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Multireferent superposition-of-conSgurations calculations of core-correlation effects
on energy levels and oscillator strengths: Be and B+
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The superposition-of-configurations (SOC) method is used to calculate intershell and core-correlation
corrections to energy levels for the low-lying states of Be and B+ belonging to the configurations 2s',
2s2p, and 2p and the singlets of 2s3s and 2s3d. The wave functions are also used to calculate the oscil-
lator strengths for all allowed transitions among these states. Transition energies are calculated with an
accuracy ranging from 10 to 50 cm ' and the oscillator strengths are estimated to be accurate to 1—2%.
The SOC wave functions are single- and double-substitution calculations based on a multiconfiguration
referent, where the reference set is derived from a two-electron natural-orbital transformation of
valence-shell-correlated SOC functions. It is found that a fairly substantial reference set is necessary to
obtain these results, ranging from three configuration-state functions (CSFs) for 2s2p P and 2p P to 11
CSFs for 2s3s 'S. Intershell correlations are necessary for both energy differences and oscillator
strengths, but core correlations with angular symmetries higher than I = 1 (p orbitals) are not.

PACS number(s): 32.70.Cs, 31.25.Jf

INTRODUCTION

It is common in atomic structure calculations to
neglect correlation corrections arising from the core elec-
trons or to include them in only a minimal fashion. This
amounts to assuming that such core-related correlation
energy corrections remain approximately unchanged by
excitation or even removal of a valence electron, so that
in calculating energy differences these corrections very
nearly cancel out, even though the total correlation ener-
gy associated with the core is quite substantial. With re-
gard to the calculation of rnultiplet strengths of a dipole
transition, neglecting core effects is usually justified by
the fact that the dipole operator skews the multielectron
integrand of the transition moment to the outer, i.e., the
valence, region of the atom. This is less valid for the ve-
locity form of the matrix element, which is the basis for
the preference usually given the length form.

These errors are in fact rather small, so that neglecting
core and core-valence correlation is usually a pretty good
approximation. As long as the correlations are smaller
than or of the same order as the errors in the valence-
shell-correlation calculations, there is little point to in-
creasing the complexity of the computational problem so
as to fully account for core effects. However, ab initio
spectroscopic calculations on the lighter elements which
are reasonably complete in their treatment of correlation
are now becoming routine, producing an increasing body
of useful atomic data [1]. While there is little doubt that
such data are quite reliable, it is important to explore sys-
tematically the limits imposed by these core-correlation
effects.

This paper therefore reports the results of extensive
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calculations of core- and core-valence-correlation effects
on the ground state and a variety of excited states of the
beryllium atom and the isoelectronic singly ionized boron
atom. In particular, calculations have been done for the
energies of 2s 'S, 2s2p ' P, 2p P, 'D, and 'S (B+ only)
and the singlet states of 2s3s and 2s3d, as well as the os-
cillator strengths for all dipole-allowed transitions among
them. The method of calculation adopted is the
superposition-of-configurations (SOC) approach, based on
variational analytic Slater-type orbitals (STOs), with
configuration-state functions (CSFs) defined by single and
double (SD) substitutions into some set of reference CSFs.

Since valence-shell correlation for these four-electron
systems frequently involves strong configuration interac-
tion, the problem also lends itself readily to a study of the
multiconfiguration referent correlation problem as well,
and particular attention will be given to the dependence
of the results on the reference set, i.e., the set of valence-
shell configurations with respect to which the single and
double substitution configurations are defined. This as-
pect of the correlation problem for the beryllium atom
has recently been discussed extensively from the stand-
point of many-body perturbation theory [2].

The classic work on the ground-state correlation ener-
gy of beryllium is the extensive configuration-interaction
(CI) calculation of Bunge [3]. Within the past few years,
there have appeared a large number of very accurate cal-
culations based on perturbative methods [4] as well as CI
[5], some of which have also included isoelectronic posi-
tive ions [6,7]. All these calculations are directed toward
an accurate calculation of the total energy of the atom
and most of them pertain only to the ground state.

The main concern here will be to identify and evaluate
those elements of the correlation calculation which are
necessary for the accurate determination of energy
differences and transition oscillator strengths and those
which are not. Thus, while the calculations are directed
toward minimizing the total energy of each state, the
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most accurate possible total energy is not the primary
goal. Indeed, we will find that a large part of the total
correlation is quite irrelevant for theoretical spectroscopy
of the valence shell. To this end, the contributions of
core-valence, i.e., intershell, correlation and core correla-
tion will be evaluated sequentially. Convergence of both
components with respect to angular correlation will also
be examined, as will the effects of choosing a minimal
reference set versus a more complete one. In each case,
the emphasis will be on the transition energies and transi-
tion oscillator strengths.

The next section will describe, in detail, the computa-
tional strategy adopted for this study. This will be fol-
lowed by a description and evaluation of the results for
both the total and ionization energies, followed in turn by
a parallel evaluation of the results for oscillator strengths.
With regard to the latter, since the calculations also in-
clude extensive treatment of the core- and intershell-
correlation corrections, considerable weight will be given
to the agreement of the length and velocity forms of the
oscillator strengths.

These calculations realize an accuracy for the ioniza-
tion energies of the low-lying states of Be and 8+ in the
range 19—50 cm . To achieve this, an exhaustive treat-
ment of intershell correlation is necessary. An exhaustive
treatment of core correlation is not. It is important for
the core-correlation configurations through s and p sym-
metries (I =0, 1) to be fairly complete, since they give rise
to differential energy shifts ranging from —150 to +90
cm ', depending on the state and the ion. However, all
the higher angular terms, which are so important in the
slow convergence of E-shell correlation energies, contrib-
ute virtually nothing, no more than 1 —2 cm ', to the ex-
citation and ionization energies. The computed ioniza-
tion energy of the 2s3s 'S state of 8+ disagrees with ex-
periment by 680 cm, in spite of special efforts to in-
clude all relevant correlations.

As for the oscillator strengths, the largest length-
velocity (l-u) discrepancy turns out to be about 2%, with
the l-u agreement usually being better than 1%. Here too
the higher angular momentum core correlations are of no
consequence. There are no significant discrepancies with
available experimental data, within the stated experimen-
tal uncertainties. It is necessary to go beyond the
minimal reference set to achieve the accuracies just quot-
ed, more so for the energy differences than oscillator
strengths.

and the second represents the remainder of the valence-
shell correlation. The next two sums, in which one 1s or-
bital and one of the referent orbitals remain occupied,
correspond to intershell, or core-valence, correlation
within the context of a multiconfiguration referent. Fi-
nally, the last sum, with both 1s electrons replaced by
correlation orbitals, represents the core correlation. In
all cases both orbital and spin angular momenta are cou-
pled to be eigenfunctions of X and S so that each term
in Eq. (1) is a fully symmetry-adapted configuration-state
function. The variational principle, of course, requires
the expansion coefticients to be the elements of an eigen-
vector of the Hamiltonian matrix, over whatever basis
CSFs have been included in Eq. (1).

