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This paper presents a formalism for studying semianalytically the development of a multiparticle
quantum-mechanical system outward from its center of mass, casting its dynamics in terms of
hyperspherical coordinates which emphasize collective motions of all constituents. The formalism
expresses the system's development through an R matrix which varies with the system's hyperradius
R, incorporating a greater amount of the dynamics as R grows. Eigenvalues of the R matrix are
further transformed into R-dependent phases whose R variation elucidates interactions between
alternative degrees of freedom. An initial application to the S states of helium reveals details of
interactions hitherto concealed within numerical treatments.

PACS number(s): 31.10.+z

I. INTRODUCTION

The dynamics of atoms and molecules hinges on trans-
fers of energy, momentum, and angular momentum
among the interacting electrons and nuclei, leading, for
instance, to the complete rearrangement of molecules
in a chemical reaction. In this instructive case, re-
actant molecules, each with its own stable structure,
come together to form a "reaction complex" which then
breaks up into various products. The various reac-
tant and product configurations lie in alternative "chan-
nels, " characterized by an appropriate set of quantum
numbers; the essential dynamics asserts itself in the
transition &om the short-range complex to the long-
range &agmentation channels. Progress along this tran-
sition can be parametrized by a hyperradial coordinate
R = gP,. m;r2/M (where M = P,. m, , the total mass)
describing the overall size of the complex. This pa-
per presents a semianalytic ab initio procedure detailing
the hyperradial development of an atomic system and
demonstrating that the most relevant channel couplings
occur in well-defined regions of Bmarked by degeneracies
of channel phases.

Progress of channel development along a radial or hy-
perradial coordinate is generally studied by reducing the
relevant second-order wave equations into pairs of first-
order equations better suited to a description of the de-
velopment as an B-dependent fiow [1]. One such transfor-
mation reduces wave functions to their R-dependent am-
plitudes and phase shifts relative to a standard set of ba-
sis functions [2]. The phase shifts arise in the multichan-
nel context as eigenchannels of an R-dependent "short-
range reaction matrix" K; this approach has proven
&uitful in two of the simplest nonseparable problems of
atomic physics, hydrogen Rydberg diamagnetism [3] and
the doubly excited states of helium [4]. Related treat-
ments study the evolution of Hux between basis chan-
nels, applying the concept to molecular collisions and
photoprocesses [5]. An alternative reduction casts one-
dimensional wave functions in terms of their amplitude
and total phase [6—8]. A recent proposal [9] extends this

analysis to the multichannel case by considering an R-
dependent R-matrix independent of predetermined basis
functions.

Here we systematize the approach of Ref. [9], apply-
ing its method to helium, thus complementing and ex-
tending the results of [4]. Specifically, we focus on au-
toionizing transitions in helium, where energy initially
shared by both electrons ultimately concentrates on a
single electron, ejecting it from the atom. These doubly
excited and ionized configurations constitute alternative
&agmentation channels analogous to the chemical reac-
tant and product channels above.

For this and similar problems, R-matrix methods
[10,11] recognize and exploit the distinction between
short — and long-range phenomena by distinguishing
"core" and "asymptotic" regions of configuration space.
The core region encloses all channel interactions includ-
ing the doubly excited channel (which cannot extend to
infinity at energies below the double-ionization thresh-
old). The problem is solved inside the core by matrix
diagonalization or by variational methods, to produce
logarithmic derivative boundary conditions at the core's
surface. The asymptotic region contains only the ejected
electron whose wave functions in the Coulomb plus dipole
field of the (distant) He+ ion are known analytically.
Standard procedures of the quantum defect theory [12,13]
interconnect solutions at the core's boundary, yielding
accurate results for scattering phase shifts.

