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Quantum conversion between the cavity fields and the center-of-mass motion of ions
in a quantized trap
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We propose a technique to generate nonclassical vibrational states of the quantized center-of-mass motion of
an ion in a harmonic trap, based on the quantum conversion between the quantum cavity field and the

quantized center-of-mass motion. It is shown that when an ion trap system interacts with the eigenmode of a

single-mode Fabry-Perot cavity, where the trap is set in, and with an external classical driving electromagnetic
field through Raman transitions, the interchange of the quantum features between the quantum cavity field and

the quantized trap occurs. This kind of quantum conversion can be used to prepare some nonclassical trap
states for the ion trap as well as to measure the quantum statistics of an initial nonclassical vibrational state.

PACS number(s): 32.80.Pj, 42.50.Vk

Considerable experimental and theoretical work has been
devoted recently to the investigation of laser cooling and

trapping of ions and neutral atoms. Experimental advances in
this field have enabled the achievement of extremely low
temperatures of trapped ions and neutral atoms, at which the
quantum nature of the center-of-mass (c.m. ) motion was
dominant. Diedrich et al. [1]have shown that a trapped ion
can be cooled down to its zero-point energy of motion. Cur-
rent experiments [2—6] on laser cooling of free atoms have
observed transitions between different vibrational states,
which belonged to the quantized c.m. motions of atoms con-
strained to move in optical molasses. Moreover, these experi-
ments presented some evidence that a majority of the popu-
lation was in the vibrational ground state. With enough
population accumulated in the vibrational ground state, an
atom trapped in the optical molasses approximates a
minimum-uncertainty wave packet. In a Paul or Penning ion
trap system, the trap potential approximates to be harmonic
and the corresponding c.m. motion behaves as a standard
harmonic oscillator. On the other hand, for neutral atoms in

optical molasses, a theoretical investigation performed by
Castin and Dalibard [7] for the IinLlin configuration (two
counterpropagating laser beams with orthogonal linear polar-
izations) has predicted that the periodic potential, which was
associated with the light shifts of atomic Zeeman sublevels,
gave rise to atom localization on the optical wavelength scale
and to energy-band structures dependent upon the atomic
c.m. motion. The experimental demonstration of atom local-
ization in three-dimensional optical molasses was first car-
ried out by Westbrook et al. by observing Dicke narrowing
of fluorescence [8].At very low temperature, neutral atoms
are well localized near the valley of the well, where the
periodic potential is approximately harmonic. Therefore, the
vibrational ground state of the ionic or atomic trap is a co-
herent state with zero-point quantum fluctuations for position
and momentum operators, respectively.

The previous and ongoing experiments give impetus to
the investigation of the possibility of generating some non-
classical vibrational states. To our knowledge, three kinds of
schemes have been theoretically suggested to date. Agarwal
and Kumar [9] showed that the vibrational states of the c.m.

motion of an ion in a Paul trap with time-dependent trap
frequency had some remarkable nonclassical properties, such
as squeezing and sub-Poissonian statistics. Much current
theoretical work has furthered the investigation on this sub-
ject [10].Cirac et al. [11]demonstrated that multichromatic
excitation of a trapped ion by standing- and traveling-wave
light fields with certain selected laser frequencies led to the
occurrence of a dark resonance in the fluorescence emitted
by the ion and to the generation of coherent squeezed states
of the c.m. motion. Furthermore, they proposed to prepare
nonclassical states, especially Fock states, of the c.m. motion
in an ion trap, by the observation of quantum jumps [12].
More recently, considerable interest has been attracted to la-
ser cooling in the strong-sideband (SSB) limit [13]. It has
been predicted that both the population inversion and the
average trap number [14,15] of a two-level trapped ion will
exhibit collapses and revivals in the SSB limit, which result
from the discreteness of the vibrational states. These quan-
tum phenomena actually have proved the existence of quan-
tum interferences between the individual responses of the
different vibrational states in the trap quanta creation and
annihilation processes, which can be exerted to prepare some
vibrational states with nonclassical features, such as quadra-
ture and amplitude-squared squeezing, sub-Poissonian statis-
tics, and even some unrecognized nonclassical characteristics
[16].