In all the core-correlation configurations, the 1s re-
placement pair is always coupled to be 'S only, even
though others may be possible. In fact, except for the
2s 'S ground state, the core double-substitution
configurations can be coupled in a number of different
ways. Furthermore, for the intershell terms, only those
CSFs are included in which the double-substitution pair
is coupled consistently with the two-particle fractional
parentage of the referent. Thus, e.g., if the reference CSF
is 1s 2p 'D, a typical intershell configuration might have
the form 1$2p3d4f, in which case the couplings

(1$2P 'P)(3d4f 'P), (1$2P P)(3d4f P)

would be allowed. However,

(1$2P 'P)(3d4f 'D), {1$2P 'P)(3d4f 'F),
(1$2p P)(3d4f D), (1$2p P)(3d4f F)

would not, since the substitution pairs are not coupled
the same as the 1s2p pair being replaced, i.e., either 'P or
P.

This restriction to "parent-coupled" configurations
considerably diminishes, by as smuch as a factor of about
3, the total number of CSFs in the SOC wave function
had all possible couplings been included. It should not,
however, represent a significant constraint on the physics
of the problem, since the excluded terms do not interact
directly with the referent CSF. This will be borne out
later by a few sample calulations of minimal referent
wave functions.

The orbitals used in the SOC function (1) are represent-
ed by an expansion in terms of analytic basis functions

COMPUTATIONAL STRATEGY

For a berylliumlike atom, the multi-referent SOC trial
function used here has the general form

which are the normalized Slater-type orbitals

(3)

@=pc,bl$ y, q)b+g c; 1$ q);q»

g tc ~J1$q q;q»+cb;jls pbqiqj
ah ij

g g Cob Jq qb(q q J S)
a, b ij

The first sum here runs over the reference set of CSFs

The first stage in determining a basis set was to perform a
set of expansion method Hartree-Fock (HF) calculations
for the most likely dominant configuration. Whether or
not it is in fact dominant is not really of much impor-
tance, since the main purpose of the HF calculations is
only to determine a 1s core orbital, which is not very sen-
sitive to the I.-shell correlation. The correlation basis set
for each state actually consists of two groups of func-
tions, one chosen to correlate the K shell and one chosen
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to correlate the valence, or valence Rydberg, shell.
For the valence-shell-correlation problem, each state

was treated entirely independently of every other state,
even those of the same symmetry. Hartree-Fock orbitals
were used in the initial round of calculations to determine
the 1s orbital for each state. Further basis functions were
added and the total energy minimized with respect to
their free parameters for SOC trial functions including all
possible valence correlation CSFs which could be con-
structed from the basis. In the case of second or third ex-
cited states of the same symmetry, the entire variational
effort was concentrated on the appropriate eigenvalue of
the matrix diagonalization problem. The cutoff for ter-
minating this search was generally of the order of 10
a.u. in the total energy.

After some numerical experimentation, a double g type
of STO basis was usually, but not always, settled on for
all but the higher symmetries, i.e., l =5,6. This appeared
generally to embody the best compromise between accu-
racy and difficulties of linear dependence. Within each g,
the Slater "principal quantum number" p; was allowed to
run from p, =l+1 to some maximum. For the ground
state, a valence-shell basis set [5s,5p, 4d, 3f,2g, 2h, li]
was used with similar, but somewhat different, sets em-
ployed for each of the excited states; e.g., the 2p 'S state
of 8+ required a I 5s, 5p, 5d, 4f, 4g, 4h, 3i I basis. All
valence-shell basis sets included functions with symmetry
through l =6 (i orbitals).

With these basis sets established, a two-electron
natural-orbital transformation [8] was carried out on the
final valence-shell SOC wave functions. For a two-
electron singlet, for example, a SOC wave function has
the general form

+=+ c,, g, (1)P,(2)+ g "—[P,(l )P, (2)+P)(1)P,(2)] .

(4)

Diagonalizing the matrix of coeKcients c;. transforms the
orbitals unitarily among themselves so that the wave
function assumes a quadratic form

%=+a, y, (l)y, (2), (5)

where the y; are called the natural orbitals of the system.
They are the most "rapidly convergent" in the sense that
each succeeding term in Eq. (5) is the largest possible for
the given basis [9]. Similar considerations apply also to
triplets and to states where the orbitals are of different
symmetry such as, e.g. , 2s2p. The value of this transfor-
mation is that it "concentrates" the correlation
effectiveness of the orbitals into the first few of a rapidly
coriverging sequence of orbitals, providing a natural set
for the multireferent calculation of core and core-valence
correlation. The two-electron natural-orbital transforma-
tion is approximately equivalent to a limited
multiconfiguration Hartree-Fock (MCHF) calculation
and it is exactly equivalent to a MCHF calculation that
includes the full set of CSFs that can be constructed from
the analytical basis.

The K-shell correlation basis set was the same for all

states of each atom and was determined by variationally
optimizing a SOC wave function for the ground state of
the two-electron heliumlike ions Be + and B +. These
calculations yielded a [3s,5p, 5d, 4f, 4g„3h, 2i ] set of fully
optimized STOs, which captured better than 99% of the
He-like ground-state correlation energy. The occurrence
of only three s-type functions in this set is due to the fact
that the calculations also made use of the s basis from the
expansion method representation of the Hartree-Fock 1s
function, which required three STOs. Here too the op-
timum set of STOs turned out to be a double g basis and
these basis sets are given in the Appendix. Once the basis
was determined, the SOC calculations were followed by a
natural-orbital transformation to produce a set of E-shell
correlation orbitals with optimum correlation conver-
gence.

The merging of these two basis sets produced the final
correlation basis for the full four-electron multireferent
calculations. This was accomplished by appending the
K-shell natural orbitals to the valence ones and then
sequentially Schmidt orthogonalizing the entire set. Oc-
casionally the last natural orbital from one or both sets
was omitted, in order to minimize problems arising from
linear dependence. For the valence-correlation part of
the wave function, i.e., the second term of (1), the sum-
mations were taken over only the valence orbitals. How-
ever, for the intershell and I( -shell correlation terms, the
summations were made to run over the entire combined
set of orbitals. The assumption here is that intershell
correlation can be adequately represented by correlation
orbitals obtained independently from the core and
valence shells. This was verified by spot-check calcula-
tions on the ground state of beryllium by adding and op-
timizing basis functions to calculations which included
only valence and intershell terms, but not core correla-
tion, the latter being omitted to avoid possible distortions
due to changes in the relatively large core correlation.
The effect of such intershell augmentation was found to
be entirely negligible and it was not pursued systematical-
ly for the other states.

RESULTS: ENERGY LEVELS

Two sets of valence-shell reference configurations were
employed in this study and are listed in Table I. Set B is
a minimal reference set in that it really makes little sense
to attempt a SD SOC calculation based on anything less.
Set A was adopted using the general rule that the refer-
ence set should comprise over 99% of the valence-
correlation wave function, which as it happens is virtual-
ly the same composition as in the full SOC calculation.
This means that, for the reference CSFs of Eq. (1),

pc.'b ~o.99 .

Sometimes the reference set was enlarged beyond that
called for by this criterion. For example, when a larger
set was indicated for Be than for 8+, the largest set was
used for both systems. Also, the 2s3s configuration was
included in the ground-state calculations as a precaution
against any tendency of the calculation to rotate the s
basis when fully correlated, i.e., the total wave function is
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TABLE I. Configuration-state functions included in the multiconfiguration reference sets for each of the states of Be and B and
their ionization limits calculated here. Totals are the maximum number of CSFs produced by single and double substitutions into the
reference set.

No.