Conventional R-matrix techniques thus reduce the
transition region to a single boundary surface, conceal-
ing details of interactions within a numerical treatment
of the core region, a deficiency we will remove by tech-
niques akin to invariant imbedding [14]. Specifically, we
will construct an B matrix explicitly at each value R'
of the hyperradius, incorporating only the interactions
relevant at R & R'. The R matrix so constructed coin-
cides with the conventional R matrix on the boundary of
a core region, yet its elements evaluated throughout the
range R & B' illustrate the progressive development both
of the &agmentation channels and of their mixing. We
thus replace previous B-matrix propagation techniques
[15,16] that did not concern themselves explicitly with
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the development of channel couplings. These techniques
divide the radial coordinate into sectors, within which the
radial function is approximated by, e.g. , Airy functions,
leading to approximate Green's functions for propagat-
ing the B matrix &om one sector boundary to the next.
The alternative "diabatic by sector" method diagonal-
izes the hyperspherical Hamiltonian [Eq. (1), below] at
a representative fixed R within each sector, then con-
nects the sector solutions to form a final R inatrix [17],
demonstrating the utility of hyperspherical coordinates
in an accurate computational scheme, but without dis-
playing the details of channel development. We replace
these techniques with a more direct first-order differential
equation for the R matrix, whose eigenchannels reveal the
development of the electron pair's dynamics.

The R-matrix eigenchannels developed here bear some
relation to the well known adiabatic channels that ap-
proach the problem by treating B as a "slow" coordi-
nate in the sense of the Born-Oppenheimer approxima-
tion [18,19]. The adiabatic approximation results in a
set of potential curves in B, whose bound states approx-
imate the resonant levels of doubly excited helium but
must be coupled in a separate step to describe autoioniz-
ing transitions. The R-matrix eigenchannels, by contrast,
embrace both the adiabatic channels and their coupling.
Thus while adiabatic channels can describe autoionizing
levels, the R-matrix eigenchannels display their autoion-
izing widths as well, as we demonstrate here for several
low-lying autoionizing states of helium. Inclusion of the
full coupling becomes especially relevant at higher exci-
tation energies, where numerous adiabatic channels over-
lap, impairing their ability to describe resonances [20].
The R-matrix eigenchannels should thus provide a useful
fully wave mechanical description of the approach to the
threshold for double ionization in helium, to be pursued
in future work.

whose operators A2 and C(O) represent a generalized
squared angular momentum and efFective charge prod-
ucts, respectively. Centrifugal forces dominate the mo-
tion at small B, Coulomb forces at large R, just as for
a single particle; the noncommutativity of A2 and C(O)
drives the dynamical transition between these regimes.

The similarity of the Hamiltonian (1) to a single-
particle Hamiltonian suggests separating its dynamics
into nearly independent channels, each mimicking the
motion of a single particle in an effective radial potential,
which interact only weakly to complete the description of
the system's dynamics. Adiabatic treatments have pro-
ceeded in this direction, disregarding the B derivatives
in (1) and diagonalizing the centrifugal plus Coulomb in-
teractions to produce effective potentials [18,19]. Such
weakly interacting channels are reminiscent of "quasi-
particle" excitations in many-body theory [24]. Indeed,
many-body treatments of atoms employ quasiparticle no-
tions, generally in the form of Hartree-Fock wave func-
tions [25]. In this section we describe the evolution of
eigenchannels of total phase which refIect electron corre-
lations more fully than either the adiabatic or Hartree-
Fock approximations.

Small-R eigenchannels amount to eigenchannels of
A2, represented by hyperspherical harmonics Yp(A) [21],
which progressively mix as B grows. Here, Yp represents
an eigenfunction of A2 with eigenvalue A(A + 3A —5)
for an JV-body system. The index P denotes a set of
quantum numbers, consisting of A and additional labels
that distinguish harmonics degenerate in A. The set P
is not unique, depending on the choice of coordinates 0;
we therefore do not specify P in this section.

