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A simple analytical approximation is found for the wave function of an electron simultaneously exposed to
a strong, circularly polarized plane-wave field and an atomic Coulomb potential. The approximation is valid
when ay>1, where « is the classical radius of motion of a free electron in the plane-wave field. This
constraint is sufficiently mild at low frequencies that it makes possible a major extension of the lower bound
of laser intensities for which Volkov-solution-based approximations are useful.
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The Volkov or Gordon-Volkov [1,2] solution is an exact
solution of the quantum-mechanical equations of motion for
a free, charged particle in a plane-wave electromagnetic
field. It has been applied in a variety of approximate proce-
dures to calculate ionization of atoms [3—6], excitation in
band-gap semiconductors [3,7], and laser-assisted scattering
of electrons by atoms [8—10]. These applications could, in
principle, be much strengthened and extended by the intro-
duction of suitable corrections to the Volkov solution due to
the presence of an atomic potential in addition to the plane-
wave field. There have been previous efforts to incorporate
such corrections [3,11-14]. They vary widely in nature, from
ad hoc to detailed.

In this paper, we introduce an analytically simple dipole-
approximation solution for an unbound electron in the simul-
taneous presence of a Coulomb potential and a circularly
polarized plane-wave electromagnetic field. The solution is
valid whenever the classical radius of motion a, of a free
electron is large as compared to unity when only the circu-
larly polarized field is present. (Atomic units are used here.)
It is shown that this introduces corrections to the Volkov
solution which allow very important extensions in the do-
main of validity for Volkov-based applications for all fre-
quencies less than w=20"1/2 a.u. (when the application is to
ground-state hydrogen). These frequencies include the entire
current range of available strong lasers. The frequency con-
straint scales as 1/n3 for Rydberg states, where n is the prin-
cipal quantum number. This is the same scaling that holds
true for Rydberg frequencies in general.

The Schrodinger equation to be solved is
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Here, d,=4/dt, the fact that the vector potential of the plane-
wave field is written as A(¢) indicates that the dipole ap-
proximation is used, and atomic units are employed. The
atomic binding potential is given by V(r). The “space-
translation” or Kramers-Henneberger [15-17] transforma-
tion is now introduced. This method has customarily been

¥ (r,t)=0. (1)
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used [18] to describe an electron bound in an atom, subjected
to a high-frequency field. We shall see that it is especially
useful for the description of an unbound electron in a field of
any frequency. To apply the Kramers-Henneberger transfor-
mation, we introduce a new function ®, related to ¥ by

‘I’=exp( —ift (A2/2cz)d'r) exp(a-V)®, 2)
where
a(t)=j:wA(’r)dT. 3)

The boundary condition

lim A(¢)=0

t—*oo

is applied to the electromagnetic field. Using the Baker-
Hausdorff theorem, we find the well-known result that

e *W(r)e*'=V(r-a). @)
Equations (1)—(4) give the equation satisfied by ® as
[i6,— 2(—iV)*=V(r—a(r))]®=0. ®

Equation (5) is exact within the constraints of the dipole
approximation already specified, and applies to any potential
V(r). We consider here the special case of the Coulomb
potential V(r)= —Z/r, where Z is the number of charges on
the atom or ion, which gives

_z
[r—e(t)]

It must be remembered that the physical problem at hand is
one in which the electron is in a positive-energy (i.e., un-
bound) state. We presume that the plane-wave field is strong
enough that

V(r—a(1)])= (6)
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Physically, this means that the field is strong enough to re-
quire the unbound electron to move in a nearly circular orbit
at a distance much larger than a Bohr radius from the center
of the Coulomb force. The approximation in Eq. (8) has two
important consequences. One is that the modified form of
Eq. (5) has the simple solution

2

i(p-r—%t+£ )] ©

®=~C exp - t
0

where C is a normalization constant and p is a constant
vector. The second consequence is that this approximate so-
lution for ® is an eigenfunction of the operator in Eq. (2).
The result for the Coulomb-corrected Volkov solution is then

. r’ .j’d p-A A°
1 p-r——z—t exp| i . T| T*W

zZ
Xexp( i— t). (10)

V~C exp

0

The first two exponential factors in Eq. (10) constitute the
usual nonrelativistic Volkov solution. The last exponential is
the correction due to the presence of the Coulomb potential
in this strong-field, unbound, circular-polarization case.

