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Optimal quasi-phase-matching for high-order harmonic generation in gases and plasma
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We theoretically demonstrate the feasibility of optimal quasi-phase-matching (QPM) of high-order harmonic
generation in gases and plasma with modulated density. OPM optimization, being possible for both tight and
loose focusing of the fundamental beam, may increase the conversion efficiency of high-order harmonic
generation by several orders of magnitude as compared to the efficiency attainable now.
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High-order harmonic generation (HHG), discovered re-

cently [1], if phase matched, may provide an important and
convenient (in principle, table-top) source of short-

wavelength coherent radiation. So far, however, HHG phase
matching remains poor. It follows from both perturbation
theory and nonperturbative models that current experimental
conditions correspond to far wings of the phase-matching
curve [2]; in fact, under similar conditions, e.g., third-
harmonic generation would be characterized as a non-phase-
matched process. The only experimental way to improve
HHG phase matching has been the weaker focusing of the
pumping beam (see, e.g. , [3]).An inherent disadvantage of
this method is that it lowers the incident intensity, thus de-
creasing overall power conversion efficiency. Moreover, this
technique can have only a limited success in approaching
optimum phase matching. Indeed, the qth harmonic genera-
tion is optimally phase matched if the harmonic wave, while
propagating in a medium, remains in phase with nonlinear
polarization induced by the fundamental. The phase of this
polarization experiences a large shift approximately equal, in
the perturbation limit for a Gaussian fundamental beam, to

q tan '(2z/b), where b is the beam confocal parameter (the
distance from the focal plane to the point where beam inten-
sity drops by half), and z is the propagation distance. This
so-called geometrical, or diffractive, phase shift should be
offset by a large negative dispersion phase mismatch Ak
(see, e.g., [4(a),5]). At the same time, actual b k is positive:
small positive if a medium for HHG is a neutral gas, or, more
likely, large positive when this gas becomes ionized. Some
other possibilities for improving HHG phase matching dis-
cussed recently would either be of no help for very-high-
order harmonics (like using resonant refraction; see, e.g.,
[4(b)]), or would yield phase-matching factors many orders
of magnitude lower than optimal ones (like using semi-
infinite media; see, e.g., [5,6]).

Recently, Rax and Fisch [7] have suggested plasma den-
sity modulation as a method to phase match third-harmonic
generation by relativistic plasma electrons. Their idea is es-
sentially a ramification of the well known in nonlinear optics
method of quasi-phase-matching (QPM) proposed first in
1962 [8] and extensively studied in the following years (see,
e.g., [9] and references therein). Almost all the effort in this
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area, however, has been concentrated on the second-
harmonic generation in solids (see, e.g., [10]) since obvi-
ously much more convenient ways to optimize higher-order
harmonic generation (until recently —almost exclusively,
third-harmonic generation) in gases exist. As a result, to the
best of our knowledge, no general consideration of quasi-
phase-matching in gases and plasma, in particular for HHG,
has yet been published (Ref. [7] is limited to the relativistic
third-harmonic generation in plasma in the plane-wave ap-
proximation).

In the present paper, we consider quasi-phase-matching of
HHG by a focused beam in plasma or a gas whose nonlinear
susceptibility and refractive index are spatially modulated in
particular through the medium density modulation, and dem-
onstrate that QPM is feasible with the available laser and
plasma technology. In accordance with the HHG experimen-
tal conditions, we assume that harmonics are generated by
bound electrons. Absorption at both fundamental and har-
monic frequencies is neglected, as is the pumping beam
depletion. We assume that the pumping beam does not
change the medium dispersion. Therefore, a plasma medium
should be prepared before the pumping pulse comes, and the
ionization potential of the plasma ions should be high
enough to prevent substantial additional ionization during
HHG. In order to obtain analytical results, we rely on the
perturbation-theory expressions for the induced nonlinear
polarization. Our results remain valid beyond perturbation
limits if some general assumptions hold regarding nonlinear
polarization induced by a strong laser field [11].Accurate
quantitative estimates of the improvement in HHG due to
QPM require nonperturbative calculations of HHG in horno-
geneous media with large negative beak; to our knowledge,
no such calculations have yet been published. On the basis of
a nonperturbative model described in Ref. [2], however, one
might expect QPM-optimized harmonic intensity to be up to
two orders of magnitude larger, with available depth of
plasma density modulation, than the output intensity attain-
able under currently employed loose focusing and poor
phase matching. Even more important an advantage of QPM
optimization is the opportunity to use tight focusing that has
so far been deleterious for HHG; resulting much higher in-
cident intensities mould increase power conversion effi-
ciency by many orders of magnitude as compared to the
loose-focusing regime.

