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by asymptotic expansion
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An asymptotic expansion due to Menzel and Pekeris [Mon. Not. R. Astron. Soc. 96, 77 {1935);re-

printed in Selected Papers on Physical Processes in Ionized Plasma, edited by D. H. Menzel (Dover, New

York, 1962)] has been used to give a series expansion for the bound-bound and bound-continuum oscilla-

tor strengths. For the bound-bound transitions between the initial and final principal quantum numbers

n and n', and for any n and n' considered, the oscillator strength is within 0.5% accuracy of the exact
values. For the bound-continuum oscillator strength, and continuum energies c ~ 1 Ry, the accuracy is

better than 1%. For n c &&1, the method of Menzel and Pekeris is inapplicable. Using an alternative

method, an expansion in terms of n and c, is derived that gives the oscillator strength within 1%
accuracy.

PACS number(s): 31.50.+w, 32.70.Cs, 32.80.Fb, 33.80.Rv

I. INTRODUCTION

Radiative transition probabilities among high-lying
Rydberg states are of interest in studying the atomic ex-
cited states produced by laser beams. In astrophysics,
these probabilities are essential in the study of the radio
recombination lines, and a knowledge of the recombina-
tion rates between electrons and ions, which contain as a
factor the bound-continuum oscillator strength, is neces-
sary for the study of the recombination spectra and ion-
ization equilibrium between ions and neutrals in the iono-
sphere and gaseous nebulae.

Menzel took an early interest in evaluating the bound-
bound, bound-continuum, and continuum-continuum hy-
drogenic oscillator strengths due to their astrophysical
applications, and through a number of papers [1—3] ex-
tensively formulated and tabulated these quantities.
References should also be given to Green, Rush, and
Chandler [4], who tabulated the bound-bound oscillator
strengths, and Karzas and Latter [5], who tabulated the
bound-continuum oscillator strengths. Bessis, Bessis, and
Hardinger [6] have found a closed expression in the form
of multiple summations for the bound-bound oscillator
strength. Similar work has been done by Hardinger,
Bessis, and Bessis [7] for the bound-continuum oscillator
strength. However, the last four works are limited to
transitions among low-lying energy levels.

Menzel and Pekeris [1] applied the method of steepest
descent to the evaluation of the bound-bound, bound-
continuum, and continuum-continuum oscillator
strengths for transitions between a lower level n and
upper levels n' and c., where n and n' are the initial and
final principal quantum numbers, and c is the energy of
the electron in the continuum in Rydberg units. The solu-
tion is in the form of an expansion valid for n »1, and
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n /n' « 1, or n 8 « 1. An arithmetic error in their calcu-
lation has been corrected by Burgess [8]. With five terms
in the expansion, agreement with the exact values is
found to be within a few percent.

In this paper eight terms in the expansion are kept, and
the resulting bound-bound oscillator strength for any n
and n' considered is within 0.5% of the exact values,
even for such low-lying transitions as n =1 to n'=2. For
the bound-continuum transitions, and in the range e ~ 1,
the resulting oscillator strength for all possible transitions
obtained here is less than 1% different from the exact
values. For c.»1, using a method independent of that of
Menzel and Pekeris, values of the oscillator strengths for
all transitions considered are within 1% of the exact
values.

II. RESULTS AND DISCUSSION

25f (n, n')=
3n

[(n n')/(n—+n')] '"+" ' b( , n')n

n n'(n n' )—
where

b(n, n')=[F( n, n'+ 1, l, y—}—]z
—[F( n', n+ 1, l—,—y)]

4nn'

(n n')—
where F(a,13,y, g} is the hypergeometric function.

Using these expressions and the method of steepest
descent, Menzel and Pekeris [1] derived an asymptotic
series for the bound-bound, bound-continuum, and
continuum-continuum oscillator strengths. When this
series is evaluated up to eight terms, realizing that some
terms drop out, for the bound-bound oscillator strength
we find that

The bound-bound oscillator strength f(n, n') for a
transition between the lower and upper principal quan-
tum numbers n and n' of a hydrogenic atom is given by
[9]
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TABLE I. A comparison of the 6ve-term and eight-term approximations with the exact values of
f (n, n') [3,4], and

g ~~ (n, e) [5,10]. Numbers in brackets indicate powers of ten.

