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Determination of the wave function from probability distributions for the position and momentum, the
so-called phase problem, is studied. An algorithm leading to the local phase reconstruction is given. Illustrative
examples are presented and possible generalizations are indicated.
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The phase retrieval problem, i.e., the reconstruction of the
complex wave from measurable intensity distributions at-
tracts a great deal of attention in various branches of physics.
A well-known example is coherence theory, where the prob-
lem is to recover the second-order correlations of partially
coherent light. The standard approach to determine the de-
gree of coherence is based on interferometric measurements,
e.g., the observation of the visibility of the interference
fringes [1]. There are also various noninterferometric tech-
niques developed to reconstruct the cross-spectral density
function [2—-4]. Very similar problems are also common in
every kind of microscopy [5,6]. In light [7] and electron [8]
microscopy the task is to determine the incident complex
wave from images taken at different planes; e.g., from inten-
sity distributions in the exit pupil and in the image plane. In
the domain of microscopy alone the problem has been exten-
sively investigated [5]; despite this, only a few approximate
algorithms have been devised. The most successful of them,
the Gerchberg-Saxton algorithm [9,10], is based on an itera-
tive scheme and allows an approximate reconstruction. How-
ever, certain symmetries in the object result in a twofold
ambiguity [11]; in this case a unique reconstruction is not
possible. Only recently has a somewhat different phase re-
construction problem been tackled in quantum optics [12].
The authors reconstruct the wave function from the distribu-
tions for the quantized optical phase and the photon number.
They follow the procedure by Gerchberg and Saxton; how-
ever, they restrict their analysis to finite superpositions of
Fock states. On the other hand, striking advances in matter-
wave interferometry [13,14] have also aroused great interest
in methods for reconstructing the atomic wave function (for
the center-of-mass motion) from measured data.

As the wave fields in the above-mentioned exit pupil and
image plane are Fourier transforms of one another, the un-
derlying mathematical problem consists in determining a
complex function from its modulus and from the modulus of
its Fourier transform. Just in this form, it also occurs in quan-
tum mechanics. Here the task is to determine the Schro-
dinger wave function from both the probability distributions
for position and momentum. The importance of this problem
for foundations of quantum mechanics was, as early as 1933,
recognized by Pauli [15], who remarked on the mathematical
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problem, “whether for given functions, W(x) = |¢(x)|? and
W(p) = |¢(p)|? the wave function ¢, if such a function
exists is always uniquely determined... .” The Pauli problem
appears implicitly in investigations, both theoretical and ex-
perimental, of electron spatial and momentum distributions
[16]. It has also been very thoroughly studied in the context
of the informational completeness of quantum mechanics
[17], being closely related to the problems of an optimal
determination of the past of the system and an optimal fore-
casting of its future behavior [18,19]. In this field, efforts
have mostly concentrated on finding counterexamples when
no unique reconstruction is possible [20]. It is known, e.g.,
that for any functions of a given parity, the unique phase
retrieval is impossible, as we cannot distinguish between the
given function and the function obtained by complex conju-
gation.

A version of this problem is also of actual interest in
modern quantum optics, since the mentioned distributions
can be directly measured on a single-mode radiation field
with the help of optical homodyning. In this case, the posi-
tion and momentum must be identified with the quadrature
components of the electric field strength. In fact we can mea-
sure all “rotated” distributions

Po(x0)=f W(xg4 cos@—pg sinb,x, sinf+pgy cosf)dpy ,
1

where
xg=x cosf+p sinf, py=—x sinf+p cosf , (2)

and W(x,p) dun tes the Wigner function of the considered
quantum state [21]. It can be shown that the complete field
determination is possible with the help of the inverse radon
transformation if we know all marginal distributions corre-
sponding to the various settings of the local oscillator phase
0 [22]. This has been experimentally confirmed for a class of
optically realizable states [21,23]. In the Pauli problem we
know only two of these marginal distributions. Therefore it is
clear that in general such a reconstruction is impossible.
However, if we know a priori that the state of the system is
a pure state, use of the Gerchberg-Saxton algorithm has been
suggested to simplify the problem [23]. Again we have prob-
lems with the possible twofold ambiguity.