1

2
3
4
5

6
7
8

9
10
11
Total number of
CSFs generated

2$2 'S

2s
2s 35
3$

2p

1995

2s2p 'P

2s 2p
3s 3p
2p 3d
3p 3d
3d4f

5986

2p2 1D

2p
3p
3d2
3d4d
4d
2$ 3d
2p4f

6240

2p2 1S

Reference set A
2s
2$ 3$
3$

2p
3p
3d2

4f 2

4689

2s3s 'S

2$

2$3$
3$
4s
2p
2p 3p
3p
4p 2

3d2

4d
4 2

5570

2s3d 'D

2p
3p
3d2

3d4d
4d
2$ 3d
2p4f

6213

2s2p P

2s2p
3$3p
2p 3d

4698

2p2 3P

2p
3p
3d2

3038

1s 22s

1s 22s

454

1

2
3
4
Total number of
CSFs generated

2$

2p

1342

2$ 2p
2p 3d

3272

2p
2$3d

2692

Reference set B
2s
3$

2p

2329

2$
2$3$
3$

2p

2242

2p
2$ 3d

2680

2s 2p

1621

2p

1060

1s 22s

454

0. 6-

0. 5-
0. 4

0. 3

H-F 2s2 P3

0. 0

-0. 1
0

r(a. u. )

I

10
I

12
I

14

FIG. 1. Comparison of 2p radial functions for the 2s2p
configuration of Be. HF refers to the Hartree-Fock approxima-
tion and SOC is the valence-shell natural orbital.

invariant under any unitary transformation of the 2s and
3s orbitals.

At this point, it is of some interest to digress brieAy to
consider an important effect of correlation on the orbitals
themselves. The 2s2p configuration of neutral beryllium
is the archetype of strong orbital term dependence. It
has been long known that the Hartree-Fock 2p orbital is
distinctly different for the P and 'P states, the singlet or-
bital being much more diffuse than the triplet. Figure 1

shows the 2p Hartree-Fock radial functions for these
states along with the natural orbital 2p function of the
valence-shell SOC calculation, the latter being essentially
the same as a multiconfiguration self-consistent field or-
bital. The "correlation relaxation" induced by the

multiconfiguration environment has produced a much
less term dependent 2p orbital, moving it substantially
closer to that of the P term, which, as it turns out, is vir-
tually unchanged by correlation. The important point
here is that the 2s2p configuration with this 2p function is
the appropriate reference configuration for a full scale
correlation calculation, not the Hartree-Fock
configuration. One could, of course, use the Hartree-
Fock configuration in a SOC calculation, but the refer-
ence set would then have to be enlarged so as to simulate
this orbital relaxation.

The total energies and ionization energies obtained
with SOC calculations based on the optimal reference set,
set A, are shown in Table II, for Be, and Table III, for
B+, and compared with the experimental ionization ener-
gies [10,11]. Also shown in these tables are the results of
the corresponding calculations on the lithiumlike ion lim-
it, which used the identical K-shell basis set, but indepen-
dently determined intershell orbitals. Ionization energies
are computed relative to the lithiumlike ion at exactly the
same level of approximation. Entries labeled L (1) are re-
sults obtained with only valence-shell configurations, but
including all configurations with orbitals of symmetry
through I. Those labeled L+KL(l) are obtained from
calculations that include all the valence CSFs plus the
intershell configurations with orbitals of symmetry
through I. Finally, the K-shell results refer to calcula-
tions with the full valence and intershell sets to which the
core correlation configurations of the indicated symmetry
have been added.

Since for some of the states the valence-correlation cal-
culations have not fully converged with respect to the 1
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series, this part of the correlation energy has been extra-
polated, assuming an incremental correlation energy
behaving as l along the series. This is the correction
labeled "l extrapolation" in the tables. No extrapolations
were carried out for either the E-shell- or intershell-
correlation energy contributions. Relativistic corrections
were calculated for the reference set of configuration-
interaction wave functions using the lowest-order Pauli
operators, the standard Darwin and mass correction
terms. Spin orbit, since it produces no shifts of the ener-

gy levels, was not included in these corrections. These
are very light atoms and one would expect relativistic
effects to be small, especially for the energy differences, as
is indeed the case. For a precision better than 5 —10
cm, it may be desirable to do something more sophisti-
cated, such as differencing the comparable nonrelativistic
and Dirac-Fock calculations. However, there are some
ambiguities here in determining exactly what is "compa-
rable" in a multiconfiguration environment and in avoid-
ing spurious nonrelativistic offsets [12].

The Davidson correction [13] is an attempt to estimate
residual correlation shifts due to the neglect of triple- and
quadruple-substitution configurations, based on the "un-
linked" term in the fourth-order perturbation energy for-
mula which is canceled by these configurations,

gE(4) E(2)( qg(l) qp(1) )

The Davidson formula adopted here is

where AE is the computed total correlation energy and
the scalar product is taken between the reference set
wave function and the full SOC function. The latter
product is simply the sum of the products of coefficients
of the reference CSFs in the two functions. This formula
was originally intended to estimate the magnitude of the
unlinked terms in the fourth-order perturbation energy
expression, based on a single-configuration zeroth-order
referent. To a large extent these effects have already been
included by basing the calculations on a
multiconfiguration referent. There has been considerable
discussion of the proper way to extend this correction to
the multiconfiguration reference problem [14] and Eq. (6)
is probably not an unreasonable version of such an exten-
sion. The last factor represents an ad hoc way of avoid-
ing the counting of nonexistent unlinked contributions
[15],%being the total number of electrons in the atom.

Several observations should be made about these re-
sults. First, for an accuracy in range of 50—100 cm
intershell correlations are necessary for the prediction of

TABLE II. Total energies (in a.u. ) and ionization energies (in 10 cm ') for Be, computed at various levels of approximation, based on the max-

imum CSF reference set, set A.

Approximation 2s' 'S 2s2p 'P 21D 2s3s 'S 2s3d D 2s2p P 2p2 3P ls 22s

Referent CI
L (though d)
L (through g)
L (through h)
L (through i)
L+KL (through d)
L+KL (through g)
L+KL (through i)
L +KL +K {through p)
L+KL+K (through h)
Relativistic
I extrapolation
Davidson correction

Referent CI
L (through d)
L (through g)
L (through h)
L (through i)
L+KL (through d)
L+KL (through g)
L+KL (through i)
L +KL +K (through p)
L +KL +K {through h)
Relativistic
I extrapolation
Davidson correction
Experiment'

'See Ref. [10].