A full energy eigenstate g of (1) superposes difFerent
harmonics Yp with B-dependent coeKcients,

II. CHANNEL DEVELOPMENT FORMALISM
@p, (O, R) = ) Yp(A)Epp, (R), (2)

This section derives the equations for the fiow of the B
matrix of a general A-body atomic or molecular system
outward f'rom its center of mass, focusing on the first-
order equations governing the eigenchannel functions and
their phases. We will specialize to the helium atom in
Sec. III.

where the additional index po identifies the short-range
channel in which vp originates through the boundary con-
ditions on F:

RA+(Mf —4)/2~

A. Formulation in hyperspherical coordinates

1 82

QR2

A' + (3Ar —4) (3Ar —6) /4
R2

C(0)

The hyperspherical coordinates for an JV-body system,
referred to its center of mass, consist of the hyperradius
R and of (3JV —4) angles —signifying, for instance, the
directions and relative lengths of a set of Jacobi coordi-
nates [21]—denoted collectively as A. In these coordi-
nates the Hamiltonian resembles that of a single particle
in a Coulomb potential [22,23],

d HIPPO

dR'
Pl

(4)

whose channel coupling originates in the squared wave
number matri~

[Fock [26] has demonstrated that a series expansion of
the helium wave function near R = 0 must involve terms
logarithmic in R. Equation (3) ignores these terins, yet
proves adequate for our present semiquantitative pur-
poses. ] Inserting (2) into the Schrodinger equation with
Hamiltonian (1) and projecting onto Yp yields close-
coupling-type equations for E:
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kyat (R) = /dA Yp(A) 2ME — ~ ) ~ )) y 2M Yp(A)

[A + (3JV —5)/2]2 —1/4 Cpp
happ + 2M

B. Formulation through radial eigenphases

R-matrix theory solves (4) within a core region, cast-
ing the net efFect of channel coupling as an R matrix on
the core's boundary. The R-matrix Rpp (denoted by R
to distinguish it Rom the hyperradius) relates F to its
normal derivative,

dEp & Pa) Rpp
' —Fpp, =0,

Pl
(6)

8RPP& 2=
happ + ) Rp~k, R~ p .

providing a multichannel analog of the logarithmic
derivative that serves as a boundary condition for each
channel's asymptotic wave function. Here we view the
core as an ever-enlarging hypersphere that accommo-
dates increasing amounts of the interaction as R grows
[2]. The R-matrix R thus relates F to dF/dR accord-
ing to (6) at each R, satisfying the difFerential equation
generated by difFerentiating (6), inserting (4), and mul-
tiplying on the right by (dF/dR)

harming our general conclusions. ] The channel phases
thus identify radial nodes in each channel as they pass
through multiples of m.

The radial derivative of (9), projected onto the eigen-
channels, yields

PP'

+ ) - d(pip)
(pI

x (tan Pp —tan Pp ),
whose first term on the right-hand side expresses the vari-
ation of the eigenvalues of R, whereas its second term ac-
counts for the accompanying variation of the eigenchan-
nels. (An analogous equation for the eigenchannels of a
matrix appears, e.g. , in [3].) Similarly, a joint projection
of (7) onto (pI and Ip') yields

) (pIP) (P'Ip') = b~q + tanP~k, tang~, (12)
PP'

Initial conditions for R follow &om those for F [Eq. (3)],

R
'Rpp m ~ hpp as R -+ 0.

These nonsingular boundary conditions motivate work-
ing with R rather than with its inverse, the logarithmic
derivative matrix.

Equation (7) displays the propagation of R under the
inBuence of the "dressed" interaction Rk 'R, whose sig-
inficance becomes apparent by expressing (7) in a basis
of eigenchannels Ip) of R, ,

(9)

by introducing the notation

k,. = ).(pIP)kpp (P'lp')
PP'

dip = cos P~+ k sin (14a)

Comparison of ofF-diagonal terms yields, after further
projection onto a basis element IP),

to denote the efFective coupling in the p, p' basis. Com-
parison of diagonal elements of the right-hand sides of
(ll) and (12) produces the differential equation for the
eigenphase P~:

df/dR
(10)

[Strictly speaking, the right-hand side of (10) should con-
tain a dimensional factor with units of reciprocal length;
we set this factor to 1 a.u. in the following without

