
where J„=J + L. %Phile the 6rst term represents
the contributions due to various collective nuclear exci-
tations, the second term only contributes in the case of
odd-A nuclei. For a derivation of Eq. (11), we refer to
the next section and to the Appendix, where expressions
for the functions Fl (r), respectively, FP "(r) can be
found. The efFective propagator exclusively depends on
phenomenological quantities like transition energies EL,
and corresponding electric transition strengths [B(EL)
values]. The radial dependence carried by the functions

&E„„„=—n) B(EL;L m 0) I
r,

I

f. . 1 1

)-
dE, l(v~IF, IE'~, &l'

VICiN y

+ ,~,) I'
- E„,„, —E„„+E&+iq

+
' „,l(vKIF, IE'~, &I'E- E -E. (i4)
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a)

+mo

—mo

FIG. 1. The 18'/g electron can be virtually excited into
an unoccupied state of the positive energy continuum via the
interaction with virtual nuclear excitations (a). The corre-
sponding Feynman diagram (b) represents the first two terms
contributing to AE&, ,~, [Eq. (14)].

higher unoccupied electron states due to virtual nuclear
excitation. This intermediate state is either a positive en-
ergy continuum state IE'ei) (first term) or a bound state
Iviei) (second term). These two terms are equivalent to
the usual expressions derived in second-order perturba-
tion theory. However, the third term in M„„~„ is a pure
vacuum effect as a consequence of the relativistic, field-
theoretical treatment, which accounts for the different
time orderings. It describes the interaction of the Dirac
vacuum with virtual nuclear excitations where an elec-
tron Rom the (occupied) Dirac sea IE'ei) can be excited
into the occupied bound state Iver@) at difFerent space-
time points, while the present electron and the positron
(hole) will annihilate. This "exchange" process has first
been taken into account in Ref. [7]. It should be men-
tioned, that this vacuum contribution is not included in
earlier calculations of the efFect of nuclear polarization
in muonic atoms. The various processes contributing to
LE„„„areillustrated in Figs. 1 and 2 for the 1s&~2 state.

III. MICROSCOPIC APPROACH TO NUCLEAR
POLARIZATION

First, we note that this contribution of nuclear polar-
ization to the total Lamb shift carries an overall minus
sign, i.e., AE„„„is negative and thus tends to increase
the binding energy of electronic bound states. The ef-
fective self-energy shift depends parametrically on the
excitation energies EL„ the corresponding B(EL) values
and, in principle, on the particular radial dependence
FL, refering to the collective nuclear multipole transitions
under consideration. The first two terms in JM~

~

de-

scribe transitions of the electron in the state Ivrp) into

A microscopic description of the nuclear polarization
starts with the representation of the charge density fIuc-
tuation operator (one-particle operator),

)os (")= ). ii; ii ~'(")4'(")
igj

where a, (a,. ) denotes the creation (annihilation) opera-
tor of a nucleon, i.e. , a proton, in the single-particle state
P, . The electric multipole transition operator is obtained
via

a)

+mp

Is1/2

—mp

b)

qLM —).n'di qL, m
iwj

QI."M = f rP 4!( ) &a~( ) 0, ( ).

Particle and hole creation (annihilation) operators are
introduced with respect to an appropriately chosen vac-

uum IO), where all single-particle states are occupied up
to the Fermi level I". In the case of an even-A nucleus IO)
is identical with its physical ground state, i.e. , IO):—IO),
while it is chosen as the ground state of an even-A core,
in the case of an odd-A nucleus. We define the vacuum
IO) and particle (at) and hole (bt) creation operators:

FIG. 2. An electron from the occupied negative energy
continuum can be virtually excited into the occupied 181/2
state at diferent space-time points via the interaction vrith
virtual nuclear excitations. The created positron annihilates
with the 1s electron, which already had been present (a). The
corresponding Feynman diagram of this "exchange" process
(b) represents the vacuum contribution [third terin of Eq.
(14)] to b.X,.„,.

a = a,.&+,

= +i(P~

a~IO) =0,

bqIO) =0, (17)

and the corresponding nuclear ground state for

even-A

odd-A

where, for reasons of simplicity only, one valence nucleon
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4z, M, (r ) = f~, (r) &z, M, (r), (19)

(proton) is assumed. The definitions (15)—(18) allow us
to indicate the spectral representation of the polariza-
tion function II . All operators can be alternatively ex-
pressed in terms of particle and hole operators (17).

