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Radius of convergence of the 1/Z expansion for the ground state of a two-electron atom

I. A. Ivanov*

(Received 31 May 1994)

An estimation of the radius of convergence of the 1/Z expansion (Z is the charge of the nucleus) for
the ground state of the two-electron atom is obtained. The calculation is based on an idea that, with cer-
tain conditions being satisfied, the radius of convergence of the 1/Z series can be estimated with good
precision if one constructs the function A(f), inverse to the function f(A. ) = [E(A, ) Eo]/E—

&
(E is energy,

1=1/Z, while Eo and E& are the first two coeKcients of the perturbation expansion of the energy). We
find numerically that the nearest singularity to f=0 in the complex f plane of the inverse function A,(f)
is at the point f=0.8 corresponding to the threshold point E=—0.5. a.u. We find also that the series
for the inverse function A,(f}converges at this point. We discuss the nature of the singu. arity of the in-

verse function A,(f). The value for the radius of convergence of the 1/Z expansion of the ground state of
a He-like ion obtained is R&=1.09766079, which we think to be the most accurate value presently
available.

PACS number(s): 31.25.Eb, 31.90.+s

I. INTRODUCTION

Perturbation theory with the hydrogenlike zero ap-
proximation takes its origin as 1930 when Hylleraas [1]
pointed out that after rescaling the space coordinates
(r'=Zr) and the energy (E'=E/Z ) the nonrelativistic
Schrodinger equation for the two-electron atomic ion of
the nuclear charge Z becomes

P1 P2 1

2 2 T1

1 1
+A, , %(r'„rz) = E'4'(r'„rz) .

P2 F12

The parameter A, =l/Z measures the strength of the
electron-electron Coulomb interaction. The prime quan-
tities denote the new coordinates and the corresponding
operators of momenta. Hereafter, for simplicity, we shall
omit the primes and write E instead of E' in (1), keeping
in mind that, everywhere below, the quantity denoted by
E stands for the actual energy divided by Z .

The application of the Rayleigh-Schrodinger perturba-
tion theory to the problem (1) leads to an expansion of E
in a power series of A, ,

E= g E;A,'.
i=0

(2)

For the ground state of He like ions the first two
coefficients are Eo = —1 a.u. , E1 =0.625 a.u. The
coefficients of higher orders have been calculated by
difFerent authors [1—5]. In particular, in a recent paper
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[6], about 400 coefficients of the series (2) for the ground
state of He-like ions have been tabulated.

The natural question arises as to what kind of informa-
tion can be extracted from the series (2) apart from the
value of the energy. If, analyzing the perturbation expan-
sion, one can obtain some information about the exact
solution of the problem (1) and its analytic properties as a
function of A, =1/Z, the information of this sort, though
it is interesting by itself, could also be important for the
applications. It is possible that some analytic properties
of the function E (A, ) (for example, the singularities of this
function and its behavior near these singularities) could
be shared by the more complex systems, which are also
governed by the Coulomb interaction. Thus, studying
the analytic properties of the exact energy of the ground
state of helium, one can obtain a deeper insight into the
more complex atomic systems.

Below, we discuss only the ground state of the two-
electron atom. We shall recall brieAy, from the litera-
ture, some rigorous results concerning the analytic prop-
erties of a function defined by the series (2) for this state.
It has been rigorously proved by Kato, using the methods
of the perturbation theory for unbounded linear opera-
tors [7,8], that the series for E(A, ) converges in a certain
domain around A, =O, defining thus an analytic in this
domain function E(A, ). Kato [8] gives an estimation for
the lower bound of the radius of convergence of the series
(2). Subsequent numerical analysis carried out by
different authors allowed them to obtain more precise es-
timations for the radius of convergence of the series (2).
Different methods have been used in these works, such as
the ratio test [9] [that is, the numerical analysis of the se-
quence constructed from the ratio of two subsequent
coefficients of the series (2)]. The value of the radius of
convergence obtained is R& = l. 1184. Pade analysis [10]
of the series (2) has given R i = 1.118. The Darboux func-
tion ansatz [11,12] (which consists in a presumption that
the singularity is a simple branching point) has given
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R& =1.119 and 1.1056, respectively. In a recent paper of
Baker et al. [6] the authors have performed extensive
high-precision calculations of the coefficients of the series
(2) for the ground state of He-like ions, and by the
analysis of the asymptotic behavior of these coefficients,
they have obtained the value R& = 1.097 66 for the radius
of convergence. These authors concluded also that the
nearest singularity to A, =0 in the A, plane is of a complex
nature. According to these results this singularity is an
essential singularity (that is, neither a pole nor a branch-
ing point). The authors thus explained the reason why
the Pade analysis and the Darboux function ansatz could
not give very precise results, since both methods cannot
describe essential singularities.