—14.618 39
—14.61904
—14.619 20
—14.61922
—14.61922
—14.624 24
—14.624 34
—14.624 35
—14.662 67
—14.666 89
—14.669 45
—14.669 45
—14.669 51

—74.837
—74.979
—75.015
—75.018
—75.020
—75.199
—75.207
—75.207
—75.159
=75.163
—75.180
—75.180
—75.187
—75.192

—14.422 30
—14.423 79
—14.424 31
—14.424 40
—14.424 44
—14.429 96
—14.430 14
—14.430 15
—14.468 69
—14.472 88
—14.475 34
—14.475 39
—14.475 50

—31.802
—32, 129
—32.244
—32.264
—32.272
—32.561
—32.586
—32.587
—32.587
—32.585
—32.580
—32.591
—32.608
—32.627

Total
—14.359 35
—14.359 81
—14.359 98
—14,360 00
—14.360 00
—14.364 30
—14.364 56
—14.364 57
—14.403 59
—14.407 78
—14.410 20
—14.410 20
—14.410 27

Ionizatio
—17.987
—18.088
—18.126
—18.129
—18.130
—18.152
—18.195
—18.196
—18.301
—18.299
—18.286
—18.286
—18.294
—18.310

n energy
—20.496
—20.501
—20.503
—20.503
—20.503
—20.515
—20.515
—20.514
—20.506
—20.506
—20.509
—20.511
—20.515
—20.515

energy
—14.370 78
—14.370 80
—14.370 81
—14.370 81
—14.370 82
—14.375 07
—14.375 13
—14.375 14
—14.413 64
—14.417 84
—14.420 33
—14.420 34
—14.420 39

—14.325 41
—14.325 89
—14.326 02
—14.326 03
—14.326 04
—14.330 37
—14.33049
—14.33049
—14.369 13
—14.373 32
—14.375 79
—14.375 80
—14.376 08

—10.538
—10.643
—10.672
—10.675
—10.676
—10.706
—10.717
—10.717
—10.739
—10.736
—10.734
—10.737
—10.789
—10.764

—14.517 95
—14.518 50
—14.518 69
—14.518 70
—14.518 70
—14.523 80
—14.524 02
—14.524 03
—14.562 59
—14.566 79
—14.569 25
—14.569 26
—14.569 33

—52.794
—52.916
—52.957
—52.958
—52.959
—53.155
—53.189
—53.190
—53.196
—53.195
—53.191
—53.193
—53.202
—53.212

—14.345 11
—14.345 36
—14.345 69
—14.345 70
—14.345 71
—14.351 16
—14.351 50
—14.351 51
—14.390 79
—14.394 98
—14.397 37
—14.397 38
—14.397 45

—14.862
—14.918
—14.990
—14,992
—14.993
—15.269
—15.327
—15.329
—15.491
—15.489
—15,469
—15.471
—15.481
—15.497

—14.277 39

—14.281 59
—14.281 66
—14.281 66
—14.320 20
—14.324 40
—14.326 88
—14.326 88
—14.326 91
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the ionization energies. Second, core correlations
through I =1 are also necessary, although their effect is
generally opposite that of the intershell correlation.
Intershell corrections always drive the energy down rela-
tive to the ion limit. Core-correlation corrections, while
pushing the total energy down by a large amount, are
usually not as effective as in the lithiumlike ion and there-
fore the ionization energy is raised somewhat and by
differing amounts depending on whether the 2s in the ma-
jor referent is fully occupied, half occupied, or unoccu-
pied, as well as on the occupancy of the 2p orbital [16,17].
This means that the K-shell-correlation energy is different
for each of the states treated here and is different from
the correlation energy of heliumlike beryllium. The K-
shell energy correction for the Be ground state is comput-
ed here to be —0.04254 a.u. , whereas the comparable
calculation for heliumlike Be + gives —0.04401 a.u. All
of the remaining contributions of the harmonic series to
the core-correlation energy, however, are, to within 1

cm ', identical for all states considered here as well as
the ion limit for both Be and B+. This core-correlation
series, of course, is responsible for the slow convergence
of the total correlation energy, but is totally irrelevant for
the determination of excitation energies. The "exact non-
relativistic" total energy for the ground state of Be is

—14.66736 a.u. [3 6] and for B it is —23.34892 a.u.
[6]. The errors in the energies computed here of 0.00037
and 0.00055 a.u. , respectively, can be mostly accounted
for by truncations in the X-shell-correlation calculation.

In view of the fact that the ground state of the berylli-
um atom has been for so long a favorite target for
theoretical calculations, it is appropriate to make some
comparison with the most recent total-energy results; this
is done in Table IV. The best estimates of the exact non-
relativistic total energy indicate that the current results
are in error by about 90 cm '. All the directly calculated
results, however, agree considerably better with each oth-
er and with the results of this paper, especially consider-
ing the fact that for all the other CI calculations, the K-
shell correlation is truncated at i orbitals. For the
present calculation, the K-shell correlation is truncated at
h orbitals (l =5) and no attempt has been made to extra-
polate this correction. The estimated exact values have
been obtained by combining the l-extrapolated total
correlation energy with estimates of the basis set trunca-
tion errors.

While the ground state, except for the K shell, seems to
have converged rather well, it is somewhat disconcerting
that, even for the valence correlation, not all of the states
have converged even though valence-shell CSFs through

TABLE III. Total energies (in a.u. ) and ionization energies (in 10 cm ') for B+, computed at various levels of approximation, based on the max-
imum CSF reference set, set A.

Approximation 2s' 'g 2s2p 'P 21D 2p2 1g 2s3s 'S 2s3d 'D 2s2p P 2p2 3P ls 22s

Referent CI
L (through d)
L (through g)
L (through h)
L (through i)
L+KL (through d)
L+KL (through g)
L+KL (through i)
L +KL +K (through p)
L+KL+K (through h)
Relativistic
I extrapolation
Davidson correction

—24.297 79
—24.298 78
—24.299 05
—24.299 07
—24.299 08
—24.305 70
—24.305 85
—24.305 86
—24.343 89
—24.348 37
—24.355 20
—24.355 21
—24.355 25

—23.958 14
—23.960 29
—23.961 31
—23.961 52
—23.961 61
—23.970 82
—23.971 22
—23.971 24
—24.009 52
—24.013 97
—24.020 57
—24.020 68
—24.020 77

Total energy
—23.828 55 —23.712 87 —23.670 58 —23.593 73
—23.829 37 —23.712 87 —23.670 86 —23.594 29
—23.830 11 —23.715 44 —23.671 32 —23.595 06
—23.830 20 —23.715 66 —23.671 44 —23.595 13
—23.830 23 —23.715 75 —23.671 49 —23.595 15
—23.838 06 —23.722 90 —23.678 19 —23.600 66
—23.838 70 —23.723 41 —23.678 39 —23.600 79
—23.838 74 —23.723 45 —23.678 41 —23.600 80
—23.877 84 —23.762 37 —23.71698 —23.639 26
—23.882 30 —23.766 83 —23.721 43 —23.643 70
—23.888 64 —23.773 27 —23.727 94 —23.650 27
—23.888 67 —23.773 38 —23.728 00 —23.650 30
—23.888 73 —23.773 59 —23.728 21 —23.650 37

—24.127 08
—24.127 46
—24.127 74
—24.127 75
—24.127 75
—24. 135 27
—24.135 67
—24.135 69
—24.173 98
—24. 178 44
—24.185 05
—24. 185 06
—24.185 11

—23.843 84 —23.375 97
—23.844 18
—23.844 64
—23.844 66
—23.844 66
—23.853 83 —23.381 22
—23.854 46 —23.381 31
—23.854 49 —23.381 32
—23.893 62 —23.419 78
—23.898 07 —23.424 23
—23.904 40 —23.430 81
—23.904 41 —23.430 81
—23.904 47 —23.430 83

Referent CI
L (through d)
L (through g)
L (through h)
L (through i)
L+KL (through d)
L+KL (through g)
L+KL (through i)
I +KL+K (through p)
L +KL+K (through h)
Relativistic
1 extrapolation
Davidson correction
Experiment'

'See Ref. [11].
See Ref. t19].

