
PHYSICAL REVIEW A VOLUME 50, NUMBER 2

Population transfer through the continuum
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We show that complete population transfer is not in general possible through continuum intermediate states.
We present a formal theoretical argument and supporting numerical results. In addition, the behavior of the

system is compared with the well-known A system.
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It is well established by now that a counterintuitive laser
pulse sequence [1—7] in a three-level system can transfer
population most efficiently between the end levels of a A or
ladder system. As long as all three levels are bound [Fig.
1(a)], the theoretical argument is well established and rigor-
ous even when the intermediate state decays. Basically, the
effect is due to the adiabatic evolution of one linear combi-
nation of the states not involving the intermediate state. For
related experiments, see Refs. [2—6]. The possibility of ex-
tending the technique to the case of a transition via a con-
tinuum is of considerable interest as it would add flexibility
and generality. The question has been addressed in a paper
by Carroll and Hioe [8] based on a discretized model of the
continuum. It is our purpose in this paper to show that, al-
though correct within the confines of their model, their con-
clusions are valid only under very special circumstances
which do not represent the real situation in the continuum of
an atom or molecule.

The question is how efficiently the population can be
transferred from state ~0) to a state ~1) of the same parity, by
a sequence of two pulses, when the transition takes place
through the continuum, as depicted in Fig. 1(b). The con-
tinuum, which may represent ionization or dissociation, re-
places the intermediate bound state in the usual A system
studied in the context of a counterintuitive pulse sequence.
The most general expression for the wave function must here
be written as a linear combination of the two bound states
and the continuum with time-dependent amplitudes. Substi-
tuting in the Schrodinger equation and taking the Laplace
transforms of the resulting differential equations for the am-

plitudes, one can eliminate the continuum by substituting the
solution for its amplitude in the other two equations [9].The
summation over continuum states leads to a real and an
imaginary part representing a decay (pole) into the con-
tinuum (ionization) and an adiabatic coupling (via the
principal-value part) between the two bound states. The role
of the continuum is thus contained in certain parameters in-
troduced and discussed below, which are completely valid
for intensities up to at least 10 W/cm or until above-
threshold ionization (ATI) begins becoming significant.

As a result of that elimination, the wave function can be
written as 0"(t)=—co(t) ~0) +cl(t) I1) with the initial condi-
tion 4'(t = —co) = IO). The equations governing the time de-
velopment of the amplitudes co(t) and cl(t) can then be
written as

d (co)
=( t)

dt ( cl! q+ g .+D

P ltP to y PltPto
1 ~1l I 2+ ~11

(2)

and independent of the laser intensities I1 and I2, being de-
termined solely by the states and the photon frequencies,
which indirectly determine the strength of the coupling of
each state to the continuum by fixing the energy in the con-
tinuum at which the bound-free matrix element is calculated.
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FIG. 1. (a) Well-known A system, which is considered for com-
parisons in our study. (b) Schematic diagram of the systems studied.7' bound states are coupled by a two-photon Raman-type process
through the continuum as well as the coupling below the state IO)
depicted by the dashed line.
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where I'o and I', are the ionization widths of ~0) and ~1) due
to lasers 1 and 2, respectively. They are given by the photo-
ionization cross section of the state multiplied by the respec-
tive photon flux, which implies that they are proportional to
the intensity of the laser. I' is defined by I'—= /ror, and the
detuning D—= (to, —co2) —(tot —too), with to/ being the en-

ergy of an atomic state
~j) (j=0 or 1) and cok (k=1,2) the

frequencies of the lasers. q is an atomic parameter defined by
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2
——(q+ i) =0.

. 2 (3)

Let us note first that, if D =0 and q = 0, one of the roots of
this equation is X=O. The eigenfunction corresponding to
this eigenvalue is

The summations X, in the numerator of Eq. (2) imply com-

plete summation over the whole spectrum of the atom, with

integration over the continuum part. Since the second term
has a pole in the continuum, the principal-value part of the
integral (indicated by P) must be taken. The matrix elements
of p, represent electric dipole moments between the respec-
tive states. Note that under pulsed excitation, the quantities
l 0 and 1

&
are time dependent, while of course q is not.

The equations set up above are equivalent to those em-

ployed in the description of LICS (laser-induced continuum

structure), which has received renewed attention both experi-
mentally [10,11] and theoretically [9,12,13] during the last
three years; except that we have cast these equations here in

terms of the wave function instead of the density matrix, in
order to conform to the usual practice followed in the litera-
ture on counterintuitive pulses. The parameter q is also re-
ferred to as the asymmetry parameter (in the context of
LICS), as it determines whether the line shape of ionization
is symmetric or not. As we show below it is a pivotal param-
eter in this context as well.