The power of the qth harmonic generated by the lowest-
order Gaussian fundamental beam, which propagates along
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the z axes in a homogeneous medium and is tightly focused
with the conformal parameter b at z=0, is proportional to
the phase-matching factor ~F0~, where (see, e.g., [4])

a =a, ,=p+ q
—2, k'P'= orb[(q —2)(1+8)]

8= b b, k/2(q 2—),
(4)

F0=I(p) = du e Pfq(u),

fq(u)=(1+iu)' q, u=2z/b, p=b5k/2,

5k= kq
—qk is the dispersive phase mismatch, k is the wave

vector of the incident beam, and kq is the harmonic wave
vector. Integral F0 corresponds to direct generation of the

qth harmonic by the fundamental beam, coq= qadi. Generally
speaking, so-called cascade mixings could also generate the

qth harmonic; e.g., coq z=(q —2)cu and then ru q=cu+ru
+ coq 2 Beyond perturbation limits, however, the distinc-
tion between direct and cascade processes becomes meaning-

less; then, if some general assumptions hold, the phase-
matching factor could again be written, similarly to Eq. (1),
in such a way that the optimal parameter p is approximately
the same as for perturbation HHG [11].

MODULATION OF NONLINEAR SUSCEPTIBILITY

We begin with the case where only nonlinear susceptibil-

ity is modulated. Experimentally, it could be achieved, e.g.,
by shifting the resonant level if HHG were to be strongly
enhanced due to a two-photon resonance; another possibility,
"coherent control" (that is, control of the phase of the in-

duced dipole moment by changing parameters of the incident

pulse), is suggested in Ref. [13].The relative mathematical

simplicity of this case will allow us to obtain optimal quasi-
phase-matching conditions which then will be shown to be
valid in density modulated media as well. More specifically,
we assume the nonlinear susceptibility that is responsible for
the qth harmonic generation p~q& to be spatially modulated
as

y~q~(u)=yaq [1+A cos(au)], a=qrb/k (2)

where X and A &1 are the modulation wavelength and am-

plitude, respectively, gtaq~ is the ambient (unperturbed) non-

linear susceptibility. Equation (2) provides maximum nonlin-

earity at z = 0, where the pumping field is maximal. (If gtql is
modulated by either of the two methods just mentioned, the
amplitude A may depend on q. ) Now our goal is to deter-
mine the magnitudes of the modulation parameter a which
make it possible to generate harmonics efficiently in almost
dispersionless (rare gas) or positively dispersive (plasma)
media where, due to the parameter p being positive, F&=0.
The nonlinear susceptibility modulation, Eq. (2), results in

the new factor [1+Atqlcos(au)] appearing in the integrand
of Eq. (1), so that FD is replaced by F

F =I(p) + (A/2) [I(p+ a) +I(p —a)]. (3)

It is well known that I(p~O) =0, and ~I(p) ~
is maximal at

p= —(q —2) (see, e.g., [5]). In the media of interest to us,
p~O, so that I(p)=I(p+a)=0, and the phase-matching
factor (F

~
=(A /4)~I(p —a)~ reaches its maximum for a

given p at

where k'"' is the optimal modulation wavelength. The dis-

persion of neutral noble gases, which are the media of choice
for the experiments of HHG, is so small (see, e.g. , [14]) that

we can neglect 8 in Eq. (4), and HHG will be optimally
quasi-phase-matched at

X' '=X " =orb/(q 2)—. (5)

