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Onset of a collisional modification of the Faraday effect in a high-density atomic gas
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We investigate, theoretically and experimentally, the onset of modified electronic precession due to
quasimolecular behavior in dense atomic gases. The close connection between the angular coupling of
collision pairs and a modification of the Faraday effect is pointed out. We have observed the onset of
this quasimolecular modification of the atomic Faraday effect with high-resolution laser measurements
of the absorption and Faraday spectra near the D& line of Rb atoms immersed in high-density buffer
gases. The atomic Faraday effect itself is also affected by the presence of nuclear spin; this modifies the
electronic precession through angular-momentum coupling. We describe how to separate the effect of
nuclear spin from the effects due to quasimolecular behavior. In this way we establish the existence of
angular coupling of the Rb valence electrons to neighboring buffer-gas atoms at densities above
-2X10' cm ' in Xe buffer gas. In He buffer gas, quasimolecular modifications of the Faraday effect
are approximately two times smaller than for Xe.

PACS number(s): 32.70.—n, 78.20.Ls, 32.90.+a

I. INTRODUCTION

When a light beam passes through matter under the
inhuence of a magnetic field its state of polarization
changes. Such magneto-optic effects are well understood
for the case of dilute atomic gases where there is no in-
teraction between the individual atoms. For molecular
systems the polarization effects are more complicated,
but it is still helpful to use information from magneto-
optical studies for investigating molecular structure [1].
Our understanding is even more incomplete for
condensed-matter systems because the atomic interac-
tions play a dominant role. In this paper we investigate
the initial part of the transition from a dilute gas to con-
densed matter and try to improve our understanding of
the onset of complexity in magneto-optical spectra. We
show how information obtained in this transition region
may improve our knowledge of the atomic interactions
involved. In this way studies of magneto-optic effects can
be used to probe collisional physics; conversely, results
obtained from collision experiments can be used to pre-
dict magneto-optical effects. Therefore our results may
prove valuable both for spectroscopists and collisional
physicists. Also diagnostic aspects may be involved since
magneto-optic effects are sometimes used for density
measurements [2,3].

We will limit our studies to the Faraday effect which
occurs when nonsaturating, linearly polarized light near
an atomic resonance frequency passes through matter in
a longitudinal magnetic field. This does not imply a loss
of generality since other magneto-optical effects such as
magnetic circular dichroism are related to the Faraday
effect through Kramers-Kronig transformations [1]. The
Faraday rotation angle

mvt.HF„= (n n+ )—
C

arises from the difference in refractive indices n+ and n

for the two opposite circular polarizations. In Eq. (1) v is
the optical frequency, L, the length of the sample, and c
the velocity of light. The Faraday effect has been studied
intensively for many different systems. For a dilute atom-
ic gas the Faraday rotation angle OF„ is proportional to
the dispersion dn/dv, as expected from classical electro-
dynamics. This result is called the Becquerel relation
[4-6]

e
~Far ~Becq 2' C

BI.v dn
(2)

where —e is the electron charge, m is the electron mass,
B is the longitudinal magnetic field, and a= 1 in a classi-
cal system (spinless atomic state). The first obvious com-
plication of this classical description of the Faraday effect
is the presence of spin in most atoms. Both the electron
spin and the nuclear spin must be considered. Quantum
mechanically, Eq. (2) remains valid for optical transitions
in the presence of spin only if we deal with isolated lines.
In this case the atomic levels involved have well-defined g
factors (Al) generally leading to a%1 in Eq. (2) [5,6].
As a side result of this paper, we will show that the Bec-
querel relation remains valid in a formal sense for over-
lapping lines, with generally different Zeeman splittings,
if a and dn /dv are replaced by tensorial quantities. This
is called the generalized Becquerel relation.

For molecular systems the Faraday effect is substan-
tially more complicated than for atoms due to their inter-
nal structure [7] and violations of the generalized Bec-
querel relation can be observed [8]. For polyatomic mol-
ecules with low symmetry the g factors are virtually im-
possible to understand in simple physical terms [1]. Even
in diatomic molecules perturbations are often present,
leading to state mixing. This may selectively change
molecular g factors for one or several lines in a rotational
band due to accidental degeneracies. For condensed
matter the complications are always more severe than for
molecules because atomic states merge to form a band
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structure and most interactions are nonbinary in nature.
It is therefore difficult to find detailed relations between
the internal structure and the Faraday effect. This
difference from the dilute gas can generally be seen as a
breakdown of the single-atom picture necessary for the
validity of the Becquerel relation.

The onset of violations of the Becquerel relation has
been predicted for atomic gases at densities sufficiently
high that the broadening of an optical transition cannot
be described within the impact approximation, even close
to line center [5]. Classically, this can be seen as the
modification of electronic precession in a magnetic field
when the electron experiences an anisotropic potential.
We have recently confirmed this prediction for the spe-
cial case of Rb atoms perturbed by Xe buffer gas at
-6X10' cm [9]. In the present paper we give a com-
plete account of the connection between the absorption
and the Faraday effect of Rb atoms in He and Xe buffer
gases up to densities of —10 cm and compare the ex-
perimental results with a theoretical model including the
effects of spin, in particular, nuclear spin. The inclusion
of nuclear-spin effects is conceptually simple, but techni-
cally complicated. This inclusion, however, is unavoid-
able for understanding the onset of quasimolecular effects
for alkali-metal —noble-gas systems. Due to their one-
electron nature these extensively studied systems are the
most promising candidates for establishing direct connec-
tions between experiment and theory.

The choice of Rb in He and Xe buffer gases as an ex-
perimental system is motivated as follows. First of all,
the wavelengths of the Rb fine-structure transitions are
convenient to reach with commercially available semi-
conductor lasers. Only the Dz transition is of immediate
interest since no deviations from the Becquerel relation
are expected theoretically for the D& transition because
both the lower state ( S,&2) and the upper state ( P, &2 )

are spherically symmetric [10]. This spherical nature
prevents electronic anisotropy unless fine-structure mix-

ing becomes important. Second, the electronic anisotro-

py of the Rb noble-gas interaction Vz —V„ is large for
the highly polarizable Xe atoms leading to an enhance-
ment of the angular coupling [9]. Here X refers to the

X»2 level and H to the II3&2 level in the upper state

P3/p involved in the D2 transition. We will later show in
detail [see Eq. (30)] that the angular coupling effect gets
further exacerbated by the low relative velocity U for the
Rb:Xe system, as compared to other alkali-metal —noble-
gas systems. These qualitative predictions of the depen-
dence of angular coupling on atomic properties agree
with the experimental findings when we compare the He
and Xe results. Finally, for Rb there is a large fine-
structure splitting of the D

&
and the D2 transitions which

helps simplify the theoretical interpretation because it
greatly reduces fine-structure mixing. Without fine-
structure mixing the only effect of the electron spin is to
change the angular momentum coupling, giving rise to
diff'erent values of a in Eq. (2) for the D, and D2 transi-
tions. For the D& transition we find o.'= —', and for the Dz
transition we find a =—,'[5,6].

