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Two-bit gates are universal for quantum computation
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A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum
gates operating on just two bits at a time are sufBcient to construct a general quantum circuit. The
best previous result had shown the universality of three-bit gates, by analogy to the universality
of the Toffoli three-bit gate of classical reversible computing. Two-bit quantum gates may be
implemented by magnetic resonance operations applied to a pair of electronic or nuclear spins. A
"gearbox quantum computer" proposed here, based on the principles of atomic-force microscopy,
would permit the operation of such two-bit gates in a physical system with very long phase-breaking
(i.e., quantum- phase-coherence) times. Simpler versions of the gearbox computer could be used to
do experiments on Einstein-Podolsky-Rosen states and related entangled quantum states.

PACS number(s): 03.65.Bz, 89.80.+h, 02.20.Sv, 76.70.Fz

I. INTRODUCTION

Eventually, computational devices will stop getting
smaller and faster unless new physical principles of opera-
tion are discovered. Undoubtedly the physical principles
of quantum mechanics will become increasingly impor-
tant if these devices are ever to operate at the atomic
level. The basic idea that a useful computer might be
constructed which operates according to the principle of
unitary time evolution, the cornerstone of the quantum
theory, was first put forward by Benioff [1]. Since then,
there has been a steady stream of work on demonstrating
how "quantum gates" can be put together into "quantum
circuits" that perform any unitary time evolution, and on
how such quantum gates could be realized by the elec-
tromagnetic pulsing of solid-state spin systems.

While these developments have been of theoretical in-
terest, the importance of these investigations has been
heightened by some recent seminal mathematical results
concerning the potential power of quantum computing.
Deutsch and Josza [2], with some crucial clarifications
from Bernstein and Vazirani [3], introduced the subject
of quantum complexity theory and pointed out the pos-
sibility that quantum machines may be more efBcient in
performing certain computations than any classical com-
puter. Very recently Shor [4], following on the work of
Simon [5], has proved an extremely exciting result: he
has shown that on a quantum computer, prime factoring
can be performed in "polynomial" time, that is, t oc k",
where k is the number of bits in the number to be fac-
tored and p is a constant. By contrast, this problem is

A, li3believed to take e'" time on a classical computer (c is
another constant). As the difliculty of prime factoring
is of paramount importance in the functioning of certain
popular data encryption schemes, the absolute desirabil-
ity of performing quantum computation, and the inter-
est in understanding how a genuine physical realization
might be achieved, has increased sharply.

In this paper, then, I take up some speci6c problems
that will need to be addressed in order to make quantum
computing a reality. I begin with some discussion that
emphasizes the stringent requirements in quantum com-
puting for the physical isolation of the computer &om
outside infIuences; this point has been made in much of
the previous work, but I wish to emphasize it as probably
the most diKcult design requirement. Motivated by this,
I introduce a computing machine, a "quantum gearbox, "
which arranges for individual spins to be in very well-
isolated environments except during the moment that
pairs of spins pass through logic gates. I will point out
here that in the quantum gearbox and in other physical
implementations that have been proposed for quantum
circuits as well, it is extremely difBcult to imagine a phys-
ical implementation of a three-bit quantum gate, that is,
a gate in which three bits (i.e. , spins) interact simultane-
ously. It is much easier (although not necessarily easy)
to imagine a machine in which spins interact two at a
time (this is explicit in the quantum gearbox).

This situation motivates the main results of the paper,
on the universality of two-bit computation. It has pre-
viously been proved that three-bit gates are sufhcient to
build any arbitrary quantum network, and no other work-
ers have investigated whether this result can be improved
upon. Indeed, it was widely believed that two-bit gates
could not be universal because they are known not to
be universal for classical reversible computation. Never-
theless, using the techniques of I.ie group theory, I prove
here the desired result that two-bit gates suKce to gen-
erate any arbitrary quantum network, i.e. , any arbitrary
unitary transformation. The proof provides an explicit
realization of three-bit operations in terms of sequences
of two-bit gates, although it remains to be seen whether
this may form the basis of a practical, eFicient method
of designing quantum circuits. Substantial progress has
already been made in devising explicit two-bit-gate re-
alizations of some of the key steps in the Shor factoring
procedure [6].