1

2
5
5

40
900
900

1

I
5
5

10
20
40
50

n'

2
3
6

40
41

901
906

c (Ry)

0
10
0

11.11
11.11
2.50
0.625
0.04

Exact

4.162[—1]
6.408[—1]
1.231
1.500[—4]
7.916
1.720[+2]
9.621[—1]
7.973[—1]
9.264[—1]
9.358[—1]
9.371[—1]
9.379[—1]
1.089
1.100
1.052

5 terms

3.980[—1]
6.277[—1]
1.215
1.499[—4]
7.820
1.699[+2]
9.619[—1]
7.776[—1]
1.083
9.351[—1]
1.136
1.138
1.143
1.111
1.052

Error (%)
—4.4[+0]—2.0[+0]
—1.3[+0]—6.7[—2]—1.2[+0]—1.2[+0)—2.1[—2]—2.5[+0]

1.7[+1]—7.5[—2]
2.1[+ 1]
2.1[+ 1]
5.0[+0]
1.0[+0]
0.0

8 terms

4.141[—1]
6.380[—1]
1.226
1.500[—4]
7.879
1.712[+2]
9.621[—1]
7.947[—1]
9.369[—1]
9.358[—1]
9.471[—1]
9.497[—1]
1.100
1.101
1.052

Error (%)
—5.0[—1]—4.4[—1]—4.1[—1]

0.0
—4.7[—1]—4.7[—1]

0.0
—3.3[—1]

1.1[+0]
0.0
1.1[+0]
1.3[+0]
1.0[+0]
9.1[—2]
0.0

—3

f (n, n')—=
I2

+O(1/n'"),

26 1 1 F(n, n'),
6&3~n'n'

AB-'"
F(n, n') =1—0. 172 86

O O 16 53 1 9
B C 1 AB C

pg
~/' 175 pz

2

(3)

The first three terms in F ( n, n '
) are identical to those

found by Menzel and Pekeris [1], taking into account the
correction made by Burgess [8].

For the bound-continuum oscillator strength f (n, e),
where c. is the energy of the continuum electron in Ryd-
berg units, we let n'~i/~c Taki. ng the Coulomb nor-
malization factor into account, we obtain for the bound-
continuum Gaunt factor g~~(n, s) the following expression:

A =1++, B =1—e, C =3—4a +3a
a=n/n'«1 .

gi(n, E)=—[1—exp( 2m /V—c) ] [F(n, n')], g

or

(4)

TABLE II. A comparison of the eight-term approximation of the asymptotic expansion (AEA) with the exact values of f (n, n )

[3,4]. Numbers in brackets indicate powers of ten.

n' Exact

f (n, n')

Error (%) n' Exact

f (n, n')

AEA Error (%)

2
3
10
20
30
40
3
4
10
20
30
40
4

40
6
7
10
20
30
40

4.162[—1]
7.910[—2]
1.605[—3]
1.966[—4]
5.809[—5]
2.446[—5]
6.408[—1]
1.193[—1]
3.851[—3]
4.418[—4]
1.288[—4]
5.405[—5]
8.420[—1]
8.474p —5]
1.231
2.070[—1]
2.104[—2]
1.382[—3]
3.686[—4]
1.500[—4]

4.141[—1]
7.887[—2]
1.600[—3]
1.960[—4]
5.787[—5]
2.438[—5]
6.380[—1]
1.192[—1]
3.849[—3]
4.414[—4]
1.288[—4]
5.402[—5]
8.383[—1]
8.473[—5]
1.226
2.067[—1]
2.104[—2]
1.382[—3]
3.686[—4]
1.500[—4]

0.50
0.29
0.31
0.31
0.38
0.33
0.44
0.08
0.05
0.09
0
0.06
0.44
0.01
0.41
0.14
0
0
0
0

10

20

30

50

100
200
400
700
900

11
12
20
30
40
21
22
30
40
31
40
41
50
51
98
101
201
401
701
901
903
905

2.190
3.408[—1]
5.468[—3]
9.853[—4]
3.556[—4]
4.100
6.050[—1]
8.035[—3]
1.399[—3]
6.008
1.043[—2]
7.916
1.279[—2]
9.824
2.522[—4]
1.936[+1]
3.844[+ 1]
7.660[+1]
1.338[+2]
1.720[+2]
7.332
1.664

2.180
3.406[—1]
5.468[—3]
9.853[—4]
3.556[—4]
4.080
6.046[—1]
8.035[—3]
1.399[—3]
5.980
1.043[—2]
7.879
1.279[—2[
9.777
2.522[—4]
1.927[+1]
3.826[+ 1]
7.623[+ 1]
1.332[+2]
1.712[+2]
7.330
1.644

0.46
0.06
0
0
0
0.49
0.07
0
0
0.47
0
0.47
0
0.48
0
0.46
0.47
0.48
0.45
0.47
0.03
0
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0. 172826(1 —n e)
g n, e ~1—

[(1+n e}n]
0.016 531 9(3+ 4' 'e+ 3rt 'e')

[(1+n s}n]

+ (1—n e)(3+4n e+3n e )

175[(1+n e)n]

+O(1/n ), n e«1 . (5)

The factor 1 —exp( —2m. /~e) in (5) is set equal to unity,
since for most cases of interest it is close to 1.