Theoretically, the detailed connection between the adi-

abatic potentials and gas-phase spectra is made by spec-
tral line-broadening theories. The most advanced of
these, the so-called unified line-broadening (ULB) theory
[11],describes the full shape of the line, reducing to the
quasistatic theory in the far wings and the impact theory
at the line core. This theory holds as long as the duration
of a collision w is short as compared with the mean time
between successive collisions. This corresponds to the
binary collision approximation. We have extended the
ULB theory by incorporating the effect of a magnetic
field, to describe magneto-optical spectra. We show that
the effects of hyperfine structure can also be directly in-
cluded in the ULB theory. The theoretical results are
compared with our measurements on Rb atoms in both
He and Xe buffer gases.

The structure of the article is as follows. In Sec. II we
give an outline of the experimental method and describe
the analysis to obtain the Becquerel violation from the
measured absorption spectra and Faraday spectra. In
Sec. III we give the line-broadening theory background
necessary to disentangle the quasimolecular effects from
effects of nuclear spin. In Sec. IV this theoretical model
is compared with the experimental results and charac-
teristic parameters describing the quasimolecular effects
are extracted by fitting the model to the deviations from
the Becquerel relation. In Sec. V we introduce a qualita-
tive microscopic model which allows us to discuss the re-
sults in terms of collisional properties of the Rb:He and
Rb:Xe systems. In Sec. VI we draw conclusions.
Readers who are more interested in the collisional phys-
ics than in line broadening may proceed with Sec. IV
directly after Sec. II.

II. EXPERIMENT

Figure 1 shows our experimental setup. The frequency
of a semiconductor laser is current tuned over the
pressure-broadened Rb line. Using different laser tem-
peratures it is possible to cover more than 600 GHz,
without mode hopping, with two selected Hitachi
HL7838G lasers. A small fraction of the light output is
in side modes, below lasing threshold, positioned at in-
teger multiples of 150 GHz from the main lasing mode.
This fraction is filtered out with a monochromator which
defines a frequency window of -40 GHz full width at
half maximum (FWHM). The individual laser scans, of
-40 GHz each, are linearized along the frequency axis
using interferometer fringes for calibration. Absolute fre-
quency calibration is made with vacuum cells filled with
Rb and I2, which also allow us to correct for effects of
long-term laser drift and to join individual laser scans to-
gether to form complete spectra.

As the sample cell we use a 4-cm-long glass vessel filled
with Rb metal and noble buffer gas. In order to reduce
etalon effects the cell windows are wedge shaped with an
angle of 2 between their surfaces and they are
antirefiection coated on the outside (residual refiectivity(1%). We operate the cell at temperatures near T =350
K, which gives a saturated Rb vapor density NRb = 10'
cm . A typical buffer gas density is 2X10' cm ( —1
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FIG. 1. Experimental setup to measure the Faraday spec-
trum and absorption spectrum of Rb atoms immersed in a noble
gas. The gas cell is surrounded by two coils that can produce a
solenoid magnetic field up to 0.03 T. The arrows indicate one of
the two possible directions of the magnetic field 8.

atm at 350 K) corresponding to o =7 GHz, where cr is
the frequency half width at half maximum of the absorp-
tion curve [12]. Under these conditions we have approxi-
mately one absorption length (63% absorption) at the
center of the D2 line. For different buffer-gas densities
we adjust the temperature to obtain again approximately
one absorption length in the ce11. Absorption beyond
-85% increases the influence of systematic errors and of
shot noise; the latter is our most important noise limita-
tion at low laser power.

The transmission and Faraday spectra are recorded
simultaneously in a balanced bridge configuration. A
longitudinal magnetic field of up to B=0.03 T is supplied
by two coils with soft iron pole pieces for concentrating
the Aux. A polarizing beam splitter is oriented at about
45' relative to the incoming polarization to obtain equal
intensities I& and I2 at the two photodiodes 1 and 2 for
the case B =0. By suitably switching the magnetic field
between B and —B at —1 Hz we obtain the Faraday ro-
tation spectrum OF„ from

7.4

O+
LQ 7.2

I

7.0
(a)

+ 5.8

I

lead to measurable systematic errors due to the Paschen-
Back effect in the ground-state hyperfine structure (this
effect is not accounted for in our theory in Sec. III).
Another important consideration is that for large Fara-
day rotations there will be some entanglement of the
Faraday effect and circular dichroism; this is well known
as the ultimate limiting factor in the performance of an
optical Faraday isolator [13].

The dispersion spectrum is calculated from the absorp-
tion spectrum using Kramers-Kronig transformation.
This is much more convenient than a direct measurement
of the dispersion, which demands interferometric stability
of the setup. The transformation procedure assumes
linearity of the absorption and is therefore only correct if
there is no optical hyperfine pumping. Saturation is
negligible because of the large linewidth. Due to the high
buffer-gas densities, diffusion in the cell is very slow and
we estimate that it takes —1 s before a Rb atom is re-
placed by a spin-relaxed one from the cell wall. There-
fore it may be expected that optical pumping effects only
become negligible when every atom absorbs less than one
photon per second. This occurs at a power level around 1

nW. In Fig. 2(a) we show the results of an experimental
investigation of the optical pumping for Rb atoms in He
buffer gas at 2 atm. We have plotted the ratio of the
maximum value of the Faraday curve A relative to the
average of the two local maxima B and C at the sides [see
illustration in Fig. 2(c)] measured as a function of laser
power. It is easy to see that this ratio is especially sensi-
tive to optical pumping effects because the local maxima
occur at the wings of the absorption curve where the in-
dividual hyperfine lines are pumped differently, while
near line center the hyperfine lines are pumped almost

I2-Ii
8F„=—,

' [8(B)—8( —B)], 8(B)=—,
' arcsin

2

5.6 (b)

100 1000 10000
laser ("W)

The transmission spectrum is obtained from I, +I2, after
normalization to the laser intensity passing through the
monochromator.