The characteristic equation of the Hamiltonian in Eq.
(1) is

In their paper Carroll and Hioe [8]have modeled the con-
tinuum by an infinity of equally spaced discrete levels ex-

tending from —~ to ~ in energy. They have in addition
assumed that the matrix elements p, &o and p, » of the dipole
operator, connecting states ~0) and ~1) to the states of the
model continuum labeled by l, obey the relation
8 yp, ~p

= Bzpy~ (for all 1), with a
&

and ez being the electric
field amplitudes of lasers 1 and 2, respectively. The above
special assumptions about the continuum automatically lead
to q = 0, because due to its infinite extent from —~ to ~, it is
completely symmetric with respect to any position of the
resonance energy in the continuum. It is straightforward to
verify that this symmetry causes each of the two terms in the
numerator of Eq. (2) to vanish, thus making q identically
zero. This, as we demonstrated above, leads to complete
population transfer. Unfortunately, continua of electrons
bound in atoms or molecules do not have this desirable prop-
erty. It should be stressed here that the above special model
implicitly models the whole spectrum of the system and not
just the continuum. It pushes the ground state to —(x and
makes no distinction between bound and continuum spec-
trum. It is known on the other hand that, in a typical atom or
molecule, the bound spectrum carries a large part of the os-
cillator strength, which prevents q from vanishing except in

accidental situations. As a result, the two terms in the nu-

merator of Eq. (2) are in general unequal.
We discuss now in some detail what we can expect in a

realistic situation. It is useful to use the standard A system
with three bound states as a reference basis. With the nota-
tion as shown in Fig. 1(a), the evolution of that system is
governed by

(
0

In that case, if I2 precedesI&, we have I 0&&I'& as t~ —~
and I p&)r& as t~~, which leads to ~up)-~0)at t~ —~ and

~up)- —~1) at t~~. This implies complete population
transfer.

We seek now a condition for complete population transfer
under the less restrictive situation in which q 4 0. For this
to be possible, it is necessary and sufficient that the charac-
teristic equation have one real solution. This leads to the two
conditions,

) z —Dk ——,'rpr, —rz(qz —1)=0

and

—,'(r, + r, )I —
—,'r~ —r'2q =0, (6)

which require that D =q/2(1 p
—I &).

This condition is the same as that obtained by Knight,
Lauder, and Dalton [13],who examined population trapping
in connection with LICS, under the assumption of square
pulses, i.e., constant intensity. But this condition cannot be
satisfied during the entire laser pulse for sequential pulses
unless q=0. If q 4 0 it can only be satisfied in the special
case D =0 and I'p(t) = r&(t) for all t, which is possible only
for completely overlapping pulses.

where the complete wave function is assumed to have the
form 'P(t)=X, &c,(t)~j), 0, and Qz are the Rabi fre-
quencies between ~1) and ~2), and ~2) and ~3), respectively,
D is the detuning [as shown in Fig. 1(a)], and y the rate of
decay of ~2) out of the A system. Two-photon resonance,
i.e., ~&+co&=cu3+~2, is assumed. We define as before

the adiabatic state ~up(t)) = I/$0, +Qz (Az~1) —0,~3)).
We also define (what we shall call "purity") f(t)
=( (up(t)~q"(t))( . Initially the system is in the eigenstate
up(t= —~), which is the same as ~1). The degree to which
the system evolves adiabatically is characterized by how
close to 1 is the purity f(t)

In order to make a quantitative comparison with a realistic
continuum, we have chosen the states ~0) = ~3s) and

~
1)= ~5s) of a simple atom like Na. We consider the coupling

of these two states by a two-photon process through the con-
tinuum [as in Fig. 1(b)] assuming two pulsed lasers of fre-
quencies cot and aoz and pulse durations Sns (full width at
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FIG. 2. Population and ionization after the laser pulses are

turned off as a function of the laser pulse delay time. A pulse delay

of I& is taken with respect to the time when I2 reaches its maximum.

Negative delay indicates that the co& laser precedes the &32 laser. A
5-ns Gaussian pulse is employed for both lasers. In (a), the q value

is set to 0 artificially while the original q value is used in (b). In

both cases, at the peak intensities I 0= 2.55 X 10' s ' and

I,=2.37X10' s '. Detuning D is set to 0. Note that the short

dashed line in (b) coincides with the bottom horizontal axis for all

pulse delays except around 0, where it coincides with the popula-
tion of state ~1).