Equation (9) casts the eigenvalues of R as tangents of
eigenphases P~ by analogy with casting those of a reac-
tion matrix K as tangents of phase shifts [13,3]. This
identification of phases follows the practice in Ref. [27]
of assigning to any single-channel radial function f (R) a
phase P(R) based on its "R matrix, "

d(pIP) sin P~k sin P~
(14b)

The eigenchannel Ip) corresponds to the "&ee" quasipar-
ticle in inany-body theory [24], by interacting with itself
through the dressed efFective interaction in (14a) as it
propagates. The effective interaction, in turn, represents
the collective efFect of various IP) channels relevant to
constructing and maintaining

I p).
The channels themselves develop via the dressed in-

teractions in (14b), coupled by off-diagonal elements of—2
k . The total energy E does not appear explicitly in

(14b) since its portion of k is diagonal in p, but E does
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infiuence the channels implicitly through (14a). The p
channels are thus "dynamically selected, " adapting them-
selves to the circumstances prevailing in diferent energy
ranges, thus superseding the adiabatic channels defined
independently of energy and of hyperradial-hyperangular
correlat, ions. In addition, these channels can follow the
system into its various &agmentations, since the global
structure of the hypersphere becomes irrelevant when a
channel localizes in a narrow hyperangular neighborhood
of a fragmentation direction Oo. R then plays the role
of a distance between two kagments whose essentially
one-dimensional motion is described by the correspond-
ing eigenphase.

Equations (14) raise numerical difficulties when two
phases become nearly degenerate (modulo m) causing the
denominator in (14b) to vanish. In the results reported
here our policy has been to integrate the R-matrix equa-
tions (7) directly, away from poles of R; only near the
poles do we switch to its eigenphase representation (14).

(A+ 2)' —1/4
gLgn~ B2

(lil2n ~C~lilzn ) 16

therefore constitutes a zeroth-order approximation. Fig-
ure 1 shows several of these potentials for low values of
A. Roughly speaking, each channel emerges &om its cen-
trifugal barrier when Vi, i,„ first drops to zero (although
the channel accumulates some phase at smaller R). This
emergence occurs for each A at smaller radii for larger C,
the largest of which corresponds to the largest value of
n [30], because these harmonics incorporate the most
"asymmetric stretch" motion, allowing each electron to
dwell longer near the nucleus and lowering the efFective
potential. The various values of C for each A cause the
channels to emerge &om their barriers roughly in groups,
indexed by the sum 7 = l~+ l2+ n, rather than by A, as
indicated in Fig. 1. In the following we enumerate basis
harmonics in order of ascending p, unless stated other-
wise. For example, the set of basis channels pictured in
Fig. 1 is identified by p = 0, 2, 4.

III. BOUND AND RESONANT iS LEVELS
OF HELIUM

B. Bound states of helium

A. Hyperspherical harmonics for two-electron atoms
and ions

We specify here angular coordinates 0 and quantum
numbers P for the helium atom, setting A' = 3 and re-
stricting our attention to S symmetry, which serves to
illustrate general features. We 6x the nucleus at the cen-
ter of mass of the atom, thus disregarding mass polariza-
tion efFects of order m, i«t, o~/m~»ioD. We then take
as hyperangles the direction angles (8i, pi), (82, ys) of
the two electrons as well as the radial correlation angle
ci defined by a = tan (r2/ri). The quantum numbers

P consist of the orbital angular momenta li and l2 of
the two electrons and of a radial correlation quantum
number n enumerating the nodes in o, . These quantum
numbers combine into the "grand angular momentum"
quantum number A = lq + l2 + 2n . In addition, the
individual angular momenta are coupled into the total
angular momentum L and its z projection I, omitted
&om the notation in the following. The hyperspherical
harmonics YL1Lg ) which diagonalize A,

A Yi, i, = A(%+4)Yi, i,~ i

Bound states occur for those energies at which a chan-
nel phase rises suddenly at large R through a multiple of
m. Figure 2 illustrates the general phase behavior with a
six channel example at an energy 0.05 a.u. above the he-
lium ground state, —2.903 a.u. Only one channel, labeled

p = 1 in the figure, accumulates significant phase; we

term it the ground channel. The remaining channels are
far &om accumulating enough phase to begin supporting
bound states. The next two channels have nevertheless
separated themselves &om the rest, representing the be-
ginnings of the two channels containing the two series of
resonances converging to the N = 2 ionization thresh-
old of helium. The remaining channels likewise represent
seeds of doubly excited channels that play a role at still
higher energies.