If we choose I. equal to one absorption length and tune
the laser to the center of the absorption line we expect
8„„-vL /(2o ) [5], where vL =0.5 CsHz is the Rb Larmor
frequency at B =0.03 T. Therefore we have to measure
rotations of the order of 4X 10 raJ at line center. For
smaller buffer-gas densities we reduce the magnetic field
to remain near this value. Larger magnetic rotation will

0

(c)

FICx. 2. Influence of optical pumping on the Faraday curves
illustrated as the ratio between the local extremes as a function
of laser power for (a) Rb:He and (b) Rb:Xe. (c) illustrates how
to extract the ratio —2A /(B +C) from a Faraday spectrum
OF„(v).
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equally. From Fig. 2(a) we conclude that for He buffer
gas it is safe to perform the experiments at 2 nW; for
powers above —100 nW substantial optical pumping
effects are observed. There might still be some small
remaining effects ( —1%) of optical pumping below 2 nW,
but these will be below our statistical measurement accu-
racy for the Faraday effect. For Xe buffer gas the situa-
tion is more favorable since the larger polarizability of Xe
allows spin relaxation in the gas phase [14]. The
inhuence of optical pumping for the Rb:Xe system is il-
lustrated in Fig. 2(b), where the same ratio is plotted at 2
atm of Xe buffer gas. The absolute value is different for
Xe and He buffer gases because of the different degree of
line asymmetry (i.e., BXC in Fig. 2). Experimentally we
find no efFect of optical pumping at 70 nW where we
choose to perform the experiments in Xe buffer gas.

We obtain virtually shot-noise-limited detection for
power levels of 10—100 nW with the balanced bridge
detection method and modulation of the magnetic field.
The main experimental uncertainty comes from
alignment-dependent etalon efFects in cell windows, po-
larizers, and other optical elements. Another uncertainty
is due to uncontrolled variations of up to 1% in the ab-
sorption in the high-pressure cell, as a function of time,
with typical time scales in the range 0.01—1 s. We
suspect these to be due to the onset of weak convection in
the cell. Generally, errors in the spectra increase with
pressure because it becomes necessary to use more than
one laser to cover the absorption spectrum and each laser
change necessitates realignment. Particularly etalon
effects get emphasized when the individual laser scans are
joined to produce the final spectra; this gives rise to er-
rors in the measured deviation from the Becquerel rela-
tion of up to 1% of the maximum value of the Faraday
rotation for Rb:Xe and 2% for Rb:He (the lower laser
power used for Rb:He makes precise alignment more
difficult). Further experimental errors may result from
the remaining laser output in side modes, leaking through
the m.onochromator. We measured this leakage to be
below 0.05% and therefore the consequences for the ab-
sorption and Faraday spectra must be of the same order
of magnitude. Variations in offsets for our electronics
were also of this order of magnitude. In the following we
will therefore ignore these two types of errors.

After recording laser scans of the transmission and
Faraday rotation spectra over a frequency range of at
least 20 times FWHM we joined these together to form
complete spectra using the iodine lines as frequency
markers. We calculated the absorption spectrum by tak-
ing the logarithm of the observed transmission spectrum.
Figure 3 illustrates some typical results obtained with Xe
buffer gas. Figure 3(a) shows the absorption spectrum of
the Rb D2 line obtained at [Xe]=4.41 X 10' cm
(T=340 K, Px, =2.05 atm). A clear shift and asym-
metry are observed for the pressure-broadened spectrum
as compared to the Rb spectrum in vacuum, which is also
shown. The Rb vacuum spectrum consists of four lines;
two hyperfine lines from each of the two isotopes Rb
and Rb. The hyperfine structure of the upper state is
not resolved. Figure 3(b) shows the measured corre-
sponding Faraday spectrum. This spectrum is also shift-
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ed and asymmetric. In Fig. 3 we show only the central
part of the spectra since this contains the interesting
structure, for further analysis we used the complete spec-
tra.

We performed a Kramers-Kronig transformation of
the absorption spectrum and obtained the Becquerel
spectrum by differentiation. As the Kramers-Kronig
transformation includes an integration to infinity, we
need some function for extrapolation in the far wings of
the absorption spectrum. As the fitting and extrapolation
function for the absorption curve ic(v) we used an asym-
metric Lorenzian which has previously been used to fit
pressure broadened absorption spectra [15],

pj(1 —yX; )a(v)= A, g g +B„X,"=
1+X;.

V VJ 5

(4)

where the i summation is over the two resolved hyperfine
lines and the j summation is over the two isotopes Rb
and Rb with the natural abundances 72.15% and
27.85%. As explained in Sec. III, the use of a Lorentzian
with a dispersive correction as the fitting function in the
near wing of the absorption spectrum is well founded by
theory since it represents a natural expansion of the
collision-broadening rate in terms of the detuning, taking
into account the finite duration of the collisions I16,17].
We use fixed, theoretical values for the weight factors P;J
and line centers v; as given in Table I. Due to the high
buffer-gas densities we can ignore the Doppler broaden-
ing of 0.5 GHz FWHM. The least-squares-fitting pro-
cedure allowed for variation of the density shift 5, half
width o, asymmetry y, amplitude (line strength) A„and
background 8, to fit the absorption curve. The max-
imum error committed using the fitted function for extra-
polation in the far wings when calculating the Becquerel
spectrum Oz„q was estimated to be smaller than the sys-

Frequency (GHz)

FIG. 3. (a) Absorption spectrum and (b) Faraday spectrum
for the Rb D2 transition at [Xe]=4.41 X 10' cm
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TABLE I. Weight factors P;1., centers v;, in gigahertz and summation coefficients A, ;, for Eq. (29) for
fully resolved lower-state hyperfine structure (lower levels denoted by F~ ) for the four Rb lines.