In plasma, in the absence of resonances close to either
the fundamental or the qth harmonic frequencies,
5k= r+,qk, where r, is the classical electron radius, N, is
the plasma electron density, and k is the wavelength of the
incident beam. Two distinct QPM regimes in plasma can be
considered. The first is characterized by B&&1, which means
that the geometrical phase mismatch dominates the disper-
sive one (such a relation holds in rare gases). It is the case if
a beam is focused on a small confocal parameter in a not too
dense plasma. Optimal QPM conditions in this "low-
dispersion" regime are determined by Eq. (5), so that the

optimal modulation wavelength for a given q depends only
on the conformal parameter, and not on the fundamental fre-

quency or plasma density. If, on the contrary, dispersive
phase mismatch dominates, B&&1 ("high-dispersion" re-

gime); then

0P = k &SP 2m/d k(&) geo~
m m m (6)

DENSITY MODULATION

Now, let us assume that the nonlinear susceptibility modu-
lation, Eq. (2), is due to medium density modulation only,
and is therefore accompanied by the refractive-index modu-
lation:

n(u) = 1+n[1+A cos(au)] =n0+ nA cos(au), (7)

where n0= 1+n is the ambient (unperturbed) refractive in-

dex, and n is proportional to the ambient medium density.

As an illustration, consider QPM for the 51st harmonic of a
Ti:sapphire laser (k =0.8 p,m), which was near the middle of
the harmonic plateau in the recent HHG experiments [15],
and assume b=100 p, m. In plasma with N, -10' cm
8-0.1; for this low-dispersion regime, Eq. (5) yields
k' '= 6.2 p, m. On the other hand, in a plasma with

N, -10 cm, 8-10 and k' '=0.54 p, m.
Equations (5) and (6), generally speaking, require differ-

ent optimal modulation wavelengths for harmonics of differ-
ent orders. One, however, might expect phase-matching
curves (i.e., phase-matching factors vs beak) to be relatively
broad for high-order harmonics. (For instance, one can cal-
culate, using Ref. [5], that the perturbative phase-matching
factor for the 31st harmonic is only -10% smaller than its
maximal value, at beak, that corresponds to the maximum of
the 29th harmonic. ) As a result, a given k would yield a
substantial phase-matching factor simultaneously for a num-
ber of harmonics, and moreover without precise control of
the modulation wavelength.
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Both A and a are obviously the same in Eqs. (2) and (7). In

gases and in plasma, n is usually very small, so that modu-

lation of the refractive index is very weak. If also X.&&k

which is commonly the case for X.
' ' in low-dispersion re-

gimes, as well as in some high-dispersion regimes, then ra-
diation propagation in the medium can be described by the
approximation of geometrical optics [16]:propagation in an

inhomogeneous medium is assumed to be approximately the
same as in a homogeneous medium with variable dielectric
permittivity. This approximation is characterized, in particu-
lar, by the absence of Bragg reflection, which would substan-

tially complicate the consideration (similar to the way in
which complications result from Fresnel refiection in QPM
in solids; see, e.g. , [10]). Since we do not intend to fully
investigate HHG in density-modulated media but rather want

to identify some conditions favorable to quasi-phase-
matching, we limit our consideration to this approximation
as the simplest, while most common, situation. In this case,
as we will now show, the refractive-index modulation, Eq.
(7), does not substantially change the optimal QPM condi-
tions, Eq. (4). Indeed, if (i) the lowest-order Gaussian beam
is focused at the point z=0 inside a nonabsorbing medium

that begins at z = L, (ii) th—e refractive index of the medium
is modified, n=n(z), and (iii) the approximation of geo-
metrical optics is valid, then the laser field inside the medium

can be expressed as

E(r,z) =Ep[n(z)D] 'exp[ —kpr /bpD]

( ~ )
Xexp i k(z')dz'

( t'z

D=1+2ibp '
n (z)dz L-

(J r, -)
where r =x +y and Ep, bp, and kp are the beam ampli-

tude, confocal parameter, and wave number, respectively,
outside the medium. Equation (8) is straightforwardly de-
rived from a more general expression given in Ref. [17].
Very weak dependence of refractive index on z can be ne-
glected almost everywhere in Eq. (8), so that, e.g.,
D=1+iu. We, however, retain z' dependence in the last
exponential term in E(r,z) since this exponential term will

eventually include Ak, whose dependence on z is as strong
as that of y~q&. Thus, we arrive at the expression for the
fundamental field in a modulated medium which differs from
the ordinary lowest-order Gaussian beam only in that

exp(ikz) is replaced by exp[iI'Lk(z')dz']. [Such an expres-
sion first appeared in Ref. [12] and has been used in numer-

ous publications on HHG since then (see, e.g., [2]), without,
however, any reference to the approximation of geometrical
optics. ]Then, the procedure developed in Ref. [12]yields the
phase-matching factor ~E~,