The purpose of this paper is to show that there is a large
class of nontrivial quantum states for which the Pauli prob-
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lem can be constructively solved. They are finite superposi-
tions of harmonic oscillator energy eigenstates, which in case
of a single-mode electromagnetic field are known as photon-
number or Fock states. For these states it is actually suffi-
cient to measure distributions of only two quadrature opera-
tors to find the initial state of the field, up to the well-known
twofold ambiguity. Let us stress that such finite superposi-
tions are extensively investigated in the framework of cavity
quantum electrodynamics. The recent progress in manipula-
tions of single highly excited Rydberg atoms in high-Q elec-
tromagnetic cavities opens new possibilities for quantum
state engineering. Using methods of cavity quantum electro-
dynamics, it is possible, in principle, to create arbitrary finite
superpositions of photon-number states. Presently, there are
at least two different very general methods for the generation
of arbitrary finite superpositions. One is based on the care-
fully controlled interaction of two-level atoms subsequently
traveling through a resonant cavity [24]. The cavity is ini-
tially in the vacuum state. Atoms are consecutively injected
in such a way that there is at most one atom in the cavity at
a given time. The interaction of a single atom with the cavity
is described by the well-known Jaynes-Cummings Hamil-
tonian [25,26]. The other method is based on the adiabatic
transfer of atomic Zeeman coherence to the radiation field
[27]. It involves the passage of atoms with Zeeman substruc-
ture through an optical cavity. Strong coupling of the atom to
the cavity field makes possible the adiabatic transfer of
atomic ground-state Zeeman coherence to the cavity mode.
The latter method seems to be useful also for a single
photon-number state generation.

We present here a very transparent scheme leading to the
constructive phase retrieval for these states. Moreover, it
seems to us that our method can be a proper starting point for
approximate methods applicable also in the case of infinite
superpositions. It is important to note that our method is
completely different from the Gerchberg-Saxton algorithm
[9,10] and can deal successfully with the mentioned twofold
ambiguity. We simply get both solutions directly from calcu-
lations. Our method works only for pure states that can be
described by wave functions.

In quantum optics, it is natural to choose Hermite func-
tions as a basis in the underlying Hilbert space. So we ex-
pand the unknown wave function ¢(x) in the form

o0

Y(x)= 2 cphy(x), 3)
n=0
where
ho(x)=m"142"n1) " V2exp(—x%/2)H (x). (4)

Here H,(x) denotes the nth Hermite polynomial [28]. Our
task is to determine the coefficients c, from both | ¢(x)|? and
|#(p)|?, where ¢(p) is the Fourier transform of ¥(x). For-
tunately, the Fourier transform of a Hermite function A,(x) is
also a Hermite function [29]

(277)_”ZI h,(x)eP*dx=i"h,(p). )
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We thus obtain from Eq. (3) and its Fourier transform after a
little algebra

[0(0))2=2 Ruph2(x)+2 2, Rumho(X)hn(x), (6)

m>n

[6(X)|?=2 Rpph2(x)+2 2 Upphn(X)hp(x).  (7)

m>n

Here, the following abbreviations have been introduced:

R,, for m=n mod 4,
I1,, for m=n+1 mod 4,
Um=1_r & _ @®
—R,,, for m=n+2 mod 4,
-1, for m=n+3 mod 4,
1 * * l * *
R, n=3(crc,tcuer), I,,,,,=E(c,,c,,,—c,,cm). 9)

Our further procedure is based on the observation that the
products &,(x)k,(x) in Eqgs. (6) and (7) can be expanded in
terms of appropriately scaled Hermite functions, also form-
ing an orthonormal basis

h,(x)=2"4h,(\2x). (10)

Indeed, the modified argument in Eq. (10) gives us the ex-
ponential needed for the proper normalization. Therefore any
product of Hermite functions can certainly be expressed as a
sum of Hermite functions, even when the arguments differ
by a factor. Hence we may write

Ry(X)h(x)= 2 BE™h,(x), (11)

©n=0

where the coefficients B)," are different from zero only
when (i) u<n+m and (ii) both x and n+m are either even
or odd. Nonvanishing values of these coefficients can be cal-
culated analytically