Quantity

"Rb (j ——1)
Fg =2 (i =1) Fg =3 (i =2)

Rb (j =2)
Fg =1 {i=1) Fg =2 (i =2)

0.3006
1.680

4
45

0.4209
—1.238

8
45

0.1044
4.155

15

0.1741
—2.400

1

X;.=

P;i (X;, —I +2y ~XJ )

V VI~ 6F

where AF is connected to the line strength A, by

tematic errors due to etalon effects, because the influence
from the far wings of the absorption spectrum is extreme-
ly small near line center of the Faraday curve. The re-
sults of the fits are collected together with results for the
Faraday curve and data on temperature, density, and
magnetic field in Table II(a) for He buffer gas and in
Table II(b) for Xe buffer gas. 8 =1 indicates that we
used the maximum field strength (0.03 T). For illustra-
tion some of the results are shown in Fig. 4 as a function
of density for He and Xe. In the figure we have fitted
straight lines to the measured points in order to guide the
eye [18]. Note that the Xe data exhibit a redshift as a
function of density, while the He data exhibit a blueshift.

If the Becquerel relation holds, the absorption line
shape assumed in Eq. (4) will lead, after a Kramers-
Kronig transformation, to a Faraday rotation given
directly by Eq. (2),

e v
A~ =0. BI.—A,

2mc

and 6~=5, ~„=~, and y„=y. Howeve~, by fitting Eq.
(5) to the experimental Faraday spectra, using AF, 5F,
o z, and yz as fit parameters, we find that the optimum fit
does not obey the Becquerel relation. It can be seen from
Table II, where we have collected the fitting results, that
yF may deviate as much as 20% from y, oz up to 10%
from cr, 5F up to 10% from 5, and AF up to 10% from
Eq. (6). In most cases these deviations are significantly
larger than the experimental uncertainty. Note also that
the differences between the fitted curves using Eq. (5) and
the measured Faraday spectra are larger than the experi-
mental uncertainty despite the use of four free fitting pa-
rameters. When combined, these observations constitute
a proof that we are observing deviations from the Bec-
querel relation.

In order to quantify the deviations more clearly we
project the measured Faraday spectra 8„„(v)on the Bec-
querel spectra OB„(v). For this calculation we use the
inner product of the spectra determined by integrating
their product over the experimental frequency range. We
define the projection coefficient as our scaling factor a,

TABLE II. Overview of experimental results from measurements of the absorption and Faraday spectra for (a) Rb:He and (b)
Rb:Xe. The spectra are fitted using Eqs. (4) and (5). B =1 indicates that the maximum magnetic field ( -0.03 T) was used. The num-
bers in parentheses after the results indicate 1' statistical error including etalon effects.

[He]
or [Xe]

(10' cm )

0.32(1)
0.71(1)
1.03(2)
2.19(2)
3.20(3)
4.19(3)
6.41(4)

6
(GHz)

0.01(3)
0.13(3)
0.16(4)
0.36(4)
0.54(5)
0.41(6)
0.95(7)

(GHz)

1.19(3)
2.41(5)
3.52(7)
7.50(13)

10.97( 18)
13.8(2)
21.2(3)

0.004(3)
0.002(3)
0.007(4)

—0.006(4)
—0.004(5)
—0.026(6)
—0.011(7)

5F
(GHz}

(a) Rb:He
0.14(6)
0.00(3)

—0.27(9)
0.22(4)
0.40(5)
0.58(6)
0.96(7)

(GHz)

1.10(3)
2.24(5)
3.68(7)
7.71(13)

10.98( 18 )

14.1(2)
21.1(3)

0.34(8)
0.04(1)

—0.12{3)
—0.04(1)

0.040(7)
—0.019(7)
—0.026(7)

AF
(mrad)

72.2(20)
42.7(6)
28.0(3)
30.7(3}
20.18( 17)
15.6(5)
9.28(8)

B
(relative)

0.2
0.4
0.4
1

1

1

1

327
336
346
352
349
361
363

0.33( 1)
0.66(1)
1.11(2)
2.25{2)
4.41{3)
6.00(4)
7.77(5)
8.97(6)

—0.72(2)
—1.52(4)
—2.36{4)
—4.69(6)
—9.29( 14)

—13.6(3)
—16.9(2)
—19.1(3)

1.17(4)
2.30{4)
3.79{6)
7.42(10)

14.53( 18 )

20.6(4)
25.1(3)
28.2(4)

0.020(5)
0.032(6)
0.076( 8)
0.116(10)
0.210( 16)
0.193(18)
0.318(25 )

0.366(28 )

(b} Rb:Xe
—0.59(2)
—1.49(3)
—2.67(4)
—4.63(3)
—8.88(6)

—12.14(9)
—15.34( 11 )—17.55( 12)

1.05(2)
2.08(3)
3.89(4)
7.54(5)

14.46(8)
19.40( 12)
24.82{14)
28.61( 16)

0.35{2)
0.15(1)

—0.005( 12)
0.126(3)
0.237(4)
0.301(5)
0.421(6)
0.472(5)

75.1( 12)
56.0(7)
51.7(6)
27.25( 16)
14.17(8)
10.21(6)
6.24(4}
6.57(4)

0.2
0.4
1

1

1

1

1

1

333
338
339
348
340
360
360
370



1090 M. ~RISTENSEN et al. 51

20

15
(a) Rb:He

10
10x6

30

I

2x10 4x10' 6x1019

(b) Rb:Xe
20

10
sC

20 xy

-10

-20
0

I

2x1010 4x10 6x10 8x1019

and the remainder of the Faraday sps ectrum as the residu
al spectrum.

ol ection of residual spectra for Xe

Fara yda rotation AF, extracte rom
the theoretical results ex-

in Secs. III and IV. The associated scal-
11 drawn curves give e

p
ing factors are collected

' 'g.in Fi . 6. gain,
retical results explained in Secs. an

The scaling factors vary as a function o u er-

Density {cm )
-3

howin o (GHz), 5 {GHz), andFIG. 4. Experimental results showing o.

m E . (4) as a function of density for a(arbitrary units) from q. as
' ' or ar

Rb:He and (b): e.Rb.X The straight lines are on y o gui
eye.

here ~ symbolizes [He] or [Xe].

relatively low e ' o
1 lated directly,the scalin factor can be ca cu a elow density t e sca

'
ed Becquerel rela-out violation of the genera ize

in Sec. III. Thus we effectively cali-
ma netic field, i.e., we determme e

2 to -1%. W fi d th o t 11

fN h b ho=1.366. The value o p as

1 t od of 't d

'
ntl large that we sti may ne

g ce it is almost one or e

d th th
the ressure broadening. e r

gr as are treate t e same
same calibration factor is use .