I
oo

F= [gp"] ' du g '(u)e " ' f,(u),
Q —oo

I
z

{zhk)=
~

dz'bk(z') =pp[u+A sin(au)/a],

where pp=b5kp/2, and bkp is the phase mismatch due to
the ambient dispersion. It follows from Eqs. (9), (7), and (2)
that, to account for the modulated refraction, it is enough to
replace the term pu in each integral in Eq. (3) with

pp[u+A sin(au)/a]. All three integrals taken in symmetrical
limits are real, so that F=2(Ip+I+&+I,),

I
oo

I = . du cos[(pp+ja)u+(q —1)tan u
1

+ppA sin(au)/a]f~(u), j=0,~1. (10)

For large q the factor f~(u) differs substantially from 0 only
for such a small u that tan u=u, so that

I,= du a, f(u),

cl/= cos{u(pp+ Ja+ q 1)[1+b';stn(au)/(au)]),

~, =JoP/(I o+ja+q 1)-
Since

~
sin(au)/(au)~~1 and 8+ t & bp& 1, the coefficients at u

in both no and u+& are positive, so that Io and I+& disappear
under the conditions of interest, po&0. The modulus of the

remaining integral I
&

is approximately maximized at
a=a,&„Eq. (4), with p replaced by pp. Indeed, for
a' =po+q —1,

I,=I'~I= du cos[(ppA/a')sin(a'u)]f(u). (12)
Jo

Since pp/a
' &1 and

~

sin(a'u)~~1, the argument of the cosine
function in Eq. (12) is smaller than A. If the modulation is
not too deep; e.g, if A&0.3, which is quite realistic, the

integral I' 't is equal, within 4% error, to Jpdu f(u), which

in turn provides the upper limit for ~I, ~. Since for large q,
a'=a, p„one may conclude that optimal QPM conditions
are almost independent of the modulation of the refractive
index, Eq. (7).

So far, we have used perturbation-theory expressions for
the phase-matching integral. In fact, however, one may see
that we have only utilized the particular form of the phase
factor in Eq. (1), as well as the fast decrease of the function

f(u) with increasing
~
u~. If the same holds beyond perturba-

tion limits, as seems indeed to be the case [11],Eq. (4) is
also valid for strong pumping. Our consideration has been
limited to tight focusing. It can be shown, however, that for
large q Eq. (4) is an equally good approximation for the

opposite limit of loose focusing, b&)L if X. , which is much
smaller than b, is also much smaller than I..

The most obvious advantage of QPM optimization is that
it allows tight focusing, which is otherwise detrimental to
HHG in rare gases and plasma. The incident intensity can
then be easily increased by two orders of magnitude for the
same pumping power by, e.g., simply changing the confocal
parameter from the —1 mm now used, to the readily attain-
able 100 p,m. Without a general theory of phase matching
beyond perturbation limits, or at least numerical simulations
for a particular laser and a medium, it is impossible to cal-
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culate accurately the resulting increase in harmonic intensity.
It is commonly assumed, however, that the intensity of high-

order harmonics is approximately proportional to the 12th
power of the incident intensity (see, e.g., [2]). Moreover,
even for the same currently used incident intensity, QPM
optimization may significantly increase HHG conversion ef-
ficiency. Indeed, a model ([2], Fig. 31) developed for HHG
of a loosely focused incident beam, allows one to assume the
high-order harmonic conversion efficiency under current ex-
perimental conditions to be five orders of magnitude lower
than the conversion efficiency that might be optimized in a
conventional way (that is, by providing

beak=

—2q in a ho-

mogeneous medium). On the other hand, harmonic intensity
at the QPM optimum, under otherwise equal conditions, dif-

fers by a factor of A /4 from conventionally optimized out-

put, as one may see by comparing the third and the first
integrals in Eq. (3).As a result, with, e.g., recently reported

[18] plasma density modulation achieved by irradiating a

grating with a ruby laser (A=0.08, X =2—6 p, m in a
plasma with N, -10' cm ), QPM optimization might in-

crease the harmonic intensity by a factor of
(A /4) X 10 =160 for the same pumping intensity.