%'e now introduce the spherical basis, i.e., relevant
quantum numbers are specified as i + (J,M;), together
with the states P; m P~, M, (shell model basis). Further-
more, we apply the Weisskopf approximation:

The electric multipole transition operator may be ex-
pressed in terms of particle-hole operators:

L( 3Rp ) ~ t JpiM i JpMp
QIM =eI

3 L I ) pg~, &JMCLM(3+I) ~ p' p'

Q
PAP

C
Jqr M ( JqMq

J rM ) JqMq LM

where the radial functions are assumed to be constant
inside the nucleus, such that for the matrix elements,

OO

J. f J. — 7 1 J. f J. P
~3+L~

(20)
holds. This equation implies normalized radial functions,

JqMq JpMp+) bzM zMCLM
PQ

~JpM~ JqMq
JpMp Jq Mq I M

pe
(25)

fg, (r) =
I

s I

O(Rp —r),(3 l' (»)
~R:)

which are also independent of J;. Under the assumptions
(19)—(21) a consistent decomposition of ps„, into multi-
poles QLM of the form (7) can be derived. Only the
radial functions 'RL need to be determined. Evaluation
of QLM according to Eq. (16) with the states (19) and
insertion into (7) leads to

In the following, we shall specify the excited nuclear
states Iv) in the shell model basis and derive expressions
for the efFective propagator Vpp for even-A and odd-A
nuclei.

In the case of even-A nuclei collective excitations
IL„M ) may be described predominantly as linear com-
bination of 1p-1h states:

ps..(r) = e) &L(r) &r.M(r)

X aJ;M,. aJ,.M,. J, r J,
iwj

X dT J,M. T YLM 7 J M. (22)

II M)=) C,'; )
Jp Jq MpMq

x(J„JqL„
I

MpMqM„—) a~~ M b~~ I ~Q),

(26)

where the sununations over i and j imply summations
over corresponding angular momenta and projections.
Requiring that the product 7ZL(r)(f~, IrLI fr, )—:7Z(r)
is independent of L, the summations over I and M can
be performed 6rst:

~s ( )= ) zM zM &() zM()&~, M, ()

The states IL„M„) are assumed to be eigenstates of a
corresponding nuclear (model) Hamiltonian H„„,. Due
to the algebraic structure of these states, the matrix ele-
ments of the electric transition operator, which occur in
the expression for II and 'Vpp turn out to be related to
the reduced transition strengths [18):

Z;M, Z MQLM=eI 3 L I) ug, M, pz, M, CL,M. .(3+L)

CJ;M, J~M~
LM

( ~ )( ~ ) (J J LI000)( )M
4~(2L+ 1)

x(J, J, L
I

—M;M~M). (24)

(23)
If we identify the radial function 'R with the radial
parts of the nuclear transition densities obtained in the
Weisskopf approximation, i e , 'R(r) = fg., (.r) fg, (r), the
following consistent and equivalent representation of the
charge density Buctuation operator can be derived:

ps„,(r) =)
I L+s I

o(Rp —r) YLM(r) QLM,
(3+L)

LM ER'"]

) (OIQLMII„M„) (I„M„IQL,M, IO)

I X'IIQL. IIL-& I'
LL„L'I,„MM'

V

= hLL. bL'L„bMM' B' "(EL„;I„m 0). (27)

17pp(r", r', E) =) B' "(EL;L + 0)
LM E —E, + g

xFL (r)FL (r') YLM(r)Yg M(r"'), (28)

where FLP has to be evaluated according to Eq. (10)
with the radial function 7ZL = ~++SO(Rp —r):

Ro

The effective propagator Vpp is obtained according to Eq.
(9):
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+"()=(„
r2

(r) =O(a. —.)
R03

for L=2
for L+2

(29)

indicated in Eq. (26). A multiplet of states arising &om
collective core excitations consists of 2l+1 states

I J„M„),
which are concentrated close to an average energy E~
that would correspond to a collective excitation of the
neighboring even-(Z —1) nucleus.