—202.307
—202.523
—202.582
—202.588
—202.590
—202.890
—202.904
—202.904
—202.810
—202.815
—202.870
—202.872
—202.877
—202.887

—127.765
—128.237
—128.462
—128.507
—128.526
—129.395
—129.463
—129.467
—129.427
—129.426
—129.431
—129.455
—129.469
—129.491

Ionization energy
—99.325 —73.937
—99.505 —73.937
—99.667 —74.501
—99.688 —74.549
—99.694 —74.570

—100.259 —74.986
—100.381 —75.079
—100.388 —75.085
—100.528 —75.187
—100.530 —75.188
—100.477 —75.157
—100.484 —75.181
—100.492 —75.223
—100.524 —75.226

—64.657
—64.718
—64.819
—64.845
—64.856
—65.174
—65.198
—65.200
—65.224
—65.223
—65.208
—65.221
—65.265
—65.909b

—47.790
—47.914
—48.082
—48.099
—4S.103
—48.160
—48.168
—48.168
—48.168
—48.166
—48.162
—48.169
—48.180
—48.201

—164.842
—164.926
—164.986
—164.988
—164.988
—165.486
—165.555
—165.558
—165.520
—165.521
—165.529
—165.531
—165.536
—165.537

—102.681
—102.755
—102.856
—102.860
—102.861
—103.721
—103.839
—103.845
—103.990
—103.991
—103.936
—103.938
—103.946
—103.960
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TABLE IV. Comparison with other theoretical results for the total energy (in a.u. ) of the ground
state of neutral beryllium.

Reference
Total energy (a.u. )

Direct calculated Estimated exact

Bunge [3], CI
Rizzo, Clementi, and Sekiya [5], CI
Chung, Zhu, and Wang [7], CI
Davidson et al. [6], CI
This work

—14.666 90
—14.666 96
—14.667 04
—14.667 18
—14.666 89

—14.667 33

—14.667 35
—14.667 36

1=6 were included. This problem gets worse for higher
Z, as indicated by the B+ results where, for the 2s2p 'I'
and 2p 'S states, adding CSFs containing i orbitals re-
sults in an energy correction of 20 cm '. The Davidson
correction normally results in a small improvement in the
binding-energy prediction and the largest difference be-
tween calculated and experimental ionization energies,
with one exception, is 30 cm ' for the lowest 'D state in
B+

This exception, however, is particularly perplexing.

The 2s3s 'S term in B+ still disagrees from experiment by
640 cm, while for Be it is calculated almost exactly. In
fact, the initial indication of this discrepancy prompted
the inclusion of more configurations in the reference set
than for any other state. It is possible that the problem is
related to this state being the third eigenvalue for B+,
while it is only the second in Be, although repeating the
calculations with a valence basis from the 2p state pro-
duced no significant change.

Table V shows the results of the same sequence of cal-

TABLE V. Total energies (in a.u. ) and ionization energies (in 10 cm ) for Be and 8+, based on the minimal CSF reference set, set B.

Approximation 2s "S 2s2p 'P 2p 2 1g) 2p' 'S 2s3s 'S 2s3d D 2s2p P 2p P 1s22s

Referent CI
L (through i)
L +KL (through i)
L+KL+K (through h)
Relativistic + I extrapolation
Davidson correction

—14.616 82
—14.61922
—14.624 34
—14.666 81
—14.669 36
—14.669 47

—14.411 26
—14.424 44
—14.430 07
—14.472 21
—14.474 71
—14.475 21

Be total energy
—14.355 33
—14.360 00
—14.364 53
—14.407 47
—14.409 89
—14.410 15

—14.368 66 —14.324 59
—14.370 82 —14.326 04
—14.375 14 —14.33048
—14.417 65 —14.373 13
—14.420 15 —14.375 61
—14.420 35 —14.376 99

—14.511 49
—14.518 70
—14.523 98
—14.566 32
—14.568 79
—14.569 11

—14.336 29 —14.277 39
—14.345 71
—14.351 44 —14.281 66
—14.394 41 —14.324 40
—14.396 80 —14.326 88
—14.396 86 —14.326 91

Referent CI
L {through i)
L+KL {through i)
L+KL+K (through h)
Relativistic + I extrapolation
Davidson correction
Experiment

—74.493
—75.020
—75.204
—75.145
—75.162
—75.179
—75.192

—29.380
—32.272
—32.570
—32.437
—32.443
—32.546
—32.627

Be ionization energy
—17.106
—18.130
—18,187
—18.230
—18.217
—18.267
—18.310

—20.031
—20.503
—20.514
—20.464
—20.469
—20.505
—20.515

—10.359
—10.676
—10.712
—10.693
—10.694
—10.990
—10.764

—51.376
—52.959
—53.179
—53.092
—53.091
—53.153
—53.212

—12.925
—14.993
—15.312
—15.363
—15.345
—15.351
—15.497

Referent CI
L (through i)
L+KL (through i)
L +KL +K (through h)
Relativistic + I extrapolation
Davidson correction

—24.296 36
—24.299 08
—24.305 86
—24.348 33
—24.355 17
—24.355 23

—23.949 45
—23.961 61
—23.971 20
—24.013 73
—24.020 43
—24.020 65

B+ total energy
—23.819 83 —23.686 20 —23.668 70 —23.586 21
—23.830 23 —23.715 75 —23.671 49 —23.595 15
—23.838 70 —23.723 36 —23.678 28 —23.600 77
—23.882 05 —23.766 07 —23.720 66 —23.643 27
—23.888 43 —23.772 63 —23.727 33 —23.649 87
—23.888 64 —23.773 65 —23.733 04 —23.650 28

—24.120 15
—24.127 75
—24.135 65
—24. 178 18
—24. 184 80
—24.184 99

—23.835 06 —23.375 97
—23.844 66
—23.854 45 —23.381 32
—23.897 81 —23.424 23
—23.904 15 —23.430 81
—23.904 35 —23.430 83

Referent CI
L (through i)
L+KL (through i)
L+KL+K (through h)
Relativistic +l extrapolation
Davidson correction
Experiment

'See Ref. [10].
"See Ref. [11].
See Ref. [19].

—201.994
—202.590
—202.902
—202.807
—202.864
—202.873
—202.887

—125.859
—128.526
—129.456
—129.373
—129.401
—129.445
—129.491

8+ ionization energy
—97.412 —68.084 —64.243
—99.694 —74.570 —64.856

—100.378 —75.065 —65.172
—100.476 —75.022 —65.056
—100.430 —75.018 —65.075
—100.473 —75.235 —66.323
—100.524 —75.226 —65.909'

—46.141
—48.103
—48.160
—48.072
—48.075
—48.160
—48.201

—163.321
—164.988
—165.549
—165.464
—165.473
—165.510
—165.537

—100.753
—102.861
—103.834
—103.933
—103.881
—103.921
—103.960
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TABLE VI. Comparison of total-energy results (in a.u. ) for the 2s2p P and 2p P states from SD
SOC calculations using CSFs based on reference pair parent couplings and all possible couplings.
Reference set B is used, which, in both instances, amounts to the single-configuration Hartree-Fock cal-
culation.