In conclusion, we demonstrate theoretically the feasibility
of optimal quasi-phase-matching of HHG in gases and plas-
mas with modulated density. This technique may increase
high-order harmonic conversion efficiency by several orders
of magnitude. QPM can also be applied to x-ray third-

harmonic generation [19]. Indeed, for a typical x-ray laser
wavelength kxRL-200 A, b-100 p, m now being attainable,

and reasonable plasma density &10 cm, k' '=k "
=nb-300 p,m. %ith such an easily attainable modulation

wavelength, QPM may appear to be an attractive method to

optimize XRL frequency tripling in plasma.

ACKNOWLEDGMENTS

This work is supported by AFOSR; P.S. acknowledges
partial support by the National Science Foundation through
the Center for Ultrafast Optical Science under Grant No.
STC PHY 8920108, and the hospitality of Professor Philip
Bucksbaum and Professor Gerard Mourou. A. Lago is sup-

ported by CNPq of Brazil.

[1]A. McPherson, G. Gibson, H. Jara, U. Johann, T. S. Luk, I. A.

McIntyre, K. Boyer, and C. K. Rhodes, J. Opt. Soc. Am. B 4,
595 (1987); M. Ferray, A. L'Huillier, X. F. Li, L. A. Lompre,

G. Mainfray, and C. Manus, J. Phys. B 21, L31 (1988).
[2] A. L'Huillier, L.-A. Lompre, G. Mainfray, and C. Manus, At

oms in Intense Laser Fields, edited by M. Gavrila (Academic,

Boston, 1992), p. 139.
[3] Ph. Balcou aud A. L'Huillier, Phys. Rev. A 47, 1447 (1993).
[4] (a) G. Bjorklund, IEEE J. Quant. Electron. QE-11, 287 (1975);

(b) P. L. Shkolnikov, A. E. Kaplan, and A. Lago, Opt. Lett. 1$,
1700 (1993).

[5] J. F. Reintjes, Nonlinear Optical Processes in Liquids and

Gases (Academic, New York, 1984), Chap. 3.
[6] E. Esarey, A. Ting, P. Sprangle, D. Umstadter, and X. Liu,

IEEE Trans. Plasma Sci. 21, 95 (1993).
[7] J. M. Rax and N. J. Fisch, Phys. Rev. Lett. 69, 772 (1992);

Phys. Fluids B 5, 2578 (1993).
[8] J. A. Armstrong, N. Bloembergeu, J. Ducuing, and P. S. Per-

shan, Phys. Rev. 127, 1918 (1962); P. A. Franken and J. F.
Ward, Rev. Mod. Phys. 35, 23 (1963).

[9] M. M. Feier, G. A. Magel, D. H. Jundt, and R. L. Byer, IEEE
J. Quantum Electron. 28, 2631 (1992).

[10]A. Szilagyi, A. Hordvik, and H. Schlossberg, J.Appl. Phys. 47,
2025 (1976).

[11]P. L. Shkolnikov, A. E. Kaplan, and A. Lago, Opt. Commun. ,
111, 93 (1994).

[12]A. Lago, G. Hilber, and R. Wallenstein, Phys. Rev. A 36, 3827
(1987).

[13]M. Yu. Ivanov, P. B. Corkum, and P. Dietrich, Laser Phys. 3,
375 (1993).

[14]A. L'Huillier, X. F. Li, and L. A. Lompre, J. Opt. Soc. Am. B
7, 527 (1990).

[15]A. L'Huillier and Ph. Balcou, Phys. Rev. Lett. 70, 774 (1993);
J. J. Macklin, J. D. Kmetec, and C. L. Gordon III, ibid. 70, 776
(1993).

[16]V. L. Ginzburg, Propagation of Electromagnetic Waves in

Plasma (Gordon and Breach, New York, 1961), Chap. IV.

[17]N. S. Bukman and A. L. Gutman, Sov. J. Comm. Tech. Elec-
tron. 32 (4), 129 (1987).

[18]M. Laberge and J. Meyer, Phys. Fluids B 2, 2708 (1990).
[19]P. L. Shkolnikov and A. E. Kaplan, Opt. Lett. 16, 1973 (1991).