1/4 [P
nm_ | < nim S g—k+1)2,
B —-(’rr) k! 27 (=17

min(n,m,q)

>

i=0

(—4)(n+m—2i)!
il(n—i)t(m—i)'(qg—i)! ’

(12)

where g=3(n+m—k). The relation (11) enables us to ex-
pand the right-hand sides of Egs. (6) and (7) in terms of the
functions 4,(x), and since the latter form an orthonormal
basis, we arrive at the following two systems of equations:

$,=2 RuB"+22 R,.BL", (13a)
n m>n

0u=2 RunBl"+2 3 U,pfBi™, (13b)
n m>n
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where the coefficients ¢, and ¢, are determined from the
measured position and momentum distributions,

¥,= f |(x)|2h ,(x)dx, (14a)

Ou= f | $(x)|*hu(x)dx . (14b)
So far no approximations or simplifications have been made.
Equations (13) are quadratic in the unknown coefficients
¢k, c; and form, in the general case, a set of infinite dimen-
sion. Hence, at first sight, their evaluation seems to be non-
trivial. However, a closer inspection reveals that there is a
promising procedure: Truncating the expansion (3) at
n'=ng,., one gets two equations which immediately give
us |c,,|%. Since the wave function is quite generally deter-
mined only up to a global phase factor, c,, can be chosen
real. Then two equations can be selected from the systems
(13) which are linear in ¢, _; and ¢ : ,_, and, after insertion
of c,, yield ¢, 1. The next step is to select a set of equa-
tions which are linear in ¢, 5, ¢} _,, ¢,_3, c,,_, and,
after insertion of previously calculated ¢, and c,,» _;, allow
the determination of c,,:_, and ¢,/ _3. This procedure can be
repeated until all the coefficients c,(n<ng,,) are known. So
the mathematical problem actually reduces to subsequently
solve blocks of linear equations.

The algorithm works perfectly if ¢, = ¢,,:. Otherwise
we have a contradiction from the very beginning. However,
the mentioned condition is always fulfilled for finite super-
positions of n'+1 photon-number states. Therefore, for
these states, the Pauli problem can be constructively solved.
On the other hand, any infinite superposition can be approxi-
mated by a finite one. Thus we believe that our procedure,
which is exact for finite superpositions, can also be a good
starting point for infinite superpositions. Our numerical
simulations suggest that for some special but realistic states
it is indeed the case.

Let us present two simple illustrative examples, i.e., linear
superpositions of the vacuum state |0) with the one-photon
state |1) and with two-photon state [2): |iy)=c|0)
+cq|1) and |¢,) =c|0)+c,|2). In the first case, there is no
definite parity and the unique (up to an irrelevant global
phase) solution is given by
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1)
1= \/ET , (15)
_tie
CO_ ZB?,ICO * (16)

The coefficients ¢; and ¢; should be calculated from mea-
sured distributions |#(x)|? and | ¢(p)|? via relations (14). Of
course we have ¢,=¢,. The second case is more compli-
cated. The corresponding wave function is even and there is
no unique reconstruction possible. Solving Egs. (13) we get

Cr= Vé%?f ’ (17)

C1=0 . (18)

From the rest of Egs. (13) we can uniquely calculate |cg| and
the real part of this coefficient Re(cg). Thus the imaginary
part Im(c,) is given up to the * sign. But this is nothing but
the twofold ambiguity we should expect in this case. Also
here we have ¥, =¢@,.

In summary, we devised a method for phase retrieval in
quantum mechanics. It works perfectly well for states that
are finite superpositions of photon-number states. In this
case, even if the unique reconstruction is impossible for fun-
damental symmetry reasons, we get explicitly all possible
solutions. Our method is completely different from the well-
known Gerchberg-Saxton algorithm. It does not rely on any
iterations starting from random phases, but is based on solv-
ing blocks of linear equations for unknown coefficients in the
expansion of the desired wave function into the Fock-state
basis. Being exact for finite superpositions, it should also be
a good starting point for approximate reconstruction in more
general cases. Work along these lines is in progress and re-
sults will be reported elsewhere.

We are grateful to Marian Grabowski for pointing out
some background references and to Marian Rusek for discus-
sions and comments on numerical aspects of the presented
approach.
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