1050-2947/95/51(2)/1015(8)/$06. 00 51 1015 1995 The American Physical Society



1016 DAVID P. DiVINCENZO 51

II. BUILDING A QUANTUM COMPUTER

A. %'hy making a quantum computer is extremely
difBcult

As Shor's work shows, making a quantum computer
would have decided technological and economic conse-
quences. Why will neither IBM, nor Dell, nor anyone,
be marketing one before the end of the century? The
laws of physics give us confidence that the world does
indeed evolve by unitary time evolution (i.e. , according
to an S matrix; see Sec. IIIA). The problem is that to
make a quantum computer, we insist that a particular
subset of the world undergoes unitary evolution; this is
what is extremely hard. A sub-block of a unitary ma-
trix is almost never itself unitary —it would be so only
if the matrix were block diagonal. A unitary matrix is
only block diagonal if the diferent subsystems are not
interacting; but in the physical world, degrees of free-
dom are usually interacting with many other degrees of
fleedom. The understanding of this point is crucial for
the explanation of why classical mechanics in the macro-
scopic world emerges out of the microscopic operation of
quantum mechanics.

This discussion makes clear why a transistor, or any
conventional computer element, cannot perform quan-
tum computation. The computational state of the sys-
tem, the 0's and 1's entering and leaving the gate, is only
one degree of &eedom out of the countlessly many micro-
scopic degrees of freedom of the device (e.g. , the elastic
vibrations of the device, or the excitations of its conduc-
tion electrons). In general, all of these degrees of freedom
interact strongly with one another and with the compu-
tational state of the device. Even worse, in fact, is that
the computational state is often a collective property of
this myriad of microscopic states. Such a situation makes
even approximate unitary evolution impossible.

The kind of subsystem isolation that quantum compu-
tation requires will probably only be achievable if the
computer elements are themselves of atomic or near-
atomic dimensions, where the computational state is the
quantum state of a single atom. Even in this realm, quan-
tum computation is under substantial constraint: if this
computation state is arranged to interact weakly with the
rest of the world, then for short times its evolution will be
unitary, but eventually even weak interactions will cause

significant departures from unitarity. Such systems have
a characteristic time for loss of unitarity, which is known
in the field of mesoscopic physics as the "dephasing time"
ty [7]. The current knowledge about dephasing times in
a variety of quantum systems is summarized in Table I.
ty has been measured in various microscopic and meso-
scopic physical systems and it is often extremely short.
For example, for the state of an electron traversing a gold
wire at temperatures less than 1 K, ty is of order 10
sec. (This time is still long enough for interesting "phase
coherence" efFects to be seen, such as Aharonov-Bohm
oscillations [7).) The state of an electron's spin [8] (i.e. ,
the state of the electron's magnetic moment) is more sta-
ble, but an upper bound for its dephasing time, recently
measured in a salt containing paramagnetic Eu ions [9],
is 10 sec. Since, as Table I indicates, the number of
steps of quantum computation that can be performed
using these physical systems is less than ty/t, ;t,h (prob-
ably a great deal less), we see that there are severe limits
on the kind of quantum computation that these physical
systems can perform. I believe that other microscopic
systems that have been discussed for quantum computa-
tion, for example, the "Notre Dame logic gate" [10] (op-
erating by the hopping of electrons from one quantum
dot to another) or the "atom switch" [11] (operating by
the hopping of a single atom &om one site on a crystal
surface to another), are similarly problematic; although
I know of no measurements of ty in these cases, I expect
that it is similarly short. Even these systems will be "too
classical" [12].

As the table shows, there are several promising quan-
tum systems that are highly phase coherent. I will not
discuss the Mossbauer or ion-trap systems, except to say
that while the properties of these quantum states are
quite promising, the technology for constructing quan-
tum gates, which I discuss below, is very immature in
these cases, although under active development in ion-
trap physics. Although still far from easy, I believe that
of the final microscopic system shown here, the nuclear
spin system, has promise in having both the necessary
quantum coherence and a very mature technology (nu-
clear magnetic resonance) for executing the operations of
quantum gates. The spin of the nucleus produces a much
smaller magnetic moment than that of the electron (650
times smaller for the proton), so its dipolar magnetic in-
teractions with the rest of the world are much weaker;

TABLE I. Important times for various two-level systems in quantum mechanics, which might
be used as quantum bits. t, ;&,z is the minimum time required to execute one quantum gate; it
is estimated as 5/b, E, where b, E is the typical energy splitting in the two-level system. t~ is the
phase coherence time as seen experimentally. ty is the upper bound on the length of time over
which a complete quantum computation can be executed accurately. The ratio of these two times
gives the largest number of steps permitted in a quantum computation using these quantum bits.