We shall present another estimation of the radius of
convergence of the series (2), which we have obtained by
a rather different method but, to our opinion, by a more
straightforward one. This method does not rely on any
particular ansatz for the investigated function, which al-
lowed us to achieve a sufficiently high accuracy in our
calculation. The value obtained for the radius of conver-
gence of the 1/Z expansion for the ground state of He-
like ions is R& =1.09766079. We expect that eight digits
are valid, at least. We thus confirm the results of Baker
et al. and add a few more digits to their result.

II. THEORY

The following method for the determination of the ra-
dius of convergence of the expansion (2) relies on two
basic facts. First, as was rigorously proved by Reinhardt
[13], if the radius of convergence of 1/Z expansion (2) is
determined by a singularity on the positive A, axis, then if
we denote this value as A,„the energy E becomes for this
value of A, degenerate with a threshold. In other words,
E(A., )= —

—,
' (energy in atomic units of the remaining ls

electron after the ionization of the other electron).
Second, as was shown by Baker et al. [6], for the expan-
sion (2), the nearest singularity to A, =O in the A, plane is
in fact on the positive real axis. Thus, the value of E (A,, )

is known. We rewrite expansion (2) in the following
form, introducing a new function f (A, ):

(3)

For A, =O, f (A, }=0,df(A, )/dk, =l; hence around the
point A, =O the inverse function A,(f) exists and is analytic
in some domain containing the point f =0. The series
expansion of A,(f) in the vicinity of the point f =0 is ob-
tained from the Lagrange formula [14], which gives the
coefficients of the expansion of the inverse function once
the series for f (A, ) is known:

'k

the singular point I, Substituting the known values of
E(A,, ), Eo, E, in (3), we have f (A,, )=(—

—,'+1)/
0.625 =0.8. Hence, if the series (4) converged for
f =0.8, we could directly obtain the value of A,, by sum-
ming up the series (4). A priori, the convergence, of
course, cannot be guaranteed. According to the general
theory the radius of convergence of the series (4) is equal
to the distance to the nearest to f =0 in the complex f-
plane singularity of the function A,(f). The question of
the value of the radius of convergence of the series (4) is
thus related to the location of the singularities of the
function A,(f) in the complex f plane. Results of Baker
et al. [6] demonstrate that the point A,, is an essential
singularity of the function f (A, ), this function exhibiting
a very complicated behavior around this point. We can
expect therefore that the point f (A,, )=0.8 is also a singu-
lar point (and, most probably, this is an essential singular-
ity) of the inverse function

iaaf).

Besides this possible
singularity, the inverse function A, (f) can have other
singularities situated closer to f =0 in the complex f
plane. For example, any point in the k plane where
df /d A, =O produces a singularity of the inverse function
A.(f}. We can therefore expect that the radius of conver-
gence of the series (4) is equal to 0.8 or less, if the func-
tion A,(f) has the singularities situated closer to f =0
than f =0.8. This reasoning will help us in the numeri-
cal investigation of the series (4) presented in the next
chapter. Our numerical analysis of the series (4) gives for
the radius of its convergence the value which is very close
to 0.8. Since we expect the function A,(f) to have the
singularity at the point f =0.8 in the complex f plane,
we can conclude that the value of the radius of conver-
gence does equal 0.8. The point f =0.8 thus lies on the
boundary of the circle of convergence. Numerical
analysis shows that the series (4) converges at this point,
allowing us to thus determine A,, summing up the series
(4) at the point f =0.8.

III. NUMERICAL PROCEDURE

All our calculations have been performed in quadruple
precision. Using the tabulated data for the first 400
coefficients of 1/Z expansion (2) given by Baker et al. for
the ground state of He-like ions, we calculate 400 terms
of the series of the function A,(f), using formula (4). In
Table I, we present the first 50 coefficients of this series.
To determine the radius of convergence of this series, we
have performed a Neville-Richardson analysis of ratios
r =kA, k, A/, k fotwo successive coefficients of a series
A,(f). The limit of this ratio, as is well-known, gives the
value of the radius of convergence. We recall briefly the
idea of this analysis. If asymptotically, when k tends to
infinity, this ratio satisfies an expansion of the type

r& r2
rk ro+ + +

k
(5)

(4)

The series (4) converges in some domain around f =0.
We note now that, according to the results of Reinhardt
and Baker et al. cited above, the value of f is known at

then the sequence rk" =krk —( k —1)rk, also satisfies an
expansion of the type (5), where ro remains unchanged
but the term of order k ' is eliminated. Qne can iterate
this procedure, constructing the sequence rk ' in the same
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1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1.000 000 000 000 0
0.252 266 287 1506
0.113358 108 820 7
0.064 135 115 189 8
0.042 488 555 073 8
0.031 811 781 8106
0.026 181 922 720 4
0.023 135 734481 9
0.021 544 392 125 5