Having specified the nuclear states, in a next step the
matrix elements with the transition operator have to be
calculated. Excitations of the valence proton lead to

).(&IQLMIJ M )(J M IQLM I&)
M ~

The resulting propagator (28) has exactly the same struc-
ture as those derived for collective vibrations, rotations,
and giant resonances [7]. Slight modifications occur in
the radial dependence (29) inside of the nucleus, which
is the only residue of the single-particle interpretation.

In the case of odd-A nuclei, i.e., an even-A core plus
one valence proton, two types of nuclear excitations con-
tribute to the efFective propagator. The first type are
single-particle excitations of the valence proton (indi-
cated by primes):

) (J„M„IQLMIJ„M„)(J„M„IQtL, M, I
J„M„)

M„M„)

= ~LL' ~MM' B (ELi Je ~ Je')~ (32)

where J„=J„+L. Note, that the evaluation of vac-
uum expectation values (Ol IO) now implies a sum-
mation over all projections M, due to the degeneracy of
the ground state. These excitations give rise to a single-
particle contribution to the efFective propagator:

IJ-M-) =&&,M, I&)

: H„„, :
I
J„M„i) = EJ,

I J„M„), (30) (33)

'Dpp (r, r"', E) =) B (EL; J„-+J„)E'+ E' + iq

xF (r)F (r') Y (r) Y' (r"').

where the core remains in its ground state IG). The
second type are collective excitations of the (Z —1) core
giving rise to a multiplet of single-particle states,

Let us turn to collective core excitations. With the
result

).(&IQLMIJ M ) (J M IQLM I&)

IJ M)= ) (J lJ„IM„mM„) at+ M Ilm),
M„m

: II„„,:
I
J„M„)= Eg„M„ I

J M„),
J„=

I
J„—l I, . . . , J„+l, (31

where the states llm) are again linear combinations as

=).(&IQLMllm) (lmlQI. M I&)

= b&L h& L bMM B' "(El;l ~ 0),

one obtains (after relabeling summation indices)

(34)

Dpp"(r", r', E) = ) B' "(EL;Lm
LM J„

(2L+i=). )

C

o), ,' +"()+ (")Y. (')Y' (")E2 —E~2 +ig

~

B-"(EL L ~ 0) I"L'(r)I'"L'(r') YLM(r)YLM(r')
+irl)

The summation over j runs over all members of the mul-
tiplet with J =I J„LI, . . . , J„+I,w—hich correspond to
the core excitation of multipolarity L. According to Eq.
(35) each state of the multiplet is associated with equal
transition strength B' "(EL). This may be not the case
in reality. In view of the very small splittings between
the excitation energies EL z, it may be legitimized to in-
troduce an averaged eigenvalue EL labeling the collective
core excitations. Thus, we can write

~«ue(r rj E) ) Bcore(EL. 0 ~ L)
LM

E2 —EL2 + ig

&"()+ (")Y. (')Y' (") (36)

In order to achieve a unique notation with respect
to the expressions derived for collective vibrations, ro-
tations, and giant resonances [7], we define as "col-
lective" transition strengths: B' "(EL; L -+ 0)
Bce"(EL;0 -+ L) = (2L + l)B' "(EL;I M 0). We
can write the effective propagator for odd-A nuclei (sup-
pressing the bars):

'Dpp(r, r', E) =) B (EL; J„—+ J„)

+B' "(EL;L i 0) E~ —EL2 + i rI
)" L"(") L"("') LM( )~LM(r'). (3
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TABLE I. The contributions AE„„„to the total energy shift due to various collective nuclear excitations 7 are displayed
for even-A thorium isotopes. Values for excitation energies and reduced transition probabilities are taken from Refs. [20—22].
For the giant dipole resonance (GDR) corresponding parameters are deduced according to the semiempirical formulas (A10)
and (All). Uncertain decimals are indicated in parentheses.