Quantum system
Mossbauer nucleus [35]
electrons-GaAs [36]
electrons-Au [37,7]
trapped ions —In [38]
electron-spin [9]
electron —quantum-dot [39]
nuclear spin [21]

tswitch (sec)
10—19

1p 13

1p
—14

1p
—14

10
10-'
10

ty (sec)
1p

—10

1p
—10

10
10
10
10
104

Ratio
10'
10
10
10"
104
10
10
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also, it does not have the same strong exchange inter-
actions arising &om the Pauli exclusion principle that
electrons do. For this reason, nuclei have ty's which can,
under favorable circumstances, be orders of magnitude
longer than for electronic spins or any other quantum de-
grees of freedom. The ultimate value of this ty has been
estimated, given ideal assumptions about the electromag-
netic environment in a nuclear magnetic resonance appa-
ratus, to be as long as 10 sec (300 yr) [13,14]. This
number will certainly be much smaller in reality and will
depend on many details of the solid-state environment of
the spins, which I will discuss in a moment.

B. Gearbox quantum computer

In Fig. 1 I propose the principal working element of
a quantum computer. It is meant to be more thought-
provoking than real: I do not suggest that experimental-
ists try immediately to go out to build this device, but
I do hope that it provides a springboard for productive
thought on what really needs to be done to perform quan-
tum computation. Of course, others before me [15,16]
have made proposals for, and explored the feasibility of
[17], "potentially realizable quantum computers"; the one
I now present exploits somewhat difFerent physical prin-
ciples than the previous proposals and hopefully provides
ideas for how some of the monstrous obstacles (like the
ones discussed in Sec. IIA) could be overcome.

In the gearbox quantum computer shown, the two
meshed gears operate classically, turning in synchrony.
The protons, carrying the spins which will evolve quan-
tum mechanically, are firmly attached to the end of the
tips of the left-hand gear and to the base of the grooves
of the right-hand gear. By making the gear elements

FIG. 1. The gearbox quantum computer. The two meshed
gears operate classically, turning in synchrony. A single quan-
tum spin-1/2 degree of freedom, discussed as a proton nuclear
spin in the text, is 6rmly attached to the end of the tips
of the left-hand gear and to the base of the grooves of the
right-hand gear. Other gears may be added for I/O, memory,
etc. The teeth of the left-hand gear are shown in the shape
of atomic-force microscope tips, suggestive of the fact that
atomic spatial resolution will be necessary in the meshing of
the two gears, in order that the two spins may be brought into
atomic contact. The gears are shown with 16 and 15 teeth
respectively; by making these numbers relatively prime, it is
ensured that each pair of spins from the two separate gears
may be brought into contact by turning the gearbox.

T j f H p' (c)dt'
) (2.1)

where T indicates a time-ordered product. We can
write out the Hamiltonian a little further as H p,.„
HQ p ] + H $ where Hp;~ ~ is the magnetic dipole in-
teraction between the two nuclei and H „q is an exter-
nal Hamiltonian which may be applied just to the region
where the spins are interacting; this may consist of some
combination of static and ac magnetic fields. It is ex-
pected that, as in the work of Lloyd [15], it is possible
with suitable external fields to induce any arbitrary two-
spin unitary operation in Eq. (2.1), although I have not
worked out a detailed protocol for this. In Sec. III I will
discuss the adequacy of these two-bit gates for general
quantum computation.

A few more remarks about the quantum gearbox are in
order. It is obvious that if more bits are needed, for input-
output ports (I/O), memory, etc. , they can be added
simply by adding more gears to the system. Note that
since one of the simplest unitary operations is a swap,
the state of any spin may be propagated arbitrarily far
along an array of gears. Somewhere in the gear system
will be located the "output" device, which will require
considerable technological ingenuity: This device must
sense the state of a single spin and make that informa-
tion available to the rest of the world. This operation
can be done only at the end of the quantum computa-
tion, since it involves strong interaction of the quantum
computer with other degrees of freedom, destroying the
unitary evolution. There is presently no magnetometry
of suIIBcient sensitivity to sense the state of a single pro-
ton spin; however, the mechanical detection of magnetic
resonance within magnetic force microscopy will, accord-
ing to Rugar and co-workers [19],be able to perform such
detection in the foreseeable future.