0.020 855 023 351 5

0.020 784 797 469 7
0.021 186 660 024 1

0.021 986 630 175 0
0.023 153 132 351 1

0.024 681 525 807 1

0.026 586 234 609 7
0.028 896 890 506 7
0.031 656 734404 5

0.034 922 399045 6
0.038 764 633 321 4
0.043 269 757 692 6
0.048 541 767 132 2
0.054 705 074 230 3
0.061 907 936 230 7
0.070 326 649 167 3

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

0.080 170627 289 5

0.091 688 520 995 4
0.105 175 564462 8
0.120 982 387 367 6
0.139 525 575 540 8
0.161 300 325 241 7
0.186 895 607 200 3
0.217 012 342 365 5

0.252 485 194 504 7
0.294 308 709 176 2
0.343 668 678 618 7
0.401 979 793 1990
0.470 930 858 770 0
0.552 539 123 549 0
0.649 215 577 536 3
0.763 843 473 695 3
0.899 872 787 225 8

1.061 433 894412 9
1.253 474 436 486 6
1.481 924 161 917 3
1.753 893 543 192 1

2.077 913 178 5444
2.464 222 460 471 8
2.925 1177760169
3.475 372 665 303 2

TABLE I. Coefficients of series for A.(f). sequence rk is a number that is very close to 0.8. More
elaborate methods of the acceleration of convergence
would probably be more accurate, but since from the re-
sults of Reinhardt and Baker et al. we expect to find a
singularity of the function A, (f ) at the point f =0.8, the
numbers presented in Table II give enough evidence that
the value of radius of convergence is indeed equal to 0.8.
Having established this fact we can proceed to the
analysis of the convergence properties of the series A, (f)
at the point f=0.8. This point lies on the boundary of
the circle of convergence of the series (4). Generally
speaking, the series can converge or diverge at this point.
Our analysis of a sequence of the partial sums of the
series (4) indicates that it converges for f=0.8. In Table
III, the first column contains the sequence of the partial
sums of the series (4) for f =0.8. Recalling that accord-
ing to (4) the sum of this series gives directly the value of
the radius of convergence of the I/Z expansion, we see
that even simple direct summation gives the expected re-
sult, which is very close to that of Baker et aI. :
A,, =1.09766. The series converges rather slowly; to ob-
tain a better precision we have to use some methods of
acceleration of convergence. Among those found espe-
cially useful for our problem are the Aitken transforma-
tion and the e algorithm. The Aitken transformation
consists of transforming the original sequence ak ' into a
new sequence ak" according to the following rule:

TABLE II. Ratio test for the series A, (f).

(2)
rk

10
40
70

100
130
160
190
220
250
280
310
340

1.033 055 3
0.851 087 3
0.830 988 6
0.822 932 8
0.818 518 2
0.815 701 2
0.813 733 0
0.812 271 8
0.811 138 8

0.810231 5
0.809 486 4
0.808 862 1

1.154 832 6
0.807 360 7
0.803 872 3
0.802 842 7
0.802 303 3
0.801 992 5
0.801 744 4
0.801 550 4
0.801 416 9
0.801 315 6
0.801 223 7
0.801 132 9

1.486 653 2
0.796 888 2
0.800 156 5

0.800 561 8
0.800 578 7
0.800 587 6
0.800 308 9
0.800 373 4
0.800 479 4
0.800 439 5
0.800 286 2
0.800 1134

way, which again satisfies an expansion of the type (5)
with the same r0, the terms of order k ', k being elim-
inated. This procedure can be continued. Of course, a
priori it is difficult to state whether the ratios for the
given series satisfy an expansion of the type (5), but in
general the Neville-Richardson procedure does help to
accelerate the convergence, even if the asymptotic expan-
sion of rk is different from (5) (for example, when the
powers are fractional; see [6]). In Table II, the values of
the ratio rk =A,k, /A, k and the sequences rk, rk are(2) (3)

presented —correspondingly, the second and the third
iterations of the Ne ville-Richardson procedure are
presented. In Table II, one can see that the limit of the

(0) (0) (0)
(1) ak ak+2 ak+1

ak
(6)

