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Dark and bright photovoltaic spatial solitons
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Dark (bright) planar spatial solitons are predicted for photovoltaic photorefractive materials when the dif-

fraction of an optical beam is exactly compensated by nonlinear self-defocusing (focusing) due to the photo-

voltaic field and electro-optic effect. These solitons may have steady-state irradiances of microwatts to milli-

watts per square centimeter and widths as small as 10 pm in lithium niobate. Optical control is provided by
incoherent illumination, and the nonlinear index of a dark soliton may be used to trap a bright soliton by
rotating the plane of polarization of the soliton field.

PACS number(s): 42.50.Rh

Self-trapping of light beams in nonlinear Kerr media has

been the subject of intense theoretical and experimental in-

vestigation for three decades [1—5]. The self-trapped beams,
which may behave as spatial solitons, evolve from nonlinear

changes in the refractive index of the material induced by the

intensity distribution of the light when the confining effect of
the refractive index exactly compensates diffraction. The
typical powers required for observation are hundreds of kilo-
watts (pulsed) in optical Kerr media [4] or watts (cw) in
thermal-nonlinear media [5].

More recently, theoretical and experimental work has
demonstrated a different spatial soliton using the photore-
fractive nonlinearity in an electro-optic crystal to compensate
for diffraction [6—10]. The intensity profile of the beam
modulates the refractive index via the photorefractive effect
such that exact compensation for diffraction allows the light
beam to propagate with a constant profile in two transverse
dimensions. The photorefractive solitons have exceptionally
low optical powers in the microwatt range, disappear at
steady state, and require an externally applied electric field.

Here we predict the existence of a different spatial soliton
that results from the photovoltaic effect [11]in a photorefrac-
tive material. Solitons in photovoltaic-photorefractive mate-
rials differ from both the Kerr and photorefractive solitons in

physical origin, dependence on the light intensity and mate-
rial properties, and temporal behavior. Our work is motivated

by numerous observations [12—14] of dark features that ap-
pear in the transverse profile of a single beam propagating in
a bulk photovoltaic medium, LiNb03. We derive and solve
equations for beam propagation in photovoltaic media and
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obtain the properties of the dark (or bright) spatial soliton in
one transverse dimension. Then we derive the conditions
necessary for experimental observation and compare photo-
voltaic solitons to Kerr and photorefractive solitons.

We start with the standard set of rate, current, and Pois-
son's equations that describes the photorefractive effect in a
medium in which the photovoltaic current is nonzero and
electrons are the sole charge carriers. In the steady state and
one dimension these equations are [15]

(sI+ P) (N„N„') y,nN—d
=0,—

dn
qij,nE+ ktr Tp, + res(Nd Nd)I= 0, — (2)

dE
+ (q/e) (n+Ng Nd) =0, —

where n is the electron number density, Nd is the total donor
number density, Nd is the number density of ionized donors,
and Nz is the number density of negatively charged accep-
tors that compensate for the ionized donors. Further, I is the
irradiance of the optical beam and E is the space-charge field
inside the crystal, and all variables depend on the distance x
perpendicular to the direction of propagation z of the optical
beam. The parameters of the crystal are the photoionization
cross section s, the dark generation rate p, the recombina-
tion rate coefficient y, , the electron mobility p, the photo-
voltaic constant Ii:, and the dielectric constant a; q is the
charge on the electron, k~ is Boltzmann's constant, and T is
the absolute temperature.