There is another design requirement for a quantum
computer whose satisfaction requires some ingenuity in

very "quiet" magnetically and electronically, it may be
hoped that a very long dephasing time for the spins may
be achieved. This quietness may be obtained by using
diamagnetic, insulating materials, containing nuclei with
Inostly no nuclear spins. A gear made from a pure un-
doped crystal of 2sSi (92'%%uo natural abundance) could
well be optimal.

The teeth of the left-hand gear are shown in the shape
of atomic-force microscope tips, suggestive of the fact
that atomic spatial resolution will be necessary in the
meshing of the two gears, in order that the two spins
may be brought into atomic contact. The gears are shown
with 16 and 15 teeth respectively; by making these num-
bers relatively prime, it is ensured that each pair of spins
on either gear may be brought into contact by turning the
gearbox. The atomic contact between spins is necessary
in order for quantum logic gates, unitary transformations
of pairs of bits, to be executed. When the spins are not
in contact, the Hamiltonian Hsp „ofthe spins is zero and
no time evolution occurs. During the time that the spins
are in contact, H,~;„(t) will be nonzero, inducing, accord-
ing to the well-known laws of quantum mechanics [18],
the unitary transformation
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the quantum gearbox. Quantum computations under
consideration now [5,4] require that the spins be an ini-
tial simple state, e.g. , all up. But because of the low
energy scales involved, an assemblage of nuclear spins at
any reasonable temperature will typically have a random
state which is described by a Boltzmann distribution.
Nevertheless, it would be possible to exploit some of the
techniques of magnetic resonance to prepare an initially
polarized state. One way of doing this would be to pre-
pare a gear with attached single electron spins. Because
of their much greater magnetic moment, these can be put
in a polarized state at a reasonable temperature. When
they are meshed into contact with the nuclear spins, one
can use one of the known techniques (the Overhauser
effect or coherence transfer [20,21]) for transferring the
electronic spin polarization to the nuclei. This process
need not be phase coherent because it would precede the
start of the quantum computation.

I wish to close this section with a few remarks on the
strengths and weaknesses of the quantum gearbox rel-
ative to another "potentially realizable quantum com-
puter" discussed recently by Lloyd [15], in which the
quantum spins are embedded in a polymer chain or a
crystal lattice. One obvious advantage of the polymer
computer is that the interaction Hamiltonian between
the spins is more controlled since it depends only on the
local environment in the crystal. In the gearbox com-
puter, atomic-scale vibrations and misalignments might
be very difIicult to control and quite deleterious to the
operation. Another advantage of the polymer computer
is that the unitary operations can go on in parallel, al-
though the ability to address specific pairs of spins is
lost. In the polymer computer, not just two-bit but also
three-bit local operations can be executed (but this is
not a crucial advantage; see the next section). The poly-
mer computer has the disadvantage that the interaction
Harniltonian between the spins can never be turned oK
This does not necessarily lead to insuperable problems,
but it makes the control of the phase of the quantum state
particularly ungainly. Finally, there is a concern that it
may be difFicult to make a magnetic polymer or a mag-
netic crystal sufIiciently quiet, i.e. , suKciently immune
from interaction with other, noncomputational degrees
of &eedom.

A. Background: What Deutsch proved

Deutsch [22] has already shown how to obtain a uni-
versal quantum computation, defined as an arbitrary uni-
tary transformation on a discrete Hilbert space spanned
by the set of all states of a collection of bits. He did this
by a simple and elegant generalization of the known speci-
fications for building a reversible classical network. There
exists a close connection between classical reversible com-
putation and quantum computation, since all unitary
quantum operations are necessarily reversible; therefore,
reversible computing is a subset of quantum computing.
Toffoli [23] showed how the AND and XOR gates necessary
for conventional universal computation may be imple-
mented reversibly; conventional AND and XOR gates are
not reversible, if for no other reason that a reversible gate
must have the same number of output as input bits. He
showed that XQR could be implemented reversibly with
a two-bit gate in which one output bit returns the con-
ventional XOR ai a2 (ai and a2 are the binary values of
the two input bits), while the other output bit returns the
original value of ai (or a2). To implement AND reversibly,
a three-bit gate is required in which ai and a2 are passed
through unchanged, while the third bit is XoRed with
the AND of the first two, returning (ai a2) as. Indeed,
since this three-bit gate comprises both the XoR and the
AND functions, it can be considered to be the universal
reversible computation gate and it has come to be known
as the ToKoli gate T.