Menzel and Pekeris [1] give an asymptotic formula for
gll(n, e) when n e»1. However, this formula is the
same as the formula given for n c « 1. This is evident by
examining Eqs. (1.39) and (1.40) of their paper, where the
first equation applies to the case when n F «1, and the
second to the case when n s»1. Their Eq. (1.40) is
identical to Eq. (1.39), as is evident by multiplying the
numerator and denominator of the second and third
terms on the right-hand side of (1.40) by Ir /n' and
a /n', respectively. Equation (1.40) then reduces to
(1.39},which is valid for n e « 1 only.

Omidvar and Guimaraes [10], after replacing n' by
i/v e,have expanded directly the hypergeometric func-
tions appearing in (2) in terms of e '~ . Making use of
this expansion, we find that

gll n, E)=—
t&2

1 —
t&2+ (n. +10—5/n )

4~3 m 1

~
(7—2/n )+O(1/e )

n e»1 . (6)

In Table I, results of the corrected five-term calculation
of Menzel and Pekeris [1] and the eight-term calculation
of the present work are compared with the exact values
of the bound-bound and bound-continuum oscillator
strengths. The percentage error is the percentage
di6'erence between the exact and the approximate values
given by the asymptotic expansion. As is seen, in going
from five-term to eight-term expansion, the error percen-
tage is reduced by an order of magnitude.

For the bound-bound oscillator strength f(n, n') in

TABLE III. A comparison of the eight-term approximation of AEA, g~~(n c && 1), and the direct ex-
pansion approximation, g~~(n c, &&1), with the exact values of the bound-free Gaunt factor, g~~(n, c)
[5,10]. Numbers in brackets indicate powers of ten.

10

20

40

50

c (Ry)

0.00
0.01
0.10
1.00

10.00
20.00
10[+2]
10[+3]
10[+4]
0.00
1.00
5.00

25.00
10[+4]
0.00
1.00

16.00
25.00
10[+2]
10[+4]
0.00
1.00

16.00
25.00
2.5[+3]
0

25.00
2.5[+2]
0
0.625
0
0.04

g~~(n, ~)

7.97[—1]
8.00[—1]
8.22[—1]
9.42[—1]
9.26[—1]
8.21[—1]
5.13[—1]
1.99[—1]
6.71[—2]
8.76[—1]
1.05
1.03
7.88[—1]
6.72[—2]
9.36[—1]
1.09
8.75[—1]
7.90[—1]
5.15[—1]
6.72[—2]
9.61 [—1]
1.10
8.75
7.90[—1]
1.30[—1]
9.76[—1]
7.90[—1]
3.62[—1]
9.85[—1]
1.10
9.87[—1]
1.05

g~~(n c, &&1)

7.95[—1]
7.97[—1]
8.19[—1]
9.34[—1]
9.37[—1]
7.49[—1]

8.76[—1]
1.05
1.05

9.36[—1)
1.10
8.46[—1]

9.61[—1]
1.10
8.46

9.76[—1]

9.85[—1]
1.10
9.87[—1]
1.05

g~~(n 6 && 1)

5.06[—1]
1.98[—1]
6.71[—2]

7.84[—1]
6.72[—2]

7.98[—1]
5.16[—1]
6.72[—2]

8.00[—1]
1.30[—1]

8.01[—1]
3.62[—1]

Error (%)
—0.25
—0.38
—0.36
—0.85
+ 1.19
—8.77
—1.36
—0.50

0.00
0.00
0.00

+ 1.94
—0.51

0.00
0.00

+0.92
—3.31
+ 1.01
+0.19

0.00
0.00
0.00

—3.31
+ 1.27

0.00
0.00

+ 1.39
0.00
0.00
0.00
0.00
0.00
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Table II, comparison of the exact results is made with the
results of the asymptotic expansion approximation
(AEA). In that table random values of n and n' are
chosen, where n and n' range from 1 to 900 and 2 to 905,
respectively. The exact values for n ~50 are due to the
numerical integration of Green, Rush, and Chandler [4].
The exact values of f (n, n') for n & 50 are due to Menzel
[3], who makes use of an infinite expansion of the inverse
hypergeometric functions. It is noteworthy that the per-
centage of errors for all transitions, including the lowest
n = 1 to n '= 2 transition, does not exceed 0.5%, although
the validity criterion for the asymptotic expansion ap-

proximation dictates n »1 and a=n In' ((l.
In Table III, the bound-continuum Gaunt factor is

considered, and comparison is made between the exact
and the approximate values. For the n s/Ry»1 Ry
cases in Table III, Eq. (6), based on a derivation of Omid-
var and Guimaraes [10),has been used.

For n values considered in Table III and c, ~ 1 Ry, the
AEA values given by (5) are within 1% of the exact
values [5,10]. Similarly, for s & 100 Ry, the Gaunt factors
based on Eq. (6) are within 1% of the exact values. For
1 Ry & z ( 100 Ry, numerical integration should be used.
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