Approximation

2s2p P
Total number Total

of CSFs energy

Be

2p P
Total number

of CSFs
Total

energy

Valence shell (i)
Parent coupled KL(i)
All couplings KL {i)
Parent coupled KL(i)+K(h)
All couplings KL(t)+K(h)

69
1410
2772
1621
4603

—14.518 70
—14.523 98
—14.523 99
—14.566 32
—14.566 35

38
865

1441
1060
3051

—14.345 71
—14.351 44
—14.351 44
—14.394 41
—14.394 41

Valence shell (i)
Parent coupled KL(i)
All couplings KL(i)
Parent coupled KL (i)+K(h)
All couplings KL (i)+K(h)

69
1410
2772
1621
4603

—24.127 75
—24.135 65
—24.135 67
—24.178 18
—24.178 20

38
865

1441
1060
3051

—23.844 66
—23.85445
—23.854 45
—23.897 81
—23.897 82

culations based on the minimal reference set, set B of
Table I. Not surprisingly, the computed energies are not
as accurate as with set A, even though the reference set
exceeds the Hartree-Fock configuration for every state,
except the two triplets. The emphasis here too is on the
ionization energies and transition energies. For neutral
beryllium, before applying the Davidson correction, these
calculations are worse than the previous ones by an
amount ranging from 18 cm ', for the ground state, to
148 cm ', for 2s2p 'P. For B+, the results are similar,
sometimes better, sometimes worse. Enlarging the re-
ferent makes a difference of 163 cm ' in the 2p 'S state
of B+. The Davidson correction is larger, of course, but
less reliable in those cases where it is needed the most,
overshooting for the 2s3s state by about 400 cm '. This
should not be surprising, since the correction was
designed to estimate small "fine tuning" corrections. The
importance of the 2p mixing in the 2s3s 'S state is un-
derscored by the fact that the minimal referent CI calcu-
lation, with only four CSFs, gives the wrong ordering of
the energy levels. The result quoted for the reference CI
energy for the 2s3s state of B+ is therefore the second ei-
genvalue, not the third.

Just as in the earlier calculations, the core-correlation
contributions of d and higher angular momentum substi-
tution terms is essentially of no importance for ionization
and excitation energies. Intershell-correlation contribu-
tions to the ionization energy, being significantly smaller
to begin with, are affected much less by enlarging the
reference set than those due to core correlation —the s
and p contributions.

As discussed earlier, all pair substitution configurations
are based on the parentage a~gular momentum couplings
of the reference CSFs. One could also have made these
pair substitutions including all possible angular momen-
tum couplings as well as all possible orbital substitutions.
To test the effect of doing so, the minimal referent, set B,
calculations were repeated for the 2p P and 2s2p P

RESULTS: OSCILLATOR STRENGTHS

Oscillator strengths were also calculated for all possi-
ble electric dipole transitions between the states treated
here. The oscillator strength is given by the usual two
forms

and

f& = bE( (4; ~r~N ) ( (length)
3g;

(7a)

f„= ((@;~V~@J)) (velocity) .
3g; AE

(7b)

Here g; is the statistical weight of the initial state, AE is
the transition energy (in a.u. ), and the squared transition

states expanding the CSF basis to include all possible
couplings for both the intershell-correlation terms as well
as the core. The results of doing this are summarized in
Table VI, which compares total energies calculated with
parentage-coupled calculations with that of all possible
couplings. The entries for X-shell correlation are ob-
tained with all possible angular mornenturn couplings in
both the intershell terms as well as the X shell. Not
surprisingly, the effect is small, the largest energy shift
being -6 cm '. The number of configurations generat-
ed, however, is much larger, by about a factor of 3. If
one were tempted to evaluate a calculation simply by
counting configurations, the all-coupling calculation
would clearly be somewhat misleading. It should be not-
ed, however, that these triplet terms present the worst
case scenario. For the ground-state calculation, there
would be the same number of CSFs in either the parent-
coupled or unrestricted coupling schemes. The overall 'S
symmetry imposes a suEciently strong constraint on the
coupling possibilities to rule out any spuriously coupled
terms.
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matrix element, the multiplet strength, is assumed to be
summed over all degeneracies in both initial and final
states. Oftentimes, one quotes the product of the g and
the f value, which is symmetric with respect to the direc-
tion of the transition, a practice which is followed here.
The two forms of the f value must agree when computed
with the exact wave functions. They need not do so when
computed with approximate functions and usually do
not, in varying degrees. Agreement of length and veloci-
ty oscillator strengths, of course, is a necessary but not
sufficient condition that the calculated values be correct.
Since the length form emphasizes the outer regions of the
atom where valence correlation corrections have the
greatest effect, it is usually the one preferred, even though
it differs significantly from the velocity. The velocity
form tends to be somewhat more democratic in its sam-
pling of the wave functions and therefore requires a more
even-handed treatment of correlation in both the core
and valence regions of the atom. Since the present calcu-
lations are directed at precisely this problem, it is here
suggested that the relative agreement of these two forms
of the f value be taken as some measure of the accuracy
of the f-value calculations.

For a SOC wave function, Eq. (1), the multiplet
strength is then given by

(8)

with a similar expression for the velocity form. It should
be noted that, since each of the atomic states are comput-
ed variationally and independnetly of each other, the
many electric dipole matrix elements of Eq. (8) over the
CSFs involve determinants of overlap integrals of the
basis orbitals of the two states, as well as "virtual" dipole
contributions arising from the nonorthogonality of these
orbitals. Since the present calculations are all based on
angular momentum projected determinantal wave func-
tions, including fully such contributions to the matrix ele-
ments was therefore quite straightforward and was done
so for all the calculations reported here, even though the
effect is not very large in an atom such as beryllium,
where there are only two electrons outside a 1s core,
which is virtually unchanged from state to state.

The results for the gf values obtained with the various
levels of approximation, in exactly the same form as the
energy results, are shown in Tables VII (Be) and VIII
(B+ ). In every case the experimental transition energy is
used in computing gf, which then throws the burden of
the accuracy of the calculation fuBy on the theoretical
value of the multiplet strength. Several observations can
be made with regard to these results.

Usually, the addition of intershell correlation quickly
brings the velocity form into good agreement with the
length calculation, which in turn is changed much less
from the valence-shell-only calculation. While adding
the core correlations through p-symmetry terms makes a

TABLE VII. Theoretical gf values for Be.

nsition
0

2s~ 'S—2s2p 'P
2349.4

2s2p 'P —2p D 2s2p 'P-2s3s S
6984.7 8256.3

2s2p 'P —2s3d 'D
4573.9

2s2p P —2p P
2651.5

Referent CI

L shell (d)

L shell (g)

L shell (i)

L (i)+EL (d)

L (i)+KL (i)

L (i)+KL (i)+E (p)

L (i )+KL (i)+K (h)

length
velocity
length
velocity
length
velocity
length
velocity
length
velocity
length
velocity
length
velocity
length
velocity

1.3657
1.4940
1.3897
1.4585
1.3923
1.4543
1.3925
1.4539
1.3743
1.3780
1.3734
1.3773
1.3756
1.3769
1.3755
1.3775

Reference set A
0.0000
0.0004
0.0031
0.0011
0.0024
0.0006
0.0022
0.0005
0.0010
0.0011
0.0007
0.0008
0.0001
0.0000
0.0000
0.0000

0.3501
0.3550
0.3753
0.3598
0.3710
0.3612
0.3702
0.3616
0.3596
0.3497
0.3586
0.3498
0.3560
0.3504
0.3559
0.3503

1.0057
0.8864
1.2206
1.2052
1.2320
1.2339
1.2332
1.2373
1.2195
1.2029
1.2201
1.2046
1.2030
1 ~ 1809
1.2011
1.1784