The ground channel's behavior displays features com-
mon to all closed channel phases. The profile of Pi can
be divided into two regions of R with di8erent behavior:

& ~ ~ ~ g 0 ~
~ ~ rmm gaazs~ I~ Iagag» 'lC'I o r e ~ as

are combinations of standard spherical harmonics in

(8;, p;) and Jacobi polynomials in sin 2n described else-
where [21,28].

Each channel (lil2n~) contributes significantly only
when it "emerges &om its centrifugal barrier, " i.e. , when

its Coulomb forces become comparable to its centrifugal
forces. The Couloinb operator C(A) is nearly diagonal
when expressed in the (lil2n~) basis, with ofF-diagonal
elements suppressed typically by an order of magnitude
relative to diagonal elements [29]. Radial development
in the diagonal portion of the combined Coulomb and
centrifugal potentials

2 4
Hyperradius, R (a.u. )

FIG. 1. Diagonal portions of the centrifugal plus Coulomb

potential V&, &, [Eq. (16)] for small values of p = l +lqi+n
Solid line: p = 0; dashed lines: 7 = 2; dotted lines: p = 4.
Potentials sharing a common value of p cross zero energy at
approximately the same value of R.
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(1) At short ranges, where the channel kinetic energy
2kii remains positive, the phase Pi accumulates at a
nearly uniform rate, modulated by the oscillating cos Pi
and sin/i terms in (14a) [these oscillations becoine more
pronounced in higher lying states that accumulate phase
more rapidly. ]; and (2) further out (at R 1.8 a.u. in Fig.
2), the channel kinetic energy becomes negative, causing
the channel wave function to switch &om freely propa-
gating to tunneling behavior. Here Pi ceases rising at its
previous rate, beginning instead to level off, as does the
more familiar Milne phase [8]. The phase thus exhibits
the important property that its gradient, which repre-
sents a velocity, vanishes rapidly in the tunneling region.

The profile of Pi far into the tunneling region depends
sensitively on the total energy E. If E coincides exactly
with the energy of a bound state, then the channel wave
function has the convergent form fz exp( —r&R), with

—k2 (R m oo).

This behavior leads to the limiting phase
tan i( 1/r~) —+ nm as R -+ oo, where n denotes the
number of P~ passages through vr. The dashed lines
in Fig. 2 indicate these limiting values for the energies
displayed, referred to the first ionization threshold of
helium; Pi indeed tends at first toward this limit. If,

however, E fails to coincide with a bound state energy
EBs, the divergent wave function fp exp(lc~R) leads
to the phase Pp tan i(l/rp) + nor if E ( Ens, or
tan (1/r~) + (n + 1)vr if E & EBs, as happens in Fig.
2. The sudden change in the course of Pi (at R 4.5
a.u. in Fig. 2) occurs when the channel wave function
begins to diverge; this change therefore moves to larger
B as E approaches EBS more closely. The profiles in
Figs. 2(a) and 2(b) represent unphysical situations with
divergent wave functions; the phase would behave more
smoothly if the total energy were tuned exactly. The
exaggerated large-R behavior of Pi thus does not cor-
respond to any observable feature, yet proves useful in
identifying a bound state's level.

The ground channel phase Pi attains the value m at
an energy between those pictured in Figs. 2(a) and 2(b),
identifying an approximate ground state energy of —2.849
a.u. This result, 0.054 a.u. higher than the experimen-
tal value, can be understood as follows: while the short-
range dynamics determines most of the phase, long-range
behavior of the efFective channel potential in (14a) de-
termines sensitively the long-range details of the phase.
This channel potential represents the Coulomb interac-
tion C(O) averaged over the channel eigenfunction

0.8

0.6

0.4
bQ

0 2

0.8

0.6

04

l4

a)

2 4 6
Hyperradius, R (a.u.)