These material equations must be supplemented
by the equation for the optical field E,~,(x,z, t)
=A(x, z)exp(ikz —itot)+c.c. In the paraxial approximation
the slowly varying amplitude, A(x, z) is determined by
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i 8 'I ikon
z A(x, z) = A(x, z),

(Bz 2k' ]
'

nb
(4)

It remains to show hN'd/N„(&1 to obtain Eq. (6) from

(10). Substituting Nd=N„+ANd into Eq. (3) yields

Ikn = nbrE—/2, (5)

where An is the nonlinear change in the refractive index,

nb is the background refractive index, and k is the optical
wave number in the material, k=2mnb/k, where k is the

wavelength. In electro-optic materials hn is related to the

electric field through the effective electro-optic coefficient r
by [15]

dE
&N'„=n+(~/q) „

I/Id~k ~ n a dE ~

(12)

Thus we require n(&N& and a/q(dE/dx)(&N„. Substitution
of Eq. (11) into Eq. (10) yields

and this relation plus appropriate boundary conditions speci-
fies the problem. For simplicity, we assume that we deal with

a crystalline geometry such that bn is scalar. This implies

x=~;; and r=r;;, where i is a crystalline principal axis
parallel to X.

Solution of Eqs. (1)—(5) generally requires approximation
or numerical work. Here we approximate the space-charge
field in terms of the optical irradiance:

I/Id ark

'1+I/Id k' (6)

where Ep= iryP'A/(qp) is the photovoltaic field constant,

I(x,z)=~A(x, z)~, and the dark irradiance is defined by

Id„k= p/s. We substitute Eq. (6) in Eqs. (5) and (4) and

obtain a solution for the soliton amplitude.
Before solving the wave equation, we derive Eq. (6),

which involves neglect of the diffusion current relative to
drift and photovoltaic currents in Eq. (2) and approximation
of the ionized donor number density by its dark value

(N'„=Nz). First, we solve Eq. (2) for E,

For irradiances typical of cw lasers, less than 10 W/cm, the
second term in parentheses, n/N„, is always much less than

1 [15].The third term, (adE/dx)/(qN~), can be evaluated

using Eq. (6) for E(x), the zeroth-order term in the expan-
sion, to see if the expansion converges. This yields the ex-
pression

a d t Ep/Id„k—l
~ (&1.

qN„dx ( 1+I/Id„k )
(13)

A (x,z) =u(x) exp(i yz) Idwk (14)

In the absence of a solution for the soliton irradiance I(x),
Eq. (13) can be evaluated dimensionally, and one obtains that

the soliton dimension L, must be much greater than

Epc/(qN„). One can restate this condition as requiring that
the limiting space charge field in the material be large com-
pared to the photovoltaic field. For typical materials,
N„=10'd cm 3, a=30ao (so is the permittivity of free
space), and Ep=10 V/m; this yields L,&)1.66 pm.

Substitution of the usual soliton ansatz,

E=ED(x) +Epv(x) (7) and Eqs. (5) and (6) in Eq. (4) yields

n = (sl+ P) (Nd Nd)/y+d . — (8)

Finally, we substitute N„'=N„+bNd and expand about

Nz. This yields

where the diffusion field is given by ED(x)
kiiT/qd lnnld—x and the photovoltaic field by

Epv(x) = ~s(Nd N'„)I/(qp—n) Second, w.e solve Eq. (1)
for n in terms of N&.

u —u"/(2ky)=(a/y)u /(1+uz), (15)

u"+u —bu /(1+u )=0, (16)

where a =knbrEp/2. Soliton solutions to equations like (15)
have been investigated theoretically in the context of satu-
rable absorbers [16,17].There are two cases of interest in Eq.
(15). If a is negative (defocusing nonlinearity), then y must
be negative to obtain a physical solution. In this case, one
can set (=(—2ky) U x and 8=a/y to obtain

and

n = (sI+ P) (Nd N„)/( y+„)[1——b Nd/(Nd Nz)]—
X[1—bN'„/N„+(b, Nd/N„) + ]

where the double prime refers to the variable (. This equa-
tion yields dark solitons. On the other hand, if a is positive
(focusing nonlinearity), then y must be positive, and one can
set $=(2ky)' x and b=a/y to obtain

I/Id k
Epv= E& (1+ ANd/NA).+ dark

(10)