ninFis. 7and8. I we ap o g.
the oint measured at [He] =

1 ld have deviated less thancalibration of a„ the resu t wou
1%.

t onsider how the aboveFina y,11 it is important to consi er
tial inhomogeneity of the

g
t ece.h 11. For a homogeneous magnetic e e

it of X and not even onno t depend on the homogeneity o
b N dz, since bot t eh hth integrated density of R, f pe

'

and the Faraday rotation are propro ortional todispersion and e
if N is homogeneousinte ral. On the other hand, i zb is

d t depend on the homothe cell, the results o no
~ ~

e
'

ld
'

the Faraday rotation ise ma netic 6e since e
then linear in the average magnetic e

and B must be expected to be somewhat spa ia y
'-

h b"' "'""' '" '""n'1
it N dz, while the Faraday

eous. In this case t e a
to the averaged Rb density 0 Rb z, w

'

ro ortional to the averaged product orotation is propor
Bd We will now ar-density and magnetic fie d N z.

1 de endsour ex eriments this integral hardly depen s

e of our calibration factor, w ic
not determine accurately in an inway we cannot de

s. We have measuredway. The argument goes as follows. e ave

-5

-10
5

0

-10
5

0

-5

-10

-5
~o

0

-10
0 5
cd

Q)
Cl

~ ~ i

[Xe] = 0.33 x 10 cm

[Xe] = 0.66 x 10' cm

e] = 1.11 x 10' cm

[Xe] = 2.25 x 10' cm

~ ~ ~ ~~ ~

+A ~ m~ 0+egv o~
' -5

[Xe] =4.41 x10' cm
-10
5

~ ~ ~' ~ ~ ~ ~

~ ~ ~

-5
[Xe] = 6.00 x 10' cm

-10

~ ~ ~ ~ ~ ~ ~ ~ ~ ,~ ~~ ~ ~ ~ ~~ ~

-5
[Xe] = 7.77 x 10' cm

-10

~ ~ ~ ~ ~ ~ ~ ~ 0

-5
[Xe] = 8.97 x 10' cm

-10

FIG. 5. Dots mark the experimentantal results
for the resi ua rom'd l f the Becquerel relation or

indicate theRb:Xe. The fully drawn lines indicate t e
' = 1.41 X 10 ~' cm3theoretical results for

and y' =0.25 X 10 ' crn .

-50 -25 25 50 -150 -100 -50 50 100 150

Frequency (GHz) Frequency (6Hz)



51 ONSET OF A COLLISIONAL MODIFICATION OF THE. . . 1091

1.4

1.3

5' =1.41 x102' cm3

y'=P25x1P ' cm

1.2

~ ~

~ I

2x10 4x10 6x10 8x1 019

that the magnetic field has an inhomogeneity of —10%
within the cell volume probed by the laser, independent
of the absolute magnetic field, up to our maximum field
strength. The inhomogeneity of NRb is unknown. How-
ever, we have good reason to assume that it does not de-
pend on the buffer-gas density. This is based on measur-

L
easure-

ments of oNRbdz as a function of buffer-gas density and

b
temperature: For several combinations of temperatup a ure,

uffer-gas type, and density we find that the integrated
Rb density change with temperature is in agreement with
the known temperature dependence of the saturated va-
por pressure for Rb and that it is independent of buffer-
gas density, within the experimental uncertainty. It is
unlikely that this would be the case if the inhomogeneitmogenel y
of NRb would depend on buffer-gas density. This leads us
to put a conservative upper limit of 5% on buffer-gas
density-dependent changes in NRb. Combined with the
measured inhomogeneity of the magnetic field we arrive
at uncertainties in the final result of -0.5%. This is at
least two times below the inhuence of etalon effects.

Density (cm s)

FIG. 6. Scaling factors for Rb:Xe illustrated as circles with
error bars. The fully drawn curve is the theoretical result for
$'=1.41X10 ' cm and y'=0. 25X10 ' cm . The dashed
line gives the result for 5'=y'=0 A, i.e., the Becquerel value
generalized for spin and overlapping hyperfine lines.

III. MAGNETO-OPTICAL
LINE-BROADENING THEORY

a ayIn this section we derive expressions for the Farada
rotation angle in the specific case of an alkali-metal vapor
immersed in a noble gas. We take into account both the
hyperfine complication and the onset of quasimolecular
complexity. Our starting point is the formalism
developed earlier [6]. In that work complications due to
hyperfine structure and atomic interactions beyond the
impact approximation were neglected. In Ref. [6], as in
the present work, we deal with a single fine-structure
component. The light frequency is assumed to be near
the D2 transition. Equation (1) gives the Faraday rota-
tion angle in terms of the difference between the refrac-
tive index n+ and n for the two opposite circular polar-
izations. These refractive indices are matrix elements of
the atomic polarizability tensor. The excited state is indi-
cated with the index E and the ground state with the in-
dex G. The electronic angular momenta of these states
are JE =

—,
' and JG =

—,'. These J values couple with the nu-

clear spin I to yield hyperfine levels indicated by the total
angular momentum I", and I' . We use the lower case
letters e and g to denote the individual hyperfine levels.

The raising part and the lowering part of the dipole
operators between the two states (hyperfine multiplets)
are written as pEG and @GAL. Each of these parts can be
further separated in contributions for each hyperfine
transition, so that

tM«=g g p(F, F, ) . (7)
F F

After a slight generalization of the results presented in
Ref. [6], the refractive indices n+ and the corresponding
absorption coefficients ~+ can be expressed as

n+(v)+i~+(v)

NRb= 1+ g g Tr I p~(Fg F,')X (v)
0 F,F FIF/e g ei g

X[@ (F F )p(F )]j

~ 7
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FIG. 7. Dots mark the experimental results
for the residual from the Becquerel relation for
Rb:He. The fully drawn lines indicate the
theoretical results for 6'=6.9X 10 cm and
y'=1.6X10 cm .
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4(v) is proportional to the density of the buffer gas parti-
cles and it can be expanded as

4(v) =Co(v)+N, (v), (15)

with @0 the collision operator in the absence of the mag-
netic Geld and N& its first-order correction in the magnet-
ic field. An explicit but forrnal expression for 4o is well
known in the ULB theory [11],but it is immaterial for
our present purpose. Generalization of this expression to
include the Zeeman Liouvillian operator L, is straight-
forward. It leads to an equally formal and explicit ex-
pression for 4, .