Isotope

23OTh90

232Th90

Transition
~ = (k;Lm; EL)

0;2+;E2
0;3—;E3
2 2+; E2
1;3—;E3
GDR; E1

0;2+; E2
0. 2+ E2
0;3—;E3
2. 2+ E2
1;3—;E3
GDR. E1

Level
E (MeV)

0.0532
0.572
0.781
1.012
12.97

0.0495
0.7741
0.7744
0.785
1.106
12.94

B(EL;L -+ 0)
(e b~)

1.612
0.091
0.025
0.071
0.209

1.842
0.020
0.064
0.024
0.037
0.211

(meV)

447.4
9.9
6.8
7.5

261.1

505.2
5.4
6.9
6.4
4.0

262.8

(meV)

82.5
1.8
1.2
1.4

48.2

93.2
1.0
1.3
1.2
0.7

48.5

(meV)

8.9
0.2
0.1
0.2
5.2

10.1
0.1
0.1
0.1

0.(1)
5.3

Thus, the efFective propagator decomposes into a collec-
tive and a single-particle contribution.

IV. NUMERICAL RESULTS

Let us now turn to the numerical results for the en-
ergy shifts of the lsi~2, 2si~2, and 2@i~2 states due to
nuclear polarization in selected even-A actinide isotopes
of Th, U, Pu, Cm, and Cf. Based on Eq. (14) the efFec-
tive self-energy shifts for hydrogenlike ions are obtained
after performing numerical integrations. We should men-
tion, that only the contribution due to virtual transitions
of the bound electron into the positive and negative en-
ergy continuum [first and third term of Eq. (14)] have

been taken into account. The contribution due to tran-
sitions in unoccupied bound states (second term) turns
out to be negligible compared with the other terms. The
evaluation proceeds according to the following scheme:
For a given type of collective nuclear excitation (vibra-
tion, rotation, giant dipole resonance) the contribution
of each single excitation of multipolarity L is calculated
separately. For a fixed L, we first have to compute the
radial matrix elements (mr~EL, ]E'ri) between the consid-
ered electron bound state ~vK) and the intermediate con-
tinuum state ~E'ri) with the radial function Fl, of the
corresponding efFective propagator (see Appendix). In a
second step the integration over the continuum energy
E' is performed (see Ref. [7] for a more detailed discus-

TABLE II. The same as in Table I for even-A uranium isotopes. Values for excitation energies and reduced transition
probabilities are taken from Refs. [20, 23—25]. Experimental uncertainies in the determination of the transition are indicated

by cc? '7)

Isotope

234U
92

236U
92

238U
92

Transition
r—:(A:; L7r; EL)

0; 2+- E2
0 3.E3
2;2+; E2
?;3-;E3
GDR. E1

0;2+;E2
0;3-;E3
2;2+; E2
0; 3-. E3
GDR; E1

0;2+;E2
0;3-; E3
?; 3—;E3
0;2+;E2
2;2+;E2
GDR El

Level
E (MeV)

0.0435
0.850
0.927
1.023
12.91

0.04524
0.745
0.959
1.040
12.89

0.04491
0.732
0.998
1.037
1.060
12.86

B(EL;L w 0)
(e b)
2.180
0.084
0.025
0.031
0.214

2.320
0.076
0.036
0.044
0.216

2.460
0.082
0.029
0.013
0.026
0.217

(meV)

707.5
10.6
7.8
3.9

313.2

747.1
9.4
11.2
5.4

314.8

786.4
10.1
3.4
4.0
8.0

316.5

(meV)

132.9
2.0
1.5
0.7
58.8

140.3
1.8
2.1
1.0
59.1

147.7
1.9
0.6
0.8
1.5

59.5

(meV)

15.3
0.2
0.2

0.(1)
6.8

16.2
0.2
0.2
0.1
6.8

17.0
0.2

O.(1)
o.(1)
0.2
6.9
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TABLE III. The same as in Table I for even-A plutonium isotopes. Values for excitation energies and reduced transition
probabilities are taken from Refs. [20, 26—29].