We note that if /rr. N'd/N„(&1, the inagnitude of the diffusion
field is simply k&T/(qL, ), where L, is the spatial scale of I.
Then Eri(x) may be neglected relative to Epv(x) if L, is
much greater than k&T/(qE„). Photovoltaic fields are on the
order of 10 to 10 Vlm and kIiT/q= 0.025 V at room tem-
perature. Even for fields as low as 10 V/m, neglect of the
diffusion field is a good approximation for L,&)2.5 p,m.

u" —u+bu /(1+u )=0, (17)

p —po= ~((b—1)(u —uo) —8 ln[(1+u )/(1+ uo)]),
(18)

and this equation yields bright solitons. If the denominator in
the third term were replaced by 1, Eq. (16) would have the
Kerr solution u(g)=(1/b)U tanh(g/2'~) while, Eq. (17)
would have the solution u(g) =(2/8)" sech(().

A first integral of Eq. (16) or (17) is obtained by quadra-
ture methods:
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DARK SOUTON and Fig. 2 shows the amplitude profiles normalized to uo as
a function of g for several values of uo.

Now we return to the condition (s/q)(dE/dx)&&NA.
Self-consistency requires

0.6-
sE d t' u'

2 &&~.
q dx (1+u ~

(20)

0.4 .

0.2-

Performing the derivatives yields

2up(2kl yl)'" .Ep
&&1,(1+uz) qN,

(21)
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FIG. 1. Dark photovoltaic soliton amplitude u/u(~) as a func-

tion of g for several values of u(~). As for Kerr media, the dark

photovoltaic soliton is an odd function of g. Note that the horizontal

scales in dimensional units are different for each curve and corre-

spond to x= g/g —2kau„/(u„+ 1).

8[uo —ln(1+ uo)] —uo=0. (19)

Equation (18) can be integrated numerically to obtain the

photovoltaic dark soliton profile as a function of ( shown in

Fig. 1. Note that, unlike the Kerr soliton, which has a con-
stant width as a function of 8 in units of (, the photovoltaic
soliton broadens substantially for 8' near 1. For the bright
solitons, we use the boundary condition u(0) from Eq. (19),

BRIGHT SOLITON
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FIG. 2. Bright soliton amplitude u/uo as a function of g for
several values of uo. As for Kerr media, the bright photovoltaic
soliton is an even function of f Note that the horizontal . scales in
dimensional units are different for each curve and correspond to
x= g/$2ka(uo —In(1+uo)/uo.

where p=du/d( and the upper (lower) sign is for dark

(bright) solitons. The boundary conditions for the dark soli-
ton are p(0) =pa, u(0) =0,p(~) =0, and u(~) = u„, while
for the bright soliton p(0) =0, u(0) =us, p(~)=0, and

u(~)=0. For the dark soliton u"(~) =0, Eq. (16) implies

u(~)=1/(8 —I)'~2, and Eq. (18) gives p&=Bin[@(8'—1)]
—1. For bright solitons uo is obtained from Eq. (18) evalu-

ated from 0 to ~:

where p is related to u by Eq. (18). Recalling y=a/8,
a=kAn /nb, and the relation between 8 and uo for bright
solitons [Eq. (19)]or u(~) = 1/(8 —1) for dark solitons, one
can evaluate the left-hand side of Eq. (21). The factor
up/(1+u ) is large for intensities much greater than the

equivalent dark irradiance and has a maximum value of 0.18
for the bright solitons and about 2 for the dark solitons. Sub-
stitution into Eq. (21) then yields

E I hn, „l"
Eq(k) ( nb

(22)

where C-0.5 for bright and -5.0 for dark solitons, and

E~(k) is the limiting space charge field evaluated at the op-
tical wave number, qN&/ak. For N&=10' cm, nb=2 2, .
b n,„=10, and )i =0.5 pm, the criterion becomes
E &&1.4X 10 V/m (bright) and 1.4X 10 V/m (dark). Typi-
cally, photovoltaic fields are less than 10 V/m and the ap-
proximation is very good for bright solitons and satisfied for
dark solitons of moderate irradiance.