Expansion of K (v) to first order in the Zeeman term
gives the result

FIG. 8. Scaling factors for Rb:He illustrated as circles with
error bars. The fully drawn curve is the theoretical result for
5'=6.9X10 cm and y'=1.6X10 cm . The dashed line
gives the result for 5'=y'=0 A, i.e., the Becquerel value gen-
eralized for spin and overlapping hyperfine lines.

where we have introduced the partial dipole components
along the circular polarization vectors

p~(F, Fs ) =p(F,F ).u~, p~(F F, ) =p~(F,F ), (9)

where u+ are the polarization vectors for the two circular
polarizations. The operator K, which acts on atomic
operators, is defined in terms of a collision operator 4(v)
as

K(v) = 1

4(v)+i (L —21rv)
(10)

Lop+(F, F )=2r1v(F, F )p+(F,F ), (12)

with v(F,Fs ) the transition frequencies between the
hyperfine levels. Restricted to a single fine-structure
component, the Zeernan term L j is defined by the equali-
ty

me8
L1PEG i [gE zI EG gGPEG z ]mh

with

J(J+1) L(L +1)+S(S+—1)
gE~gG 2J(J+1)

(13)

(14)

the Lande factors of the two states. For the D2 transition
we have gG =2 and gE =—', . Finally, the collision operator

where N(v) describes the effect of a binary collision of the
active atom with a buffer gas particle. The partial density
matrix p(Fg ) of the atoms in the hyperfine ground level
F is assumed to be isotropic, since optical pumping is
neglected. The Liouville operator L denotes the comrnu-
tator with the Hamiltonian of a single atom, including
the hyperfine and Zeeman splitting. We separate L as

L =Lo+L),
where Lo contains the transition frequencies of the atom
and L

&
describes the Zeeman effect. When operating on

the partial dipole operators p+(F,F~ ),Lo gives

K(v)=Kc(v) —Ko(v)[@,(v)+iL, ]Ko(v), (16)

where Ko(v) is given by an expression similar to Eq. (10),
with 4 and I. replaced by No and I o. Because of the
isotropy of the unperturbed sample, the operator No is a
scalar operator. Moreover, since the duration of a col-
lision is small compared to the hyperfine precession time,
this operator does not act on the nuclear spin, but ex-
clusively on the electronic degrees of freedom. There-
fore, the raising part of the dipole operator pEG must be
an eigenvector of 4O. This implies that the partial dipole
operators p, +(F,F ) are eigenvectors of Ko(v) and we
write

Kc(v)pp(F, Fs ) =ko[b, (F,F )]pp(F, F) . (17)

1+iy
2n [cr +i 6 i h(F, F~ )]— (19)

with o. the collisional width, 5 the collisional shift, and y
parametrizing the line asymmetry. This is analogous to
an expansion of the collisional width to first order in the
product of detuning and the inverse duration of the col-
lisions r introduced by others [16,17]. The expressions
(4) and (5) previously given for the absorption profile and
Faraday rotation according to Becquerel directly follow
from Eq. (19) by taking the real and the imaginary part.

The expansion of the refractive indices n + in the mag-
netic field follows after expanding Eq. (10) and substitut-

The complex eigenvalue ko(b(F, F~)) depends on the
hyperfine levels F, and Fg only through the detuning

h(F, F )=v v(F,Fg)—

of the light frequency from the hyperfine transition. The
function ko(h(F, Fg )) has the ULB absorption profile of
the line F ~F, as its real part, while its imaginary part
is the corresponding dispersion curve. These real and
imaginary parts are related by Kramers-Kronig relations.
For low noble-gas densities, when the line core is de-
scribed by the impact limit, the functions ko take a
Lorentzian form. However, our measured absorption
profiles are highly asymmetric so it is necessary to in-
clude a more general expression for ko. This can be done
by adding an asymmetric contribution in the numerator,
with the result
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ing the result in Eq. (8). For the refractive index and the absorption coemcient to zeroth order in the magnetic field we
find, with Eq. (17),

no(v)+i ~0(v) = 1+ g ko(h(F, Fg ) )Tr[p~(F~F, )IJ+(F,Fg )p(Fg )] .2' I, h
e' g

(20)

Because of the isotropy of p(Fg ) this expression does not depend on the polarization. The first-order correction is

+Rb
ni+(v)+iai+(v)= — g g ko(b(F,'F'))k o(b(FF ))Tr[p+(F'F,')[4,+iLi][IJ+(F,F )p(F )]j . (21)

2E'p I F p~ F~e~ g

For symmetry reasons, these corrections for opposite cir-
cular polarization are each other's opposite [6].

So far, the calculation has been exact to first order.
The generalized Becquerel relation follows from the as-
sumption that the Zeeman term L, simply acts as a fre-
quency shift so we may make the substitution

1 aeo
2' BV

L) (22)

with 40 defined by Eq. (17) through the operator equality

1@0= i (Lo——2mv) .
Ko(v)

(23)

Nip+(F, F~ ) = L,p+(F,Fs )+@',p+(F,Fs ),
1+Ey

(24)

where @', arises from the noncommutativity of the Zee-
man term with the collisional interaction and describes
deviations from the generalized Becquerel relation.

The result can be further simplified if we use the fact
that the density of the noble gas is sufficiently high so the
hyperfine splitting of the excited state is smaller than the

I

It may be shown that the substitution for @, in Eq. (22) is
exact when the atom-perturber interaction is fully isotro-
pic, so that it commutes with the Zeeman operator L,
[20]. In the case of an asymmetric line (yAO) an expres-
sion for the derivative operator 8@0/Bv is obtained after
substituting Eq. (19) into Eq. (17) and taking the frequen-
cy derivative of both sides. The derivative operator then
gives —2m y /( 1+iy ) when acting on a raising dipole
p+(F,Fg ). Allowing for a deviation from the generalized
Becquerel relation we write

collisional width. Then the dependence of the detuning b
on the excited hyperfine level F, can be ignored. Howev-
er, we still allow 6 to depend on the ground-state
hyperfine level and the corresponding functions kp are
simply indicated as ko(Fg ). A second simplification
arises from the fact that the interaction between a noble-
gas atom and an alkali-metal atom in the ground-state is
governed by a single potential curve, so that this interac-
tion is fully isotropic. This implies that the Zeeman term
cannot perturb the effect of a ground-state collision and
conversely, the Zeeman precession in the ground state is
not hindered by the collisional interaction. Therefore,
the perturbation 4& can only affect the excited state. Be-
cause of the symmetry of the Zeeman term, this perturba-
tion has a vector character and we can parametrize 4',
acting on a partial dipole operator as