We note that the Coulomb-Volkov solution in Eq. (10)
differs from an ordinary Volkov solution only by a simple
shift in energy, so that the absolute square of the wave func-
tion and the expectation values of arbitrary functions of r
and p are the same for Coulomb-Volkov solutions as for
Volkov solutions. However, exactly the same thing can be
said of a comparison of Volkov solutions with simple free-
particle solutions. The important thing is that the energy dif-
ference between Coulomb-Volkov and Volkov solutions
leads to significantly different dynamical predictions. For ex-
ample, the transition amplitudes employed in the strong-field
approximation (SFA) [5,19] would be revised from

(S—1)4=—i f (VL H D)) 1)
to

(S-1)F=—i f A Y H®), 12)
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FIG. 1. The straight line labeled z;=10 is the lower limit of
applicability for the Volkov solution as applied in the SFA method.
The line labeled ap=10 is the corresponding limit for the Coulomb
correction to the Volkov solution as employed in the SFA. Since
these lines cross, the solid line is the final applicability limit for the
Coulomb-corrected SFA; that is, the region above and to the right of
the solid line is accessible to description by the Coulomb SFA. The
arrows on the wavelength axis mark the locations of several impor-
tant available laser frequencies.

where here ®; is the laser-field-free initial atomic state. In
the long-pulse approximation, where energy conservation is
approximately true, the energy conservation conditions asso-
ciated with Egs. (11) and (12) are different. The correspon-
dence between them can be stated either as
U,—U,—Z/ay, or as Eg—Ep—Z/ay, where U, is the
ponderomotive potential experienced by the unbound elec-
tron in the laser field, and Ep is the binding energy experi-
enced by the bound atomic electron.

To appraise the practical significance of the condition (7),
Fig. 1 is presented for the case Z=1. This shows the limita-
tions imposed by the restriction a;=10, expressed as a re-
lationship between laser intensity in W/cm? and laser wave-
length in nanometers. The same figure also shows the
constraint z;=10, which is the strong-field limitation in-
ferred [19] for the application of Volkov-based methods like
the SFA [5,19] for atomic photoionization. The quantity z, is
the ratio of twice the ponderomotive potential of an electron
in the laser field to the binding energy of the atom from
which ionization takes place. The quantities a and z; are
given (in a.u.) for circular polarization in terms of laser elec-
tric field amplitude F and frequency w by

F
ao= P s (13)
(F/w)?
z,= E; (14)

where Ej is the no-field atomic binding energy.

The condition z;>1 implies that the behavior of the elec-
tron is dominated by the laser field, rather than the atomic
field. Figure 1 shows that @;=10 is a milder condition than
z;=10 for frequencies below w=20""2 au. (or wave-
lengths longer than 204 nm), when the z; parameter refers to
the binding energy of ground-state hydrogen. This crossover
point follows from Egs. (13) and (14) with a¢=10,
z;=10. By the time wavelengths as long as 10 um are
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reached, the enlargement of the region of applicability made
possible by the Coulomb correction amounts to between
three and four orders of magnitude in laser intensity, corre-
sponding to a change from a lower limit of 7X10'2
W/cm? to a new lower limit of 3X10° W/cm?.

For a hydrogenic Rydberg state of principal quantum
number n, the condition in Eq. (7) should be replaced by
@>n?/Z. The binding energy Ep=Z2?%/(2n%) employed in
the definition of z, gives z;=2(nF/Zw)*. Hence the cross-
over for the constraint on Volkov-state applicability given by
z,=10 to one given by ay=10n%/Z occurs for

ZZ

The 1/n* frequency behavior in Eq. (15) is the same as that
which obtains generally for Rydberg scaling of frequencies.

A specific example of the application of Eq. (10) is given
in Fig. 2, which shows a comparison between the conven-
tional SFA in the stabilization regime [20] and the Coulomb-
corrected version of the same calculation at the ex-
perimentally important frequency of w=0.043 a.u.
(A=1.06 wm). Figure 2 is for Z=1, n=1. The consider-
able extension to lower intensities afforded by the restriction
a9=10 in place of z;=10 is in evidence, as well as the fact
that the Coulomb interaction significantly enlarges the tran-
sition rate at the low end of the allowed range. Furthermore,
the Coulomb-corrected result serves to substantiate the
z,=10 restriction previously inferred [19] for the uncor-
rected SFA.
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FIG. 2. An example of the application of the Coulomb-corrected
Volkov solution in the SFA method to photoionization from the
ground state of hydrogen by circularly polarized light of wave-
length ©@=0.043 au. (A=1.06 um). The dash-dotted line
(z;=10) marks the lower intensity limit of applicability for the
ordinary SFA, and the short-dashed line (ay=10) shows the con-
siderable extension made possible through Coulomb corrections to
the Volkov solution. In both cases, the stabilization phenomenon is
clearly visible. Note that the rate curves for the SFA and Coulomb
SFA become substantially coincident at z;=10.
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