Isotope

238p
94

240p
94

242p
94

244p
94

Transition
r = (A:;Le;EI)

0;2+; E2
0;3—;E3
0;2+;E2
GDR; E1

0;2+;E2
0;3—;E3
2;2+;E2
GDR; E1

0;2+;E2
0;3—;E3
?;3—;E3
2;2+;E2
GDR; E1

0;2+; E2
?;3—;E3

or?; 2+; E2
?;3—;E3

or?; 2+; E2
?; 3—;E3

or?; 2+; E2
? 3— E3

or?; 2+; E2
GDR; El

Level
E (MeV)

0.04408
0.661
0.983
12.86

0.04282
0.649
0.938
12.83

0.0445
0.833
1.020
1.102
12.80

0.0460
0.708

0.960

1.020

12.77

B(EL;L -+ 0)
(e'b )

2.526
0.101
0.024
0.219

2.666
0.059
0.016
0.221

2.694
0.060
0.064
0.031
0.222

2.722
0.043
0.009
0.053
0.012
0.166
0.039
0.084
0.021
0.224

(meV)

961.2
14.8
8.8

375.3

1004.8
8.6
5.8

378.1

1009.8
8.6
9.1
11.2

380.2

1011.5
6.1
3.3
24.8
4.3
23.2
14.0
11.8
37.2
382.5

[ AEs.. . f

(meV)

184.0
2.8
1.7

71.8

192.3
1.6
1.1

72.4

193.3
1.6
1.7
2.1

72.8

193.6
1.2
0.6
4.8
0.8
4.5
2.7
2.3
7.1

73.2

(meV)

22.6
0.4
0.2
8.9

23.7
0.2
0.1
8.9

24.1
0.2
0.2
0.3
9.0

24.0
0.1

o.(i)
0.2
0.1
0.6
0.3
0.3
0.9
9.0

sion of the numerical procedure). We have tried to select
isotopes, for which a considerable amount of experimen-
tal data for excitation energies and reduced transition
strengths for collective vibrational and. rotational states
are available. The energy shifts presented due to the
giant dipole resonance are results of pure model calcula-
tions, where the transition energies and the B(EL) val-
ues are taken according to semiempirical formulas [Eqs.
(A10), (All)). The results for the energy shifts due to

selected collective nuclear excitations will be tabulated
in the following (see Tables I—V).

V. DISCUSSION OF THE RESULTS AND
SUMMARY

A brief look at the tables presented in the previous sec-
tion reveals, that the major contribution to the total en-
ergy shifts arises due to virtual excitation of the low-lying

TABLE IV. The same as in Table I for even-A curium isotopes. Values for excitation energies and reduced transition
probabilities are taken from Ref. [30j.

Isotope

246'
96

248 C96

Transition
r—:(k; Lm; EI )

0;2+;E2
2;2+;E2
1; 3—;E3
0; 3—;E3
3;3—;E3
1;3—;E3
GDR. E1

0;2+;E2
2 2+; E2
?; 3—;E3
?; 3—;E3
GDR; El

Level
E (MeV)

0.04285
1.124
1.128
1.301
1.527
1.624
12.74

0.04338
1.050
1.100
1.235
12.71

B(EL;L -+ O)

(e' b )

2.988
0.034
0.042
0.048
0.025
0.038
0.228

2.998
0.036
0.059
0.021
0.229

(meV)

1312.6
14.3
6.9
7.9
4.1
6.2

456.1

1349.2
15.1
9.7
3.4

458.8

(meV)

256.1
2.8
1.4
1.5
0.8
1.2

89.0

255.3
2.9
1.9
0.7
89.5

(meV)

33.6
0.4
0.2
0.2
0.1
0.2
11.7

33.5
0.4
0.2

o.(1)
11.8
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TABLE V. The same as in Table I for even-A californium isotopes. Values for excitation energies and reduced transition
probabilities are taken from Ref. [30].

Isotope

25oCf98

252 Cf98

Transition
v—:(k; Lm; EL)

0;2+; E2
2;3—;E3
1;3—;E3
T;3—;E3
GDR E1

0;2+;E2
GDR E1

Level
E (MeV)

0.04272
0.907
1.211
1.429
12.69

0.04572
12.66

B(EL;L m 0)
(e b)
3.200
2.886
2.757
1.900
0.233

3.340
0.234

(meV)

1641.2
555.7
527.9
362.4
547.6

1636.5
550.5

i bE~.. . i

(meV)

326.5
111.0
105.5
72.4
108.9

325.6
109.5

I &E~p„, I

(meV)