4',p~(F,F ) = p'J, IJ,p(F, Fg ),me8
(25)

with P' a complex number. The real part of P' deter-
mines the Zeeman correction to the collisional width and
its imaginary part gives the correction to the shift. One
should recall that P' is proportional to the density N of
the noble gas. We parametrize P' as P'=(y'+i5')N,
where 5', y' are small parameters of order 2ncrr/N.
After these approximations, the first-order corrections to
the refractive index can be explicitly evaluated by using
standard angular momentum algebra. If we use the fact
that the mathematical consequence of the Becquerel con-
tribution to 4i [the first term in Eq. (24)] is merely a
division of the g factors by ( I +i y ), we get the magnetic
corrections to the refractive index

2F +1
ip'—

Jg Jg 1
'

g+g g [2+J (J +1)—J,(J, +1)](2F +1)(2F'+1) '

F
g g F F I 1+Ey

g I

XRe[ko(Fg)ko(Fg)] o .
4m

(26)
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The overall strength factor A, is

~ +1 I & J, IIPIIJ, & I'
6eoho 2J +1 (27)

in terms of the reduced dipole moment of the transition
which obeys the relation

the hyperfine splitting is explicitly included. Second, the
line profiles may differ from their behavior in the impact
limit. Third, perturbation of the Zeeman precession by
binary collisions during the precession is accounted for.
This effect is expressed by the complex parameter P'. If
P'=0, Eq. (26) leads to the generalized Becquerel relation
for the Rb D2 transition.

Tr[p~(F F, )p~(F,F )p(F )]=—,
'

~ (J, ~~@~~J ) ) (28)

The strength factor A, is identical to the strength factor
used in Eq. (4) for fitting the absorption line shapes. For
comparison with experiments the contributions from the
two isotopes Rb and Rb must be added in Eq. (26).

This result determines the Faraday rotation angle as a
function of the frequency v. It generalizes the result for a
single fine-structure component [6] in three ways. First,

I

IV. COMPARISON OF EXPERIMENTAL RESULTS
WITH LINK-BROADENING THEORY

A general expression for the Faraday rotation taking
into account, within the binary collision approximation,
the inhuence of nuclear spin and quasimolecular effects
follows from Eq. (26) combined with Eq. (1). To first or-
der in 2mo. ~ the Faraday rotation can then be written as

j=l i =1

( —', —A.; +N5')(X; —1)+2[(—', —
A, ; )y Ny']—X,

(1+X")

2
lj

X X(3 ) 1+y(X . +X(3 ) ) BI, X;.=
(1+XJ)(1+X~3,.~. ) 4 0 ' Zmc

v —v,"—Q
(29)

where the parameters P;, A,;, and v; have been given in
Table I and 5', y' are small parameters of order 2vro ~/N
The connection between 5', y' and P' is given by
P'=(y'+i5')N, where N is the density of the noble gas.
It is informative to consider Eq. (29) in the limit where
5' =y' =0 so there are no deviations from the generalized
Becquerel relation. In the high-density limit
[o.&&(v~ —v; ')] Eq. (29) then reduces to Eqs. (5) and (6)
with a =—'. This result for a can also be found using sim-

ple angular momentum coupling [5]. In the low-density
limit [cr «(v, . —v; )] Eq. (29) corresponds to Eq. (2)
with four different values of a for the four individual
hyperfine lines. These values are —", (F =2) and

(F =3) for Rb and —,", (F =1) and ,",(F =2) for —Rb

leading to violation of Eq. (5). In general the expression
(5) for the Faraday spectrum is only correct when all
hyperfine splittings are small compared to the collisional
linewidth and quasimolecular deviations from the Bec-
querel relation are negligible.

We use the expression given by Eq. (29) to make a
least-squares fit to all experimental spectra obtained for
one buffer gas. In this way we find ~P'~ /[He]
=(7.1+2.9) X 10 cm for He buffer gas. For Xe
buffer gas we find ~P'~/[Xe]=(1. 4+0.4)X10 ' cm .
The fit obtained in this way is generally better than the fit
obtained with Eq. (5) despite that we have only two free
parameters instead of four and that the fit is made to a
whole series of spectra instead of only one spectrum.

We have previously determined ~P'~ for Xe buffer gas
in a slightly different way [9]. We used an expression
similar to Eq. (29), but included two higher-order terms
proportional to —4yy'(x —1)/(1+x ) and
2y5'x/(1+x ), respectively. Hereby we found a better
fit to the data with ~P'~/[Xe]=(3. 6+0.5) X10 ' cm .

However, these two terms are quadratic instead of linear
in density and are therefore inconsistent with a binary
collision treatment within the UI.B theory as given in
Sec. III. The fact that the inclusion of these terms leads
to improved agreement with the measurements is there-
fore an indication that we are observing effects of multi-
ple collisions. This invalidates our previous conclusion
[9] that the binary collision approximation (2vrcr~ && 1)
holds true for higher densities than expected. In fact, for
our highest Xe pressure (4 atm) we have 2vror lsinc. e-
~=p~/v -5X10 ' s, where p~ is the Weisskopf radius
[5,12].

For the phase angle arg($'), we measure (77+8)' for
He buffer gas and (80+7) for Xe buffer gas. These an-
gles are equal within the experimental uncertainty. This
might be an indication that the ratio of 6' and y' is more
dependent on properties of the Rb atom than on proper-
ties of the perturbing buffer-gas atoms. On the contrary,
the absolute value ~P'~ is sensitive to the nature of the
buffer gas. The deviations from the Becquerel relation
calculated with these two values of P' are illustrated as
fully drawn curves in Figs. 5 —8. The agreement with the
experimental results is good, except for the systematic
trend for the experimental scaling factors for Rb:Xe to
bend downward at the highest densities. For comparison
we have plotted the results obtained with P' =0 as dashed
curves in Figs. 6 and 8. All curves (including those for
P'=0) show a minimum for a, near a density of 8 X 10'
cm . This is due to a coherence between ground-state
hyperfine levels, which manifests itself theoretically as a
negative sign in front of the second term within the large
square brackets in Eq. (29). The maximum absolute
violation of the Becquerel relation is approximately 9~o
for some of the higher Xe pressures (see Fig. 6). Note
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that the Faraday effect is larger than its Becquerel value.
At higher densities we expect the Faraday effect to de-
crease below its Becquerel value in line with a classical
picture of locking. The downward bend at the highest Xe
density is probably the first indication of this later de-
crease.