(b)

at each B; it depends accordingly on the adequacy of the
set of harmonics (Yp) to describe fine details of @~. @i
seeks to localize in regions of 0 of lowest potential (there-
fore of highest phase). A limited set of harmonics thus
raises the effective long-range Coulomb potential, result-
ing in a high estimate of the ground state energy. Our
estimate of Eo should decrease monotonically with in-
creasing size of the basis set of harmonics; Table I verifies
this surmise. The converged result, with 21 harmonics,
Eo ———2.897, compares well with experiment.

A smaller number of harmonics actually suKces to at-
tain this convergence. The electrons become asymmet-
rically distributed (ri )) r2 or r2 )) ri) for R & 2 a.u.
since the energy proves insufhcient to transport both elec-
trons to large radii. The angular function thus localizes
in the potential "valleys" (cr 0, m/2), requiring har-
monics with large values of n for its description. We
therefore choose a basis set of harmonics consisting of
the "lowest" six, i.e., those with p = 0, 2, 4, plus the
high-n harmonics (0,0,6), (0,0,8), (0,0,10), and (0,0,12).
This choice achieves the same accuracy with only ten ba-

2 4 6
Hyperradius, R (a.u.)

FIG. 2. Eigenphases (modulo vr) P~/m, calculated in a
six-channel approximation, at the pair of total energies (a)
E' = —2.850 a.u. and (b) R = —2.849 a.u. The bound-state
energy, E'Bs, lies between these values, as evidenced by the
passage of Pi through n in (b), but not in (a). The dashed
line indicates the limiting value of 4iq if the calculation had
been performed at the exact binding energy E:—EBs.

)max

0
2

6
8
10

Number of channels

1
3
6
10
15
21

Ground-state energy
(a.u. )
—2.500
—2.782
—2.849
—2.880
—2.891
—2.897

TABLE I. Convergence of the ground-state energy with an
increasing number of harmonic channels.
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sis channels; greater accuracy awaits our optimization of
the numerical procedure.

The close agreement between Ep and the experimental
ground state suggests that the ground channel alone com-
prises the bulk of the ground state correlations. Figure
3 compares three ground channel eigenfunction compo-
nents to those of the lowest-energy adiabatic function.
The two sets of functions dier primarily in the range
B 3—4 a.u. , which coincides with the region of great-
est coupling between the lowest adiabatic channel and
the next higher adiabatic channel; the B-matrix eigen-
channel already incorporates the efFects of this coupling.
The adiabatic channel, governed by potential energy at
Gxed R, proceeds as quickly as possible into the potential
valleys, thus acquiring higher harmonics rapidly with R.
The B-matrix eigenchannel, by contrast, retains a greater
A = 0 component, allowing 4'i to hold higher amplitude
on the potential "ridge" (n vr/4), where the electrons
achieve comparable excitation. Figure 4 illustrates this
contrast by showing the adiabatic and ground channel
functions at B =3.0 a.u. , with rq ———r2. At larger B,
Figure 3 shows that the two types of channels tend to
agree, since correlations become less important and both
channels describe valley localization.

Passage of Pi through additional multiples of vr at
higher energies generates the entire Rydberg series of
lans bound states. A full calculation of the behavior
of Pz proves unnecessary, however, since the electrons
remain essentially independent beyond a core radius Bp.
We therefore follow conventional B-matrix theory, identi-
fying two relevant regions of R: R ( Ro, where Pi varies
only slowly with energy and represents all strong corre-
lations, and B & Bp, where the wave function describes
a single outer electron in the Coulomb field of the He+
ion. In the outer region, we employ the approximation
R r „t„and propagate Pi as an independent channel
phase subject to a Coulomb potential with unit charge.
Pi can thus be computed on a coarse energy mesh in
the inner region and on a fine energy mesh in the outer
region. Table II presents results for the 1sns series calcu-

8

0.6
0

0.4

0.2

0.1

0.05

Q

z/4 z/2

FIG. 4. Solid curve: dependence of the R-matrix channel
function @z [Eq. (18)] on the hyperangle n = tan (rz/ri),
holding cos 8~2 ——r~ r2 ———1 constant, at the hyperradius
R = 3.0 a.u. Dashed curve: the corresponding dependence
of the adiabatic channel function. The R-matrix channel in-
corporates the full interaction, enabling it to hold a greater
amplitude on the potential ridge (n = s/4).

lated with a core radius of Rp ——5.0 a.u. As n increases,
the channel extends to larger R where the approximation
B r „q, improves, improving also the estimates of the
energies.