Given this background, the generalization by Deutsch
to the quantum problem is simple and appealing. Follow-
ing logically from the structure of quantum mechanics,
Deutsch generalized the posited operation of a three-bit
gate, from one which performs transformations (permu-
tations, actually, in the reversible case) on the 8 = 2s

possible states of three bits, to one which performs uni-
tary transformations within the 2 -dimensional complex
vector space (the "Hilbert space") spanned by the states
of the three bits. Deutsch proved that all unitary trans-
formations could be obtained from one operating upon
three bits, that one being a natural generalization of the
ToKoli operation. This result has been used in subse-
quent studies [24] to understand the complexity of quan-
tum circuits using three-bit gates.

Deutsch's universal gate Q has the S matrix [25]

(Sg)~'~~~~ —$~'$~~ [(1 a . a )$~~
CX3

+iai a2e " (SN);] . (3.1)
III. DEMONSTRATION OF TWO-BIT GATES

FOR UNIVERSAL COMPUTATION

Previous studies, to be reviewed momentarily, have
shown how to perform any arbitrary unitary operation
by composing a sequence of three-bit operations. This is
very inconvenient &om the point of view of the gearbox
computer; it is exceedingly difIicult to imagine a mechan-
ical device which could bring three spins together simul-
taneously. However, I will prove a result that resolves
this diKculty: even two-bit operations alone sufIice to
give universal quantum computation.

1 ( 1 + easel'cx 1 e%7l'c1S- =-Iiv 2 l~ 1 cia n 1 + eimn (3.2)

to which Deutsch gives the picturesque appellation "the

"Smatrix" is the quantum-mechanical jargon for the uni-
tary transformation executed (in the course of a given
length of time, say) upon the Hilbert space. Here the
primed variables denote the binary states of the three
output bits (as in Fig. 2), o; is a fixed arbitrary irrational
number, and SN is an elementary one-bit transformation
specified by the 2 x 2 unitary matrix
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n~" power of not. " It is noted that when n = 1, except for
a phase factor Eq. (3.1) is the S matrix of the classical
TofFoli gate:

(ST),' ', ', = b,'b;[(I —ai . a2)b; + ai a2(S& ) ', ]

g~i porn g[~~ (~~ ~2)] (3.3)CLg CLg CLg

~1, 1, 1) (states 6 and 7). Leave all other components of
the state, those for which either the first or the second bit
is a zero, unchanged. " Up is obtained by four applications
of Sci in Eq. (3.1), with the identification A = —2vra.

In Fig. 2 I introduce new gates X and V, which operate
only on pairs of bits at a time. In a two-bit basis they
have the S matrices

B. Proof that Q can be realized by two-bit gates

cap

x(') = cos Q slil Q—sing cosP )
In this subsection I will show explicitly how one of

Deutsch's three-bit gates may be realized by a set of
one- and two-bit gates; the result is summarized graphi-
cally in Fig. 2. Here I will work only with one version of
the Deutsch gate, U~, leaving the proof for the general
Deutsch gate to the next subsection. Up denotes the S
matrix

(3.5)

The S matrix of these gates operating in the basis of all
three bits is a direct product, e.g. , V( ) ]1., and so is a
block-diagonal 8 x 8 matrix, although with an ordering
of rows and columns that is determined by which pair of
bits V operates upon. For example, when V operates on
bits 1 and 3 as in Fig. 2, the full S matrix is

(3.4)

cosA i sinA
i sinA cosA 1

where now we have exhibited the S matrix as an 8 x 8
unitary matrix; we take the basis to be the "computa-
tional basis" labeled 0—7, identified with the three-bit
states 0 = ~0, 0, 0), 1 = ~0, 0, 1), ..., 7 = ~l, 1, 1). The la-
beling of the three bits is indicated in Fig. 2. The action
of Up may be expressed in words as follows: Perform
a rotation of the quantum state by angle A in the plane
in Hilbert space defined by the state vectors ~l, 1,0) and

V&3 cos P sin P—sin P cos P
cos P sin P—sing cosP )

(3.6)

and similarly for X23. The operator N is simply the
classical NQT, i.e. , Eq. (3.2) with a = 1. Now, it is a
straightforward algebraic exercise, involving the multi-
plication of a succession of 8 x 8 matrices, to show that
the equation of Fig. 2 is true to first order in the small
parameter b'. Written out as an equation,