In this Rapid Communication, we present a proposal to
generate nonclassical vibrational states of the c.m. motion of
an ion confined to move in a quantized trap, based on the
conversion of nonclassical properties from the quantized
electromagnetic field to the c.m. motion. This kind of quan-
tum conversion between two light waves with different fre-
quencies was theoretically predicted and experimentally re-
alized previously [17,18]. In our scheme here, we consider a
situation in which a harmonically trapped ion of mass M
with well-resolved absorption sidebands (known as the
resolved-sideband limit) is set in a Fabry-Perot cavity with
the cavity-mode frequency co, . For simplicity, we assume
that the ion oscillates near one node of the standing cavity
field. An external laser field with frequency col is applied to
the cavity. We suppose that both the cavity mode and the
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external laser field are tuned far from any ionic internal reso-
nance, but on two-photon Raman resonance with c.m. vibra-
tional states, i.e., their frequencies fulfill a condition:
co,—coI= v, where v is the harmonic trap frequency.
Thereby, Raman transitions between the c.m. vibrational
states can be driven. In a high-Q cavity, the ion counteracts
significantly the cavity field. An appropriate description of
the dynamical behaviors of the cavity field and the c.m. mo-
tion requires that they both be treated quantum mechanically.
What should be emphasized is the fact that the Raman tran-
sitions result in a dramatic alteration for the ionic c.m. mo-
tion and for the quantum cavity field as well. Our results here
confirm that complete quantum conversion takes place under
the circumstance of a properly selected external laser pulse.
If the quantum cavity field is initially in a nonclassical state,
the c.m. motion will obtain the same nonclassical properties
by complete conversion. The conversion can also take place
in the reverse way. The output of the complete conversion
from the c.m. motion to the cavity-mode field characterizes
the features of an initial nonclassical vibrational state, which
can be exerted to measure the associated nonclassical prop-
erties; particularly, a dark squeezed state in Ref. [11].

To simplify matters, we assume that the cavity is an ideal
one-dimensional one bounded by two perfect mirrors. This
corresponds to an approximation in which the cavity loss is
omitted. The ion placed within the cavity is confined to move
in a three-dimensional trap potential. A triplet of quantum
numbers (ni, n2, n3) is needed to label the vibrational states.
If one of the principal trap axes is taken to coincide with the
axis of the Fabry-Perot cavity, taken to be the x axis, the
problem can be reduced to one dimension. One quantum
number now suffices, for the other two are traced out by
summing over the corresponding degrees of freedom. In one
dimension, the external potential can be expressed in terms
of the creation and annihilation operators bt and b as

)I.n&

~I.n-f &

FIG. 1. Vibrational level scheme for the ion-trap system. The
trap states are well resolved, each being h, v apart in the energy
spectrum. Raman transitions are driven by an external laser pulse
and a single-mode cavity field, with frequencies of coI and co, ,
respectively. Both fields are tuned far from any ionic internal reso-
nance but on two-photon Raman resonance, i.e., r0, —co&= v.

l j) is
an intermediate state, lg) is the ionic internal ground state, and

ln) is the number trap state.

H =H, +HTp+Hf+H;„, )+H;„,2 (2)

Hf=Aco, a a,

with H, being the Hamiltonian for the ionic internal states,

Hf that for the cavity field, and H;„,& and H;„,2 the Hamilto-
nians for couplings of the trapped ion with the external and
cavity laser fields, respectively. Those terms can be written
out in detail as

HTp= fi v(btb+ —,').
H;„,i = ti + (Ailg, n)(j, n

l

e'"i'+'~+ H.c.),

The discrete nature of the external energies and the Raman
transitions between the trap states are schematically shown
in Fig. 1. We make a further simplification by assuming that
the spatial variation of the external laser pulse along the di-
rection of the x axis can be ignored in the Lamb-Dicke limit.
This can be arranged by setting the external field to propa-
gate along a direction perpendicular to the x axis. The exter-
nal classical light excites the ion from the ground state lg)
with the c.m. motion being in different trap-number states