4.0624
4.3533
4.0563
4.3335
4.0755
4.2983
4.0758
4.2977
4.0094
4.0229
4.0076
4.0195
4.0228
4.0154
4.0232
4.0173

Referent CI

L (i)+KL (d)

L (i)+KL (i)

L (i )+KL (i)+E (p)

L (i)+KL (i)+E (h)

length
velocity
length
velocity
length
velocity
length
velocity
length
velocity

1.3394
1.4840
1.3737
1.3808
1.3728
1 ~ 3802
1.3752
1.3810
1.3751
1.3817

Reference set B
0.0036
0.0124
0.0010
0.0011
0.0007
0.0008
0.0002
0.0001
0.0002
0.0001

0.3581
0.3767
0.3575
0.3520
0.3567
0.3524
0.3612
0.3614
0.3616
0.3621

0.8822
2.8773
1.2123
1.2003
1.2129
1.2016
1.1918
1.1677
1.1900
1.1654

4.7944
3.2064
4.0115
4.0136
4.0103
4.0083
4.0809
3.9198
4.0865
3.9138
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small change, just as with the energy difference calcula-
tions, higher-symmetry core correlations introduce a
negligible alteration in the f value. In general, length
and velocity forms agree to within l%%uo, the largest
disagreements being about 2%%uo for the transitions involv-
ing 2s3s and 2s3d in neutral beryllium. It is suggested
here that one should adopt the length value with an un-
certainty of perhaps twice the I-U discrepancy. The f
value calculations are not as sensitive to the choice of
reference set as the energy results, which suggests that for
more complex systems it may not be so important to
make the SOC expansion quite so exhaustive. The only
exception is the triplet transition 2s2p-2p in neutral
beryllium where, for some reason, the minimal referent
final SOC still shows a l-U discrepancy of 4%. As soon as
one moves to the singly ionized isoelectronic ion, the l-u
disagreement falls well below l%%uo for all cases, which is
encouraging for ionic f-value calculations.

The 2s2p 'P —2p 'D transition in Be and the
2s2p 'P —2s3s 'S transition in 8+ are both notable for the
almost total mutual cancellation of the contributions to
the transition moment of the dominant CSFs in the wave
function, resulting in essentially zero oscillator strengths.
With the ensuing 1oss in significant figures of so much of
the multielectron integrand, it is dificult, if not impossi-
ble, to assign any accuracy to the resulting theoretical
values, irrespective of any putative agreement or

disagreement with experiments. In the case of the 2s2p-
2s3s transition in 8+, the weakness of the transition
probably rules out the use of this transition for determin-
ing the experimental position of the 'S level. We note
also the fact that the minimal referent CI calculation
alone gives f values that bear no resemblance whatever to
the final result, even though the length and velocity
values agree reasonably well.

These gf-value calculations are compared with experi-
mental [18,19] and other theoretical results in Table IX.
Here, only those calculations which attempt to include
explicitly either intershell- or core-correlation corrections
are included for comparison. The variational r, 2 calcula-
tion was the first accurate treatment of core effects and is
potentially the most accurate [20]. However, consider-
able restrictions in the number and types of terms had to
be invoked to keep the calculation manageable. The CI
calculations of Hibbert [21] consisted of a set of calcula-
tions of successively longer expansion lengths, with
selected intershell CSFs being included only for the short-
er ones. The correction so obtained, however, was then
applied to the most complete valence-shell calculation.
The CI calculations of Moccia and Spizzo [22] are STO-
based, large valence-shell calculations with selected inter-
shell correction terms added. The Bethe-Goldstone cal-
culation [23] is essentially a sequence of two-particle CI
calculations where the various pair contributions are

Transition
k (A)

TABLE VIII. Theoretical gf values for B+.

2s 'S—2s2p P 2s2p P —2p 'D 2s2p P —2s3s S 2s2p P —2s3d D 2s2p P—2p S 2s2p P—2p P
1362.5 3452.2 1572.8 1230.2 1842.8 1624.0

Referent CI

L shell (d)

L shell (g)

L shell (i)

L (i)+KL (d)

L (i)+KL (i)

L (i)+KL (i)+K(p)

L (t)+KL (i}+K(h)

length
velocity
length
velocity
length
velocity
length
velocity
length
velocity
length
velocity
length
velocity
length
velocity

0.9937
1.1067
1.0129
1.0878
1.0146
1.0824
1.0147
1.0816
1.0001
1.0024
0.9991
1.0009
0.9997
0.9996
0.9997
1.0001

Reference set A
0.4963
0.5416
0.4773
0.5008
0.4834
0.5088
0.4843
0.5117
0.4839
0.4830
0.4842
0.4814
0.4873
0.4855
0.4874
0.4861

0.0075
0.0091
0.0051
0.0058
0.0037
0.0040
0.0032
0.0034
0.0006
0.0007
0.0005
0.0006
0.0002
0.0003
0.0002
0.0003

1.6813
1.6670
1.5873
1.5450
1.5974
1.5732
1.5980
1.5761
1.5562
1.5456
1.5528
1.5459
1.5591
1.5557
1.5597
1.5567

0.6753
0.7379
0.6878
0.7161
0.6902
0.7169
0.6906
0.7155
0.6786
0.6777
0.6782
0.6771
0.6793
0.6763
0.6793
0.6764

3.1178
3.3970
3.1196
3.3917
3.1275
3.3690
3.1277
3.3685
3.0798
3.0857
3.0784
3.0818
3.0846
3.0801
3.0847
3.0816

Referent CI

L (i)+KL (d)

L (i)+KL (i)

L (i)+KL (i)+K (p)

L (i)+KL (i)+K(h)

length
velocity
length
velocity
length
velocity
length
velocity
length
velocity

0.9903
1.1137
0.9997
1.0024
0.9987
1.0009
0.9996
1.0000
0.9996
1.0006

Reference set 8
0.4584
0.3605
0.4835
0.4825
0.4838
0.4808
0.4858
0.4809
0.4858
0.4811

0.2590
0.2258
0.0006
0.0007
0.0005
0.0006
0.0004
0.0005
0.0004
0.0005

1.6789
1.6894
1.5539
1.5460
1.5505
1.5462
1.5515
1.5495
1.5516
1.5499

0.5584
0.8107
0.6778
0.6776
0.6774
0.6772
0.6787
0.6744
0.6787
0.6744

3.4857
2.4909
3.0803
3.0794
3.0792
3.0743
3.0996
3.0387
3 ~ 1012
3.0366
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TABLE IX. Comparison of gf values calculated here with experiment and other calculations.

Transition Present
Variational

(r„)'
CI CI (Moccia Bethe-

(Hibbert) and Spizzo)' Goldstone Expt.
Sequence
analysis'

2s 'S—2s2p 'P

2s2p 'P —2s3s 'S

2s2p 'P —2s31 'D

2s2p P—2p P

length
velocity
length
velocity
length
velocity
length
velocity

1.376
1.378
0.356
0.350
1.201
1.178
4.023
4.017

1.344
Be

1.371
1.377

4.068
4.050

1.385
1.331
0.360
0.370
1.204
1.215
4.042
3.704

1.386
1.378

4.048
4.007

1.341+0.051 1.341+0.047

2s 'S—2s2p 'P

2s2p 'P —2p 'S

2s2p 'P —2p 'D

2s2p P—2p P

length
velocity
length
velocity
length
velocity
length
velocity

1.000
1.000
0.679
0.676
0.487
0.486
3.085
3.082

B+
1.021
0.998
0.690
0.699
0.483
0.501
3.132
3.141

1.013
1.009

0.971+0.079 0.965+0.020

0.72+0.06g

3.07+0. 16g

'Sims 8r, Whitten [20].
Hibbert [21].