half maximum of Gaussian temporal pulse shapes). The val-

ues of the parameters needed in the description of this sys-
tem are q= —4.0, I'o=0.128I,(t) s ', and I',=0.395Iz(t)
s ' (I, and Iz in units of W/cm ) at photon energies

cubi= 43 498 cm ' and co2= 10 398 crn '.
To assess how much the value of q affects the efficiency

of population transfer, we have calculated two cases. The
results are shown in Figs. 2(a) and 2(b), in which the popu-
lations of ~0) and l1), as well as ionization at the end of the
delayed pulse, are calculated as a function of pulse delay.
Positive (negative) delay means that the coz (co~) laser pre-
cedes the cu& (coz) laser. Thus positive delay stands for coun-
terintuitive pulse order. The first graph [Fig. 2(a)] is obtained

by setting q =0 artificially. With the laser intensities we have
chosen, about 95% of the population is transferred at a pulse
delay of 4 ns. By increasing the laser intensity further, we
have checked that almost a 100% population transfer occurs,
which we do not show here. In Fig. 2(a), nearly 23% and
25% of the populations are left in l0) and ~1), respectively,
with a total ionization of S2% after the pulses, at zero pulse
delay. Note that the laser intensities and pulse shape of the
two lasers we have chosen almost satisfy the population trap-

ping condition D=q/2(I o
—I'&) at delay time 0. Under the

above perfect population trapping condition, S0% of the at-
oms ionize, while the rest are distributed equally between
states ~0) and ~1). A further increase or decrease of delay
time causes 100% ionization. This is due to the fact that the
co, laser alone is sufficiently intense to ionize all atoms dur-

ing the 5-ns pulse duration. Having examined the fact that

complete population transfer works for the q=0 case, we
performed another calculation with the original q value
q= —4.0 [Fig. 2(b)]. The maximum population transfer of
61% is obtained with the pulse delay of 13 ns. Although the

FIG. 3. Time evolution of the population and ionization. I2
reaches the peak value at 0 ns in this time scale. (a) q= 0 and time

delay=4 ns (i.e., I, is at peak at time 4 ns). (b) Original q and time

delay=13 ns. All of the parameters employed here are the same as
those in Fig. 2. The purity f(t) is defined in the text.

pulse duration is 5 ns (full width at half maximum), there is
sufficient overlap of the two pulses in the time domain (5—10
ns) where the population transfer occurs. As a next step, we
have calculated the time evolution of the populations of ~0)
and ~1), of ionization, and of f(t), with a 4-ns delay for
q=0 and a 13-ns delay for the original q(= —4.0). The
results are shown in Figs. 3(a) and 3(b). In Fig. 3(a), the

system follows quite closely the eigenstate uo(t). Once the
system begins to deviate from uo(t), it never comes back.
For comparison, we plot the time evolution of the A system
with y=0 [Fig. 4(a)]. It is interesting to see that when the
time evolution of the system is close to that of uo(t), it will
recover, even if it begins to deviate from uo(t). If y 4 0,
however, the system does not completely recover, if it begins
to deviate from uo(t) [Fig. 4(b)]. These results indicate that
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FIG. 4. Time evolution of the population for the A system. The
pulse duration T=S for both lasers. Detuning is 0. I2 is at peak at
time 0. The pulse delay is 0.8T (I, is at a peak at time 4=0.8T).
Q&=5T and Qz=5T at the peak. (a) y=0. {b) y=T . (AII
parameters are dimensionless here. ) The purity f(t) is defined in the
text.
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when the adiabatic conditions are not 100% satisfied, the
system loses adiabatic evolution in time. It may be worth

pointing out that, contrary to the correct perception that adia-
batic following does not require any strict pulse shape or
intensities for a A system with y=0, it does require more
restrictive conditions for the two-level system coupled
through the continuum, as well as the A system with y
4 0. The A system with y= 0 has the ability to recover, even
if the adiabatic conditions are not strictly satisfied. In other
words, the adiabatic following for the A system with y
4 0 and a two-level system coupled through the continuum
are more fragile than that for a A system with y= 0. Figure
3(b) shows the time evolution of the system with the original
q(= —4.0). As the intensity of the laser with co& increases,

f(t) decreases to about 0.62. This verifies our argument that
if q is not 0, complete population transfer does not occur at
any intensity and pulse delay. Having established this limita-
tion, in general, the exact amount of population transfer will
depend on the value of q. The amount of 61% obtained
above simply represents one example and can be much
smaller for larger q.

In conclusion, we have demonstrated that complete popu-
lation transfer in a A-like arrangement through the con-
tinuum is possible only under very special conditions which,
given two levels and two frequencies, can be satisfied only
accidentally. Unfortunately the situation is much worse. In
order to have a direct comparison with the model of Carroll
and Hioe [8], we neglected the incoherent channels of ion-

ization; namely, ionization of level i1) by laser to& and de-

pending on the position of level i0), ionization of level i0)
by laser co2. At least one of these channels is always present
and inevitably leads to irreversible decay into the continuum,
thus reducing the population. This aspect has been discussed
in detail elsewhere [9] and has been shown to play a decisive
role in LICS [10—12]. It will obviously have a deleterious
effect on population transfer as well, reducing, for example,
the 61% of the case above to 0.01%.
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