45.7
15.6
14.8
10.1
15.3

45.6
15.4

rotational state and the giant dipole resonance. The main
reason for that is obviously the relatively small excitation
energy, respectively, the considerably large values for the
reduced transition probabilities. All other modes taken
into account contribute only at the percent level. The
numerical values for the energy shifts of the 1sqy2, 2s~g2,
and 2pqy2 states difFer roughly by an order of magnitude,
respectively. Summing up all the contributions referring
to the excitations taken into account, we obtain values
for the total energy shifts which are collected in Table VI.
However, we should be aware about the uncertainties we
have to deal with. Numerical errors are under control,
since convergence of both the radial and the energy inte-
gration is achieved. The major source for deviations in
the Anal numbers arises due to uncertainties in the values
of the parameters [excitation energies and B(EI) values]
used in the calculation and due to the number of modes
considered. The results for the contribution of the giant
dipole resonance may be envisaged only as an estimate.
Higher multipole resonances (e.g. , the giant quadrupole
resonance) should be included as well. In view of this

situation, we may assign a typical error of about 25%
to the final energy corrections of the considered electron
bound states. Nevertheless, it is instructive to plot all
the results obtained for a given bound state, in order to
get some insight into the general trend. In Fig. 3 the
energy shifts of the 1si~2 state is depicted. The actual
contributions to the 2siy2-2pi~2 Lamb shift is displayed
in Fig. 4.

Let us briefly summarize. The theoretical approach of
effective propagators has been extended to odd-A nuclei,
which would allow us to take into account single-particle
excitations of the valence proton. The derivation of the
corresponding effective interaction was based on a micro-
scopic approach utilizing the Weisskopf approximation.
Accordingly, the resulting expression has a similar form
as in the case of collective nuclear excitations.

We have presented numerical results for the energy cor-
rection of strongly bound electrons in hydrogenlike atoms
due to nuclear polarization. Thereby, we have concen-
trated on a systematic study of the effect in even-A ac-
tinide isotopes. The contributions of nuclear polarization

TABLE VI. Total energy shifts (meV) of the lsig~, 2s~~2& and the 2p~y2 states and the con-
tribution to the 28&~2-2p&y2 Lamb shift due to the nuclear excitations collected in Tables I—V are
shown.

Isotope

23oTh
9G
232Th

234U
92
236U
92
238U
92

238p
94
240p
94
242p
94
244p
94

246 C96
248C
96

oCf
98252Cf

(meV)

738.7
790.7

1043.0
1087.9
1128.4

1360.1
1397.3
1418.9
1459.9

or 1452.8

1808.1
1836.2

3634.8
2187.0

(meV)

135.1
145.9

195.9
204.3
212.0

260.3
267.4
271.5
279.6

or 2?8.0

352.8
350.3

824.3
435.1

(meV)

14.6
15.8

22.6
23.5
24.5

32.1
32.9
33.8
34.2

or 34.4

46.4
46.0

201.5
61.0

(meV)

120.1
130.1

173.3
180.8
187.5

228.2
234.5
237.7
245.4

or 243.6

306.4
304.3

622.8
374.1
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FIG. 3. Total energy shifts
~
AEi, ,& ~

in (meV) are shown
for various isotopes as a function of the number of neutrons
¹

APPENDIX A: RADIAL FUNCTIONS AND
REDUCED TRANSITION PROPABILITIES FOR

COLLECTIVE NUCLEAR EXCITATIONS

1. Harmonic surface vibrator and free rotator

VZ, (r) = R, ""S(r—R.), (A1)

can be derived. According to Eq. (10), one is led to
radial functions,

4~
Fr, (r) = i O(Rp —r)2L+ 1 R~ R&+1

The collective dynamics of the nuclear surface can be
treated in terms of collective bosons (surface phonons)
[17]. Analytical expressions for the radial functions Fr,
and B(EL) values can be derived. Let us note, that
some intermediate formulas in the derivation of effective
propagators appearing in Ref. [7] contain some obvious
misprints. In the harmonic approximation, the following
expression for the transition charge density (radial part)
with multipolarity L ) 2,