'Moccia and Spizzo [22].
Moser, Nesbet, and Gupta [23].

'Reistad and Martinson [24].
"Martinson, Gaupp, and Curtis [18].
~Bashkin et al. [19].

computed independently and then combined for the final
result.

With the exception of the velocity value of Moccia and
Spizzo, all the calculations are within 3%%uo of each other
and agree with the experiments to within the experirnen-
tal uncertainties. The marginal exception to this involves
the resonance line f value of 8+ obtained by Reistad and
Martinson [24] by smoothing the data for the isoelectron-
ic sequence in an attempt to reduce the error bars for the
entire sequence. The internal consistency of the present
data and the agreement with most of the other calcula-
tions suggest that the experiments may be a bit low for
the resonance transitions in Be and B+. As a rule, the
somewhat ad hoc correction procedure of Hibbert seems
to work rather well and this approach should probably be
explored further.

CONCLUSIONS

The calculations described here indicate that, for pur-
poses of accurately computing oscillator strengths and
valence-shell transition energies, a complete treatment of
core correlations is unnecessary, that is, for an accuracy
of about 1% for f values and 10—50 cm ', i.e., 0.005 eV,
for energy differences. It is important, especially for
transition energies, to include core correlations through
the primary occupied valence-shell symmetries in a fairly
complete manner, i.e., the X-shell semi-internal or "in-
terference" terms in the SOC trial function. The slowly
convergent, higher-symmetry core terms have no effect
on f values and, to within 1 —2 cm, cancel out in all en-
ergy differences. Another redundancy which unneces-

sarily expands the size of the SOC expansion significnatly
pertains to the angular momentum couplings of the pair
substitution configurations. Only those terms coupled in
the same way as the fractional parentage of the reference
configurations make a contribution of any significance to
either f values or transition energies.

All the calculations reported here have involved single-
and double-substitution configurations in the wave-
function expansion, but with reference to a
multiconfiguration set of configuration-state functions.
Single referent, Hartree-Fock SD calcultions have long
been known to suffer from their inability to adequately
account for the cancellation of unlinked diagram terms in
a perturbation expansion of the wave function. In a vari-
ational SOC calculation this cancellation is accomplished
by including triple- and quadruple- and higher, substitu-
tion CSFs. The present results indicate that a SD calcu-
lation, when based on a carefully chosen
multiconfiguration reference set, appears to account for
the bulk of this shortfall. It is important to throw as
much of the correlation as possible into the reference set,
the most general way being to use a referent obtained
from a

multiconfigur

atio Hartree-Pock, or multi-
configuration self-consistent field, calculation. The
present work suggests that the reference set should con-
stitute something like 99%%uo of the final wave function. At
this point, the residual corrections are small enough that
estimation procedures such as the Davidson correction
can account for a significant part of the remaining
discrepancy in the energy. It is most likely that the
remaining transition energy discrepancies arise from the
unaccounted for triple- and quadruple-substitution terms.
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The 2s3s 'S state of singly ionized boron stands out for
the large disagreement between theory and experiment.
It is not clear how to improve the calculations sufticiently
to remove the discrepancy. The same state in neutral
beryllium is calculated quite well, as is the 2p 'S state of
8+. In this case, this is the third 'S state, which conceiv-
ably might have something to do with the problem, al-
though the multiconfiguration reference set was enlarged
in such a way as to account for this situation. As of this
writing, this anomaly remains.

While the multiconfiguration referent is important for
accurately calculating oscillator strengths, it is much less
so than for the energies. In general, the length form of
the f value has already converged with a valence-shell-
only-correlation calculation. Intershell correlations, and
to a lesser extent core correlation, serve mainly to bring
the velocity form into agreement with the length result.
The length form oscillator strengths all appear to be ac-
curate to within 1 —2%. The exceptions, of course, are
the large configuration cancellation cases, the
2s 2p 'P —2p 'D transition in beryllium and the
2s2p 'P —2s3s 'S transition in 8+, where the cancellation
is so complete that it is not possible to say much about
the f value at all. It should be noted that, in both these
cases, the calculations using only the minimal reference
set CSFs yield wildly erroneous f values and, in the B+
case, length and velocity values which even agree reason-
ably well.

It is, of course, somewhat risky to generalize from
these results to atomic calculations in general. Probably,
one will find the same general qualitative behavior of
correlation contributions to energy differences and f
values for most first row atoms and ions. The state-
dependent semi-internal core-correlation effect will prob-
ably diminish significantly for atoms on the right-hand
side of the Periodic Table, since the 2s and 2p orbitals are
usually at or near full occupancy. While it is tempting to
extend these ideas to the second or third row atoms, the
larger occupancy and more diffuse nature of the core
would make such speculation, at best, unwise.
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APPENDIX

Table X shows the E-shell correlation basis derived
from SOC calculations on the ground state of the helium-
like ions Be and B +. The basis sets utilized two g's
for each symmetry, with the principal quantum numbers
running from a starting value to some maximum. This is
indicated in the tables by the notation n, —n2, which

TABLE X. K-shell basis set of Slater-type orbitals obtained
from calculations of the ground state of the heliumlike ions.
Column 1 gives the principal quantum numbers as defined in

Eq. (3) of the text. Columns 2 and 3 show the corresponding
values of the nonlinear parameters g. Total energies are given
in a.u.

Principal quantum numbers

2s
2s-3s

2p
2S-5u
3d
3d-6d

4f 6f-
5g
5g-7g
6h
6h-7h
7t-8I.

Etotal
aEexact

'See Ref. [25].

Be2+

7.7
10.9
5.15

12.3
6.72

15.1
8.9

16.3
10.9
18.9
13.6
20.0
19.0

—13.655 312
—13.655 566

B3+

9.8
13.4
6.6

15.6
8.55

19.1
11.3
20.6
13.8
23.9
17.3
25.2
24.0

—22.030 697
—22.030 973

means the set of STOs with the given g and principal
quantum numbers n&, n&+1, . . . , n2. Such an arrange-
ment reduces the variational calculation to a two-
parameter optimization for each orbital symmetry, just as
the "even-tempered" basis set approach does. Even-
tempered sets were also investigated and found to give
essentially the same accuracy as the current double g
ones, but with a somewhat greater tendency towards
linear dependence. In both cases, as the sets were en-
larged, linear dependence became a problem, slightly
more so for the even-tempered sets.

The computed total energies are also given and com-
pared with the exact nonrelativistic values from highly
accurate r, z calculations [25]. A significant part of the
energy discrepancy is a consequence of truncating the
harmonic series at l =6, i.e., i orbitals. This basis set was
used for the core and core-valence correlation of all states
of Be (and B+). The correlation orbitals were obtained
from a natural-orbital transformation of the heliumlike
ground-state wave function. To obtain the beryllium
atom correlation orbitals, these orbitals were appended to
the valence set, sequentially Schmidt ortho gonalizing
them to the valence orbitals. The entire orbital set was
then used to represent core and core-valence correlations.
Finally, it should be noted that Table X gives only the
correlation basis. Thus, for s functions, the basis actually
consisted of the three STOs given here plus the ground-
state Hartree-Fock set.
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