For the same buffer-gas density the deviations from the
Becquerel relation are smaller for He compared to Xe,
roughly by a factor of 2 (see Figs. 6 and 8 and Table II).
This difference is in qualitative agreement with expecta-
tions based on the collision dynamics in the gas mixture.
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V. COLLISION PHYSICS PICTURE

We will now discuss the collisional dynamics of the
alkali-metal —noble-gas systems and point out a close con-
nection between "microscopic" collisional properties in
the gas mixtures and our "macroscopic" line-broadening
results. Consider as an example an isolated, binary col-
lision between a 'S state perturber atom and a probe
atom with a 'S ground state and a 'P excited state con-
nected by an optical transition, as illustrated in Fig. 9. If
the electrostatic interaction between the two atoms has
only a weak angular dependence, the excited p state
maintains its orientation due to electronic inertia [Fig.
9(a)]. If the electrostatic interaction has a strong angular
dependence, the corresponding torque orients the p state
along the internuclear axis [Fig. 9(b)]. Thus angular cou-
pling takes place when the electrostatic splitting
( Vz —Vn)/fi of the p state exceeds the angular velocity
v /R [21,22],

(30)

where Vz(R ) and Vn (R ) are adiabatic potentials and R is
the internuclear distance. Solving the inequality (30) for
R leads to R ~R&„k, where R&„k is the locking radius.
For distances smaller than R &„z the p state and thereby
the electric dipole moment responsible for the S-P transi-
tion becomes locked to the internuclear axis. The same
takes place for the magnetic dipole moment of the p state
leading to modification of the magnetic precession. This
argument is not limited to the special case of singlet
states. For multiplet states it is the total angular momen-
tum J that may lock to the collision axis, again depending

FIG. 9. The evolution of an electronic p state during a col-
lision with an s-state perturber. When electronic inertia dom-
inates (a) the wave function is fixed in the laboratory frame;
when angular coupling dominates (b) the p state is locked to the
collisional axis.
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on the energy splitting between the differently oriented
electron orbitals. We can therefore use Eq. (30) to deter-
mine Rl„k for the Rb noble-gas systems. Using the
theoretical potentials by Pascale and Vandeplanque [23]
we find R& k=6.4 A for Rb:He and R&„k=13.4 A for
Rb:Xe, as illustrated in Fig. 10.

The spectroscopic interpretation of the inequality (30)
is that Vz and V& correspond to line shifts and splittings
(assuming V=O for the ground state) and fiv/R is the
bandwidth of the radiation absorbed or emitted during a
collision. If inequality (30) is satisfied, a gas-phase atom
always "feels" a (time-dependent) axis; it corresponds to
the invalidity of the impact approximation at line center
and the onset of quasistatic behavior associated with
violations of the Becquerel relation.

Both 5' and y' have the dimension of a volume. It
seems natural to interpret this volume as that within
which locking occurs, leading to deviations from the
single-atom behavior of the electronic transitions and
thereby violation of the Becquerel relation. From this di-
mensional argument one would therefore expect that
)P'(/N = [iy'+i5') R&„z. Fo-r Rb:He we thus estimate
~P'~/[He] —1X10 ' cm, which is consistent with the
experimental result 7. 1X10 cm . For Rb:Xe we esti-
mate

~

P'~ /[Xe) —1 X 10 cm, which is larger than the
experimental result 1.4X 10 ' cm . This deviation may
well be due to the inhuence of multiperturber effects in
Xe buffer gas: the average distance from a Rb atom to
the nearest Xe neighbor becomes comparable to R&„k at

Internuclear distance (nm)

FIG. 10. Illustration of how to determine R&„& for (a) Rb:He
and (b) Rb:Xe. The fully drawn curves are the potential
differences Vz —V„ from Pascale and Vandeplanque [23]. The
dashed curves correspond to +A'U/R. Locking occurs when a
dashed curve crosses a fully drawn curve.
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our highest Xe densities. For [Xe]=8.97 X 10's cm s we
find an average Rb-Xe distance of 13.9 A, which is al-
most identical to R&„k. This means that there will be two
or more Xe atoms within R&„i, for a substantial fraction
of the time. This is expected to give rise to considerable
modification of the locking due to nonadditivity aspects.

VI. CONCLUSION

In conclusion, we have observed substantial violation
of the generalized Becquerel relation for the Faraday
effect of Rb atoms in Xe buffer gas. For He buffer gas the
quasimolecular violations are approximately two times
smaller than for Xe. Both systems show the same ratio
between 5' and y' leading to a phase angle for (()' of ap-
proximately 79'. Theoretical values for 5' and y' are not
yet available. Therefore our magneto-optical line-
broadening theory is only a parametrization so far. Note
that this parametrization does not even predict the sign
of the Becquerel violation. A direct calculation of P'
should be possible using the ULB theory and available
Rb noble-gas potentials [23]. It would then be interesting
to see whether the binary ULB approach gives the
correct quantitative result for 5' and y'. We would ex-
pect this to be the case for the Rb:He system, but not
necessarily for the Rb:Xe system due to the inhuence of

multiperturber effects.
The extraction of the quasimolecular deviations from

the Becquerel relation from the data is technically com-
plicated due to the presence of hyperfine structure in the
Rb spectrum. It would have been easier to investigate a
system without hyperfine structure, although suitable
candidates have other disadvantages. Presently we are
investigating the Faraday effect of Rb in noble gases at
higher densities, where the hyperfine-structure complica-
tions become irrelevant.

Our results constitute a link between the spectroscopi-
cally observed Faraday effect and collision physics. So
far we have observed the onset of quasimolecular aspects
at gas-phase densities up to —10 cm in Xe buffer gas.
At higher gas densities we expect to see complete devel-
opment toward condensed-matter behavior of the Fara-
day effect. At suf5ciently high density the multiperturber
effects should become dominant, probably leading to
drastic modifications of the Faraday effect.
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