+ O(r —Rp) (A2)
to the actual 2s1~2-2p1~2 splitting turns out to be at least
of the order of 0.1 eV and, thus, of the level of the current
experimental accuracy.
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Specifying the set of excited nuclear states [v) as one-
phonon states, i.e. , [v) = ~LM), the Wigner-Eckart the-
orem applies when evaluating the matrix elements of the
electric multipole transition operator Qr, 5r. This leads
to the reduced transition probabilities,

B"' (EL; L m 0) = (2L+ 1) B"' (EL; 0 -+ L)
3 Z L 2h2 2(L-1)

4~ AmEL (A3)

where m denotes the mass of the nucleon.
Neglecting the effect of static nuclear quadrupole de-

formation the function F2(r) can be used to specify 17pp

in the case of low-lying rotational modes. The corre-
sponding transition strengths B(E2;2K ~ 0) depend
on the quantum number K characterizing different rota-
tional bands (K = 0 for the ground-state band, K = 2
for the p band, etc).

2. Giant dipole resonance

F~" (r) = ~ Fr, (r) + O(Rp —r)( ) 47r 2L+ 1
2I +1 Rp~ OZLn

ir. (zr. r/Rp) & r 'l jr.(zr. )
3L+1(+1)(+0) BI+1(+I ) ).

(A5)

Treating giant resonances within the hydrodynamical
approach (HD) for spherical nuclei [17], one obtains tran-
sition charge densities (radial part),

VZ~(r) =N~„jL,(zL,„r)e(R, —r),

with the normalization factor JV~„= (2Rp[jr (zr,„)—
jL, 1(zr, )jL+i(zr, )))s. Accordingly, one derives the fol-
lowing radial functions [7]:
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where zl, ——Icl. Ro are zeros determined by the bound-
ary condition (d" jl, (kL,„r)) z

——0, and n lables the
nth harmonic for a given multipolarity L C. orrespond-
ing transition strengths can be defined according to

B(EL;Ln m 0) = ) ](O[Qi("M)]LMn) [

3 ZNL 2I
4' AmEL, „z~~„—(L + 1)

2~2+2(L —i)Xc 0 )

where m denotes the mass of the nucleon. If one further
assumes that the total strength of a giant resonance with
multipolarity, L is concentrated at one energy El. = Er, q

refering to the lowest harmonic with n = 1, we can define
a total B(EL) value, e.g. , for a giant dipole resonance
(L =1):

dipole resonance one finally obtains a total cross section,

16m E BH (El;1m0) = 8m ZN e 5
Og

TRK 2

A mc
16+3

Eg B (El;1 -+ 0).

(A9)

The equation above allows us to deduce a transition
strength for the giant dipole resonance &om measurable
quantities like the resonance energy and the photoab-
sorption cross section. It is known that the hydrody-
namical model tends to overestimate such quantities. In-
stead of using (A9), it seems more appropriate to de-
duce the B(El) value from the semiempirical Thomas-
Reiche-Kuhn (TRK) sum rule assuming again that it is
completely fu16lled by the giant dipole resonance state:

B(E1;1 M 0) = —) [(O[ql,M[1M1) [

3 ZN 2
2 (A7)

(A10)

The excitation energy Eq is determined according to the
empirical formula [16, 14]:

=95 1 —g ~3 g ~3 Mev (A11)
However, the physical quantity which is measured in the
experiment is not a B(E1)value but the photoabsorption
cross section cr(E) or the integrated cross section o

f dE o (E) Assum. ing that the dominant contribution to
the total cross section is due to the giant dipole resonance
only, we can write

HD HDo (E, I q) =
~

B (El)1 m 0) (E E )z

(As)

Furthermore, neglecting the finite width I't of the giant

In the case of heavy nuclei the assumptions made above
seem to be in good agreement with experimental data
[19]. The B(E1) values deduced from the hydrodynam-
ical model and that obtained by the TRK sum rule are
related by B D(E1) 1.7BTRK(E1). Note, that the en-
ergy shifts calculated with transition strengths deduced
from the TRK sum rule can be easily corrected by multi-
plication by an overall factor q = (1+ ~~oo).

b' stands for
the percentage to which the TRK sum rule may be ex-
ceeded or not. This parameter can be deduced from cor-
responding measurements of the photoabsorption cross
section.
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