C. Autoionizing states below N = 2

Below the threshold for ionization to the N = 2 lev-

els of the He+ ion, the He(iS) atom possesses two Ry-
dberg series of autoionizing resonances, denoted in the
adiabatic scheme as ~ (K, T)+ = 2(+1,0)+ and 2(—1,0)+
[19]. These two series correspond roughly to "2sns" and
"2pnp" series, although electron-electron angular corre-
lations invalidate these independent electron quantum
numbers.

Figure 5 illustrates the behavior of the channel phases

P~ at a pair of energies near the 2(+1,0)2 resonance,
calculated with an 18-element basis incorporating p = 0,
2, 4, 6, and 8, along with (0, 0, n ) for n ( 14 and

(1, 1,n ) for n ( 12 (the figure shows only the ten high-

est phases, for clarity). The ground channel p = 1 is open
at these energies, representing the 1ses continuum states
of helium; its phase Pz accordingly climbs through many
multiples of vr, enumerating its radial nodes. This cycling
of Pi produces an array of avoided crossings of Pq with

the other eigenphases, providing loci for the interaction
of the continuum channel with the bound channels. Two

2 4 6
HppelTRdlUS, R {R.U.)

TABLE II. Total energies E, in atomic units, of several

singly excited states of helium. The third column shows for
comparison the experimental values in Ref. [31].

FIG. 3. Solid curves: R dependence of the three dominant
components (p]lil2n~) = (1]000), (li002), and (li004) of the
ground channel, evaluated at E = —2.850 a.u. Dashed curves:
the corresponding components of the lowest adiabatic chan-

nel. The R matrix and adiabatic channels closely agree at
small and at large R, difFering primarily in the range R ~ 3—4

a.u.

Level
1828
1838
1848
185s

Present result
(a.u.)

—2.1196
—2.0554
—2.0311
—2.0199

Experiment
(a.u. )

—2.1463
—2.0616
—2.0339
—2.0215
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FIG. 5. Ei'genphases (modulo s'~
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Resonance
2(+1,0)
2(—1, 0)2+

2(+1,0)s
2(-1 0)3
2(+1, o)+.(-1,o)+
,(+1,0)s+

Present result
(a u )

—0.7717
—0.6170
—0.5952
—0.5493
—0.5447
—0.5280
—0.5262

Reference [17]
(a.u. )

—6.7774
—0.6218
—0.5902
—0.5479
—0.5452
—0.5277
—0.5269

t e +1 0 + andTABLE III. Energies in atomic units o t e q +
2(—1, 0)+ resonances, calculated with a ma gatchin radius of
R = 6.5 a.u. , compare od t the diabatic-by-sector results of
Ref. [17].

0,5

0 0

z/2

FIG. 7. (a) Density plot of the R-matrix channel func-
tion @g [Eq. (18)] in the ( o8qq) plane for R = 4.0 a.u.
showing its concentration of amplitude on pthe otential ridge
a = vr/4, 8&2 = n'). (b) The corresponding adiabatic(a = vr 4, )2 = x.

2(+1,0)+ channel function, showmg amp!itulitude in the valleys
as well as on t e ri ge. eh 'd Th fully correlated B-matrix channel
exhibits greater localization, as in Fig. 4.

than in the adiabatic channel. The present and more
accurate channel thus deviates even further from its in-
dependent electron description by increasing t e " p~"
contribution to e 8t th "282" state. Excitation of t e reso-
nance therefore drives the electron pair up the ri ge, a
mechanism a s oh th t hould prove crucial to the deve opment
of the Wannier ridge states at energies approac ing e
threshold for double ionization {and lying at correspond-
ingly larger values of R) [33]. As R grows beyond 4.0 a.u.