ln), i.e., lg)Sln) (n=0, 1,2, . . . ), to intermediate states

lj,n). The succeeding emission stimulated by the privileged
cavity mode drives the ion back to the ground state with
decreasing trap numbers lg, n —1) (n=1,2, . . . ). We omit
spontaneous emission to modes other than the privileged
cavity mode. Those processes can also take place in reverse.
Since the intermediate states lj,n) (n=0, 1,2, . . . ) are far off
resonance, population pumped in those states is negligible
and can be adiabatically eliminated. Effectively speaking,
two processes are driven: i.e., absorbing a cavity-field photon
accompanied by increasing one trap quantum number, and
emitting a cavity photon accompanied by decreasing one trap

quantum number.
The total system can be described by the Hamiltonian

H;„,2=fi, sin(kx)g (g,alj, n)(g, nl+H. c.), (6)

ly)= 2 c, „ lj, n, m I)+2 c,„.lg-, n, m), (7)
J,n, m n, m

where at and a are creation and annihilation operators of the
cavity field, respectively, h, eoJ is the energy separation be-
tween internal levels

l j) and lg), p is the phase of the ex-
ternal laser field, and 0; =

p;, Eo/26, g, = /2m', /Vp, /6,
in which p,J represents the transition moment between states

lg) and
l j), and V is the quantization volume of the cavity

field. In the Lamb-Dicke limit, the operator function sin(kx)
can be expanded approximately as sin(kx)= r/(bt+b), where

r/ is the Lamb-Dicke parameter defined by r/= PE„/E„, with
E„=A k /2M and E„=A,v. The Hamiltonian can be ex-
pressed in a more convenient form in a rotating frame:
a=ac '"", b=be '"'. Hereafter we use tildes to indicate
operators in the rotating frame.

We set the system wave function as
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where Ig ri m)=lg)ltt)lm) and Ij rt m 1)=lj)ltt)
lm —1), in which In) and lm) represent the Fock states of

the trap quantum and the cavity field, respectively. From the
Schrodinger equation i Iz(8/Bt)l P) =Hl P), we derive a set of
differential equations to first order of the Lamb-Dicke pa-
rameter rg for cg „

cg „———iScg „ig—e' gn(m+1)c g„ i~ +i

ige 'J(n+ )mcg, n+1,m —i
—iP+2ivt I—l ge vnmcg, n —g,m —j.

—ig e' '"'g(n +1)(m +1)c g„+i~+„(8)

where, S=—X,Q;Q,*/8;, g =—X,Q;g, r//(8;+ 2 v),
g=X,Q,*g,*r//8, , in which, B,=oit co, —. The Stark shifts
(the first term) have no observable effects on the problem we
are concerned with here, and hence can be ignored. Finally,
we obtain an effective Hamiltonian

=.(ply. (.0) I y). ,

(Fb) = =b-(4'IFb(bo)
I @)b

(16)

However, the situation is reversed after the Raman coupling
(at t=+~), because the associated quantum properties are
determined by the expectation values

(F ) =+ =b(WIF (e'~'bo)14')b

(F ),=.-=.(&IF (""")I~).
(18)

(19)

pi=(N ~z)zr —P—$0 and gz=(/i/ —z)zr+@+ $0, resPec-
tively. If the system is in a state

I p), 8
I p)b, then initially (at

t = —~), the quantum properties of the quantum cavity field
and the c.m. motion are determined by the individual states

I p), and
I @)b, respectively. This means that the correspond-

ing operator functions F,(a) and Fb(b) have expectation
values of

0 =Agba e ' +17/g*b a e' +kg ba e'

—t P+ 2i vt (9)

where f(t) is dependent upon the time waveform of the ex-
ternal laser pulse. Then, the corresponding master equations
for cavity field and c.m. motion become

If the trapped ion is in the resolved-sideband limit (v&&0),
the last two counterrotating terms can be dropped, in the
spirit of the rotating-wave approximation. From the above
derivation, we can see that, if the external laser field is a
pulsed field, the effective Hamiltonian is the same, except
that 0 is replaced by A(t) = Of(t),

H, rr=(fi, garb e '~+ H.c)f(t),

Especially, if the cavity field is initially in a vacuum state,
i.e., aolO) = 0, then at t = +~, the c.m. motion of the trapped
ion will be in a vibrational ground state

I 0) for
blO)=e'~zaol0)=0. Moreover, if Ip), is a squeezed state,
i.e.,

I P).=D(u, t = ~)S(—8, t = —~) IO)

with D(u, t = —~)= exp(uaot —u*ao) and S(8,t= —~)
=exp[-z'8*a 0

——z'Ha to ], where 8 is the squeezing parameter,
then squeezing occurs at T= +~ for the trap states, because
the state generated by the operator