U, (A = b)= N.V,.(p = v b)X2s(p = -v h')

xVis(P = —Vb)X2s(P = ~b')Ng )

to first order in the small parameter b. To obtain Up for
any A to a desired degree of accuracy, it is only neces-
sary to concatenate a set of small rotations, by writing
Up = (U~yN ); the error made by using the set of two-
bit operations in Eq. (3.7) can be shown to be of order
I/y ¹

~ ~

C. Completion of the proof: Generating the entire
Lie algebra

~ S ~ 5 ~ ~ ~ ~
~ S ~ 5 I ~ ~ ~

~ E ~ ~
~ I ~ ~

FIG. 2. Explicit demonstration of the equivalence of one of
Deutsch's three-bit gates with a sequence of two-bit gates, for
in6nitesimal values of the rotation parameter b. The S ma-
trices of gates U&, X, and V are described in Eqs. (3.4—3.6).
The labeling of the three bits discussed in the text is indi-
cated, including the primed notation for their output states.
The sequence of two-bit gates shown amounts to the execution
of a commutator of the generators of the U(8) Lie algebra, as
discussed in Sec. III C.

The foregoing does not quite complete the proof of the
universality of two-bit gates, because I have only shown
that one particular three-bit gate (Up) is obtainable;
Deutsch uses three others (which he called Vp, W'q, and
Xp) to generate an arbitrary quantum network. Rather
than continue on in the same pedestrian fashion for these
other three cases (which gets a bit more involved), I will
show that the above results, and the other ones which
are required, may be obtained very compactly within the
language of Lie groups [26].

Expressed in group-theoretic language, all the compu-
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tational gates discussed above are elements of the Lie
group U(2s), and the question of universality is the same
as the question of whether the set of transformations I
have defined suffice to generate U(2s). Deutsch has al-
ready demonstrated that the set of U(2 ) elements Up-
Xg in turn suffice to generate the group U(2") for an
arbitrary number of bits k.

The standard concept &om Lie-group theory of in-
fini, tesi, mal generators fits hand-in-glove with the con-
struction of unitary logical gates. The infinitesimal gen-
erators H of the Lie group are defined by

Hs~ = N2 (i[Hx„,Hv „])N2, (3.12a)

Hs~ = N2(i[Hx„, Hii„])N2, (3.12b)

1~—NiHx„Ni
~
N2,

2
(3.12c)

Hss ——N2
(

—— [Hx, Hv ], [H/, H/ ]

bU = 11. + ieH . (3.8) H~~ = N,
(

—' [Hx...Hv, .], [Hx...Hii, .]

In our problem bU are 8 x 8 unitary matrices diKering
infinitesimally from the identity, e is an arbitrarily small
number, and H, the generators, are 8 x 8 Hermitian ma-
trices. There are 64 distinct 8 x 8 Hermitian matrices;
for later reference I write out here a convenient set of
them H, H" p, and H'

p (0 & a & P & 7); their matrix
elements are

1+—NiHx„Ni
~

N2.
2

(3.12d)

Here Ul3 is a two-bit gate not previously introduced; it
is similar to Vis, having the two-bit S matrix [cf. Eq.
(3.5)]

(H ),, =b; b, (3.9a)
1

(2) 1
cos P i sin
i sin P cos

(3.13)

(H"-p)v = b'-b~p+ b'pb~- (3.9b)

(H' p);~ = ib; h—~p + ib;pb~ (3.9c)

A key theorem of Lie-group theory is that, if Hq and H2
are generators of the group, then other generators may
be obtained by commutation, producing the I ie algebra:

Hs ——i[Hi, H2] . (3.10)

Moreover, one can write down an explicit expression for
how the unitary operation exp(ieHs) is obtained f'rom

exp(ieHi) and exp(ieH2):

ih(i[H1)H2]) ~ i~8H2 i~bH] i~hHg i ~bH1e e e e ) (3.11)

which is valid for small parameter b. Thus we see that
the sequence of gates illustrated in Fig. 2 [see Eq. (3.7)]
is nothing more than the execution of a commutator of
the Lie algebra.