Here, 5 ak '=ak ' —2ak+, +ak+2 is the second
difference of the original sequence ak '. It is not difficult
to show that if the original sequence converges geometri-
cally to some limit (i.e., ak ) =a+P"), all the terms of a
sequence ak"' constructed according to (6) will be identi-
cally equal to a. For the geometric sequences, the Aitken
transformation therefore accelerates perfectly the conver-
gence, giving the correct limit at each step. It can be
shown that this transformation accelerates also the con-
vergence of the more complex sequences. The e algo-
rithm is another well-known accelerator of convergence;
it consists also in a prescription according to which from
the original sequence the new sequence is constructed,
having the saxne limit but converging in some cases more
rapidly. For lack of space, we shall not give more details
about the e algorithm. A detailed discussion of these
methods is given in [15,16]. In our calculation, we have
used the subroutine available in the NAG library of com-
puter programs, which performs the calculations accord-
ing to the prescriptions of the e algorithm. The second
column of Table III contains the sequence that is the re-
sult of the Aitken transformation applied to the sequence
of the partial sums of the series (4) (first column Table
III). The third column contains the results of the second
iteration of the Aitken transformation and the fourth one
contains the result of the application of the e algorithm
to the sequence obtained as a result of the second itera-
tion of the Aitken transformation. The numbers in the
fourth column reveal already a good convergence to the
limit, which is approximately equal to 1.097 66079, with



51 RADIUS OF CONVERGENCE OF THE 1/Z EXPANSION FOR. . . 1083

TABLE III. Sequence of partial sums of series A.{f) and results of acceleration of its convergence.

305
308
311
314
317
320
323
326
329
332
335
338
341
344
347
350

Partial sums
of series (4)

1.097 637 727 408
1.097 638 389 612
1.097 639 028 752
1.097 639 645 787
1.097 640 241 627
1.097 640 817 141
1.097 641 373 153
1.097 641 910452
1.097 642 429 786
1.097 642 931 870
1.097 643 417 385
1.097 643 886 981
1.097 644 341 277
1.097 644 780 866
1.097 645 206 313
1.097 645 618 157

Aitken
transformation

1.097 656 561 016
1.097 656 696 387
1.097 656 826 597
1.097 656 951 878
1.097 657 072 449
1.097 657 188 521
1.097 657 300 290
1.097 657 407 944
1.097 657 511 663
1.097 657 611 616
1.097 657 707 963
1.097 657 800 858
1.097 657 890 447
1.097 657 976 868
1.097 658 060 252
1.097 658 140 726

Iteration of
Aitken

transformation

1.097 660 077 099
1.097 660 103 028
1.097 660 127 910
1.097 660 151 795
1.097 660 174 730
1.097 660 196760
1.097 660 217 928
1.097 660 238 272
1.097 660 257 831
1.097 660 276 640
1.097 660 294 733
1.097 660 312 141
1.097 660 328 893
1.097 660 345 020
1.097 660 360 547
1.097 660 375 500

e algorithm

1.097 660 077 099
1.097 660 717 311
1.097 660 801 650
1.097 660 783 213
1.097 660 798 311
1.097 660 798 806
1.097 660 798 599
1.097 660 798 685
1.097 660 798 271
1.097 660 797 224
1.097 660 796 626
1.097 660 793 998
1.097 660 798 169
1.097 660 789 942
1.097 660 789 986
1.097 660 795 749

an error that we estimate as one unit of the last digit. We
thus confirm the result given by Baker et a/. : 1.097 66, all
digits of which, given in [6], are correct. We have per-
formed also the preliminary numerical investigations of
the nature of the singularity f =0.8 of the inverse func-
tion A,(f) [which can give some insight into the problem
of the nature of the singularity of the energy at a point
A,, =A,(0.8)= 1.097066079]. Our analysis, with the help
of the Fade approximant and Darboux function ansatz of
the function A,(f) in a singular point f =0.8, indicates
that, as could be expected, the singularity of the inverse
function A, (f ) is of the same type as that of the function
f ( I, )—essential singularity.

IV. REMARKS AND PROSPECTS

A knowledge of the precise value of the radius of con-
vergence of the I/Z expansion is important for the
second part of the problem —an investigation of the ana-
lytic behavior of the exact energy around the singular
point. Baker et al. give the ansatz that reproduces the
coefficients of the perturbation series for the ground-state
energy of He-like ions with very good precision. Howev-
er, the question as to what extent this ansatz is unique (as
Baker et al. remark in their paper) remains open.

One idea advocated in the present paper is that the
study of the function inverse to the exact energy could be

an easier task than directly studying the function E(A, ).
Our results show that at least for the determination of the
radius of convergence this procedure works. We can
hope that this approach will allow us to make some pro-
gress in the determination of the nature of the singulari-
ty. Usually, in the numerical investigations of the given
series, the most difficult part of the problem is to locate
numerically the singularity. Only afterwards can one
start to investigate numerically the nature of the singular-
ity. Of course, the results that one obtains on this second
step crucially depend on the precision with which the lo-
cation of the singular point is known. Our approach has
an advantage: that for the inverse function we know the
location of the singularity with absolute accuracy. This
can help us perhaps to make some further progress in the
investigation on the nature of the singularity and to ob-
tain some information about the analytic properties of
the exact energy of the ground state of the two-electron
system.
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