=2 1 -'-g-" l.-k. th. ad'-b-t'"h-- 1

in Fi . 7t'b).
Direct integration of the B matrix o argeto lar e B proves

t' 1 f r determining higher-lying resonances e-
low the N = 2 threshold, because of the large number o

tential valleys. We therefore superpose instead accurate
adiabatic channels [34] according to boundary conditions
established by the B matrix evaluated at a matching ra-
d B t f rming the core's information from an

Sec. 9.3 ofmatrix to a short-range reaction matrix K Sec. . o
[13]). We then apply boundary conditions as B -+ oo
to eimina e ec" 1' t " the closed channels according to standard
multichannel quantum defect theory [12,13]. Ta e
shows the resulting resonance positions calculated with a
matc ing ra ius od f B = 6.5 a.u. near the apparent core
radius in ig- . eF 5 Th positions agree with the accurate
calculations of Ref. [17] to within the same accuracy as
the bound state results reported above. Similarly, t e
widths of the resonances compare with those of severa

able IV.alternative calculations, as shown in a e
We conclude that all the autoionizing resonances of

s mmetry be].ow the N = 2 thresho]. d of helium de-
cay primari y oug1 thr h their interactions with the open
channel at B 3.5 a.u. Put another way, the doubly ex-
cited electron pair withdraws to 3.5 a.u. where the elec-
trons scatter, furnishing a single electron with suKcien

1 ve the atom. Resonances belonging to other
a sin to small B; thesymmetries need not decay by collapsing to srna; e

p eigenchannels should nevertheless uncover their decay
routes.

Reference [36]
(eV)

0.1[—2]

Present result
Resonance.(+1,o)+
g( —1, 0)~+.(+1,o)+.(-1,o),+
(+1,o).

g(—1,0)4+.(+1,o)+

(eV)
1.0[—1]
o.o[—3]
2.7[—2]
5.4[—3]
5.o[—3]
2.4[—3]
2.2[—3]

—1]
—3]
—2]

4]
—2]
—3]
—3)

1.2[—1]
4.9[—3]
3.7[—2]

1.3[
8.3[
3.8[
2.3[
1.3[
1.4[
5.7[

1.8[—2]
2.5[—2]
8.0[—3]
1.1[—2]
2.0[—3]
5.3[—3)

—4]
—2]
—4]
—3]

9.2[
1.4[
4.0[
8.4[

V of the resonances in Table III, compared to calculations based on dia-

)batic-by-sector [17], close-couphng [35], an -p '

denote the power of ten by which the width is multiplied.

Reference [1?] Reference [35]
(eV) (eV)
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IV. CONCLUSIONS

This paper has shown how the hyperradial develop-
ment of the total phase eigenchannels illuminates the
structure of channel coupling, pointing to the dominant
role of phase degeneracies localized in narrow regions of
B. Preliminary investigation of higher-lying resonances
has reproduced general conclusions already present in the
adiabatic approach, namely, the approximate autoion-
ization selection rules N ~ N —1, K ~ K —1 [19].
These approximate selection rules break down near the
double-ionization threshold. , where the level of the "Ns2"
state lies below the (N —l)th single-ionization threshold
into which it would otherwise decay [37]. The systematic
study of the B-matrix eigenchannels at higher energies
should reveal the excitation mechanisms and selection
rules applicable in this regime where the adiabatic ap-
proximation is no longer valid; this study will appear in
future work.

Still more importantly, we emphasize again the util-

ity of hyperspherical coordinates for describing atomic
and molecular systems with an arbitrary number of con-
stituents [23,22]. The R-matrix eigenchannel method de-
scribed in Sec. II thus afFords an opportunity for a uni-
fied view of all configurations of chemical species and of
their transitions. Preliminary applications to molecular
hydrogen are currently underway [38].
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