It is instructive to plot the dark soliton half-width as a
function of irradiance in more physical units for an illustra-

tive photovoltaic material. Consider a LiNb03 crystal char-
acterized by a large photovoltaic (Glass) constant [11]
G33- 3 X 10 cm/V and an electro-optic coefficient
1 33 30 pm/V. Since we have assumed a scalar 3 n, this im-

plies that our x and z directions must be parallel to the prin-
cipal crystalline axes. For large photovoltaic effects in

LiNb03 it is useful to propagate along the crystalline a axis
with a beam that is narrow in the direction parallel to the c
axis and linearly polarized parallel to c. For typical photo-
voltaic fields [16],one obtains refractive-index perturbations
of b, n ~=10 to 10 . For X=0.5 p, m and nb=2 2, .
this yields (2ka) =3.79 (An, „=10 ) and 1.20
(b, n = 10 ) pm. Typically the dark irradiance in

LiNb03 is about 1 pW/cm . Since all observations [12—14]
indicate a negative perturbation in the index (a ~0), we give
illustrative results for the dark soliton. Figure 3 shows the
half-width in units of (2ka) '~ as a function of irradiance
divided by dark irradiance. Note that photovoltaic solitons
with a dimensionless half-width of less than about 1.2 do not
exist, and for widths greater than about 1.2 there exist soli-
tons at two values of the optical irradiance.

Next, we discuss the properties of the photovoltaic spatial
solitons. The most distinctive property is sensitivity to the
ratio of the optical irradiance to the equivalent dark
irradiance —unlike Kerr solitons that depend on the absolute
irradiance [1,2] or the photorefractive solitons that are inde-
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FIG. 3. The dimensionless half-width of the dark soliton as a
function of irradiance divided by the dark irradiance.

pendent of the irradiance [6—10]. This property permits ob-
servation of photovoltaic solitons at moderate powers and
facilitates control of their width through the intensity. Mate-
rial absorption modifies the photovoltaic soliton since it re-
duces I/Id„k; however, absorption can be balanced by modu-

lating the dark irradiance artificially with incoherent uniform
illumination (note that the time response to reach the steady
state dramatically depends on the intensity [18]).Another
special property of the photovoltaic soliton is that, in prin-

ciple, one may switch from a bright to a dark soliton simply

by rotating the polarization of the light. Some photovoltaic
materials (for example, BaTi03 [18]) possess photovoltaic
constants that change sign under polarization rotation. This
results in an equivalent change of sign in the refractive-index
perturbation and means that a given laser intensity can be
used either for bright or dark solitons depending on polariza-

tion of the light. On the other hand, in Kerr media the re-

gimes of dark and bright solitons appear at different wave-
length ranges, while in photorefractive media, the solitons

may be switched from bright to dark by changing the polar-
ity of the external electric field.

Finally, it is interesting to find the lowest optical irradi-
ance (intensity) that can lead to a photovoltaic soliton. Con-

sequently, we consider a dark photovoltaic soliton in the re-

gime where ~u
~

&&1 for all g. This leads to the limit where
photovoltaic solitons behave as Kerr solitons, with one dif-
ference: the nonlinear change in the refractive index is due to
the photovoltaic field and electro-optic effect rather than
the optical Kerr effect. The solutions are therefore of
the form u=u(~)tanh($/2U ). Recalling that the soliton
size L,= 1/(ky)U and substituting for y yields u(co)
=(k/L, ) (2m Ezn r) For u. (~) =0.1 (maximum irra-
diance equal to 0.1 times the dark irradiance) and

1.,-20 p,m, we find that a minimum value of E~=40
kV/cm is required to trap a minimum irradiance dark soliton,
which is physically accessible [18].

In conclusion, we have shown theoretically that photore-
fractive crystals with a photovoltaic current can support a
unique type of spatial soliton.
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