With this machinery, the question of whether two-bit
gates su%ce to produce all possible three-bit unitary op-
erations boils down to the question of whether the suc-
cessive commutation of the Hermitian generators of our
set of two-bit gates fills out the entire 64-dimensional Lie
algebra spanned by Eqs. (3.9). Actually the exercise is
simpler than this because, as Deutsch showed, obtaining
the generators corresponding to just four unitary oper-
ators Up, Vp, Wp, and Xp sufIices to produce all of
U(8). The four corresponding Hermitian generators are
H66, H77 H67 and H67. So, I forthwith show the ex-
plicit commutator expressions for these four generators,
keeping in mind that I am also allowed to introduce the
one-bit NoT operation, in addition to the two-bit opera-
tions:

The Hermitian matrices H~, , etc. , are the genera-
tors corresponding to the designated two-bit operations,
which may be obtained from a Taylor-series expansion of
the corresponding 8 x 8 S matrices [e.g. , Eq. (3.6)].

Equations (3.12) complete the proof that all necessary
three-bit operations can be executed using two-bit gates;
the explicit sequence of gates can be read oB the equa-
tions. This is not to say that they provide a very practi-
cal implementation of quantum logic. For one thing, Eqs.
(3.12) only provide a way of getting unitary operations
with small rotation angles. Second, these equations spec-
ify a rather lengthy sequence of two-bit gates, especially
Eqs. (3.12c) and (3.12d), for which the analog of Fig. 2
would contain a sequence of 21 gates. Clearly it would be
worthwhile to search for more eKcient techniques for im-
plementing some quantum computations of interest [27],
such as the Fourier transform of Shor.

IV. CONCLUSIONS

It appears that very rapid progress is now being made
on the fundamentals of quantum computing. It is well
to keep in mind, though, that many basic issues of the
realization of quantum computers remain unsolved or
very diKcult. The physical diFiculties go well beyond
the necessity for long phase-coherence times emphasized
in Sec. IIA. As Landauer has discussed [28], quantum
computers suffer &om instabilities in their time evolu-
tion which are inherent to any Hamiltonian system; in
addition quantum computers cannot be error corrected
in any traditional sense (since error correction is intrinsi-
cally dissipative), although purely quantum approaches
to error correction are uiider active consideration [29].
Considerable ingenuity will be needed if these obstacles
are to be overcome; the quantum factoring algorithm of
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Shor shows that there is considerable value in overcoming
these obstacles.

Another cautionary note, though, has been sounded
by computer scientists. There is evidence that quantum
computers, while undoubtedly more powerful than classi-
cal computers, may not be able to solve efBciently all the
famous hard problems known to computational theorists.
For example, there is evidence that quantum computers
cannot solve the nondeterministic-polynomial-complete
class of problems [30] any more rapidly than classical
computers, although the method of proof used, employ-
ing a so-called "random oracle, " is known not to be defini-
tive. Indeed, quantum mechanics has clearly created a
whole new challenging and interesting area of investiga-
tion for computational complexity theorists. The main
definite result for the time being is Shor s factoring algo-
rithm, which gives the hope that closely related problems
such as graph isomorphisms [31] might also have a rapid
solution.

The present work shows that all quantum logic can
in principle be designed with two-bit gates; however, it
does not offer any practical design principles for quantum
logic, and this remains an important open issue for the
future. For the specific case of the Shor algorithm, Cop-
persmith [6] has very cleverly shown how both the essen-
tially quantum-mechanical parts of his algorithm and the
"conventional" reversible part may be very efhciently de-
signed in two-bit gates. Specific two-bit gate realizations

of the Toffoli gate have also recently appeared [32,27).
I wish to close by pointing out the path for new physics

experiments that is suggested by the gearbox quantum
coxnputer. The present proposal envisions a very ambi-
tious program in which perhaps thousands of quantum-
mechanical operations are carried out to execute a quan-
tum algorithm; but even the execution of a few of the uni-
tary operations of Eq. (2.1) would constitute new and in-
teresting physics. For example, with just one such opera-
tion a so-called Einstein-Podolsky-Rosen pair [33] can be
formed. By spatially separating this pair and performing
single-spin measurements on the two, one would observe
the spacelike nonlocality unique to quantum mechanics
and learn crucial information about dephasing times for
pairs of spins. Other unique quantum phenomena such
as "teleportation" [34] could also be investigated. Such
investigations could possibly be as exciting as the cre-
ation of the quantum computer itself; they certainly lie
along the path to it.
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