Db(u, t = +~)Sb(8, t = +~)
=exp[ubt(t) —u*b(t)]

da = —Igbe '@,
x exp[z~*b'(t) —zb "(t)]l~=+- (20)

db = —ig*a e'~, (12)

b(t)
I

=+-= —t e'~' ~"aosin(lg I 40) + bocos(lg I(0)
(14)

where the phase $0 is defined by e '~'=g/Igl, and (0 by
$0= f+„"f(r)dr $—0 corresponds . to the normalized external
laser pulse area. If it is selected to satisfy

I g I 60 ——(&+ -z') zr,

a complete conversion takes place, i.e., a = e'~I ho and
b = e'~2ao, in which y& and y2 are defined as

where g is a new variable defined as (=f' „f(r)dr—Those.
equations can be analytically solved in terms of initial values

ao and bo at the time when the external laser pulse is absent
(t= —~). After the external laser pulse, i.e., at t=+~, the
cavity field and c.m. motion become

a(t)It +„=a so( gI(I)0—i e 't +~o bosin(lgl(0),
(13)

is D(ui, t= —~)S(8,, t= —co)IO), which is a coherent
squeezed trap state with squeezing parameter 8&, where
u&=u e '~2 and 8&= He '~2. Particularly, if the phase of
the external laser field is selected to satisfy p+ $0= zr/2, the

trap states will achieve the same squeezing characteristics as
the cavity field. On the other hand, any initially squeezing
characteristics of the trap states will be converted to the cav-
ity field after the external laser pulse. This kind of nonclas-
sical property interchange is independent of the initial quan-
tum statistics of the cavity field. Therefore, it is expected that
the quantum conversion can be used to measure the quantum
features of an initial nonclassical trap state [9,11,12,16].

We next come to a brief estimate of the experimental
feasibility. The above-predicted quantum conversion can
take place only when two conditions are fulfilled. First, there
should exist strong Raman coupling between the vibrational
states. Second, spontaneous emission to modes other than the
privileged cavity mode should be negligible. Experimentally,
the first condition can be fulfilled by employing a strong
external laser pulse and a strong cavity field, and the second
one by the use of inhibited spontaneous emission in cavity
QED. Very recently, very-high-Q cavities have been con-
structed for optical frequencies [19—22]. In a high-Q cavity,
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spontaneous emission is suppressed, and only stimulated
emission to the cavity mode is dominant. Therefore, it is
possible to create an experimental arrangement in a high-Q
cavity to test the prediction here. The position of the trapped
ion relative to the nodes of the cavity standing-wave field
can be set by adjusting the positions of the cavity mirrors
with the aid of a piezoelectric crystal. The condition for corn-
plete conversion igigo=(N+I/2)7r can be obtained by a

careful selection of the external laser pulse. Another impor-
tant parameter that should be taken into account is the line-
width 5 coI of the external laser field. It is clear that the above
analyses hold in the limit of Aevi(( v. Let us consider a typi-
cal ion-trap system, such as that described in Ref. [1]:

Hg+ in a Paul trap. The, relevant trap frequency is
v=2.96 MHz. The external laser pulse with linewidth
Acol((v=2. 96 MHz can be achieved by chopping the cw
laser field. On the other hand, as mentioned in the above text,

the results of complete conversion from the c.m. motion to
the cavity field characterize the trap states and can be used as
a novel measurement technique. However, the cavity field is
well confined in the high-Q cavity. A little tedious technique
is needed to probe the quantum statistics of this confined
field. One efficient way to accomplish this task is to employ
the atomic homodyne scheme proposed by Wilkens and
Meystre [23] and developed by Dutra, Knight, and co-
worker [24].

To sum up, we consider in this paper the system consist-
ing of a single ion well localized in a Fabry-Perot cavity and
interacting with an external laser field as well as with the
cavity mode, and demonstrate that quantum features of the
cavity field can be exchanged with those of the quantized
c.m. motion under certain situations. This kind of quantum
conversion can be used to prepare nonclassical trap states, as
well as to probe the quantum statistics of a previously pre-
pared nonclassical trap state.
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