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Line shapes for light scattered from Bose-Einstein condensates
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We study the coherent scattering of weak near-resonant light off a Bose-Einstein condensate formed by a

system of cooled atoms in a trap. Scattering occurs primarily in the forward direction, and exhibits a very

narrow feature on top of a broad non-Lorentzian background.

PACS number(s): 32.70.Jz, 42.50.Fx, 32.80.—t

Several experimental groups have been working toward
the realization of a Bose-Einstein condensate (BEC) [1—3] in

systems of trapped and cooled atoms [4]. If this goal is
achieved, reliable methods must be developed to detect and
diagnose the BEC.

The subject of this Rapid Communication is the weak
coherent light scattering off a BEC at zero temperature,
which is also discussed in Refs. [5—7]. The study of this
problem was initiated by Shlyapnikov and Svistunov, and
Politzer. They considered the limit of a very large trap, in
which atomic and photonic degrees of freedom mix, giving
rise to a gap in the excitation spectrum, i.e., the region of
frequencies that do not support any propagating modes. Be-
cause of this gap the resonant light will be strongly rejected
back from the sharp boundary of the condensate. The analy-
sis of Refs. [5,6] applies to the situation when NA /a &)1

and a/I(&) 1, where N denotes the number of atoms, l( is the
resonant wavelength )t./2m, and a is the size of the trap's
ground state. Javanainen [7] studied a small trap limit

(NA /a &) I and a /'Jt&(I), and described the atomic field by
just one harmonic oscillator, corresponding to a collective
excitation that approximately conserves momentum in the
absorption-emission processes. As a result, in the steady
state, a small number of atoms remain in the excited state,
and the number of scattered photons has a Lorentzian line
shape centered at the bare atomic resonant transition fre-
quency.

As shown below, the results are significantly modified in
the intermediate regime of parameters, NA /a —1 and

/I(a-1. We find that the scattering cross section is non-
Lorentzian, and exhibits very narrow resonance structures
close to the electronic transition. The narrow feature at line
center results from a process akin to Dicke narrowing [8] for
scattering from confined particles. Within the scope of the
model considered (which neglects spontaneous emission into
noncondensate states), the width is related to the geometric
mean of the trap frequency and photon recoil energy. We
expect such spontaneous emission to lead to a further in-

crease in the width of the central component. The scattering

angle is limited by the effective size of the trap. The proper-
ties of the scattered light do not significantly depend on de-
tails of the excited-state potentials, provided the exciting
pulse has a duration less than the typical period of the center-
of-mass motion. We also discuss the role played by the con-
tact part of the dipole-dipole interaction, which has been ig-
nored in most of the second quantized theories developed so
far.

We consider a range of parameters describing the
magneto-optical trap [1,9]. The potential for the atomic
center-of-mass motion for a single atom in the ground elec-
tronic state can be described by a harmonic oscillator poten-
tial of frequency co,-(2m)10 Hz. Although the potential
forms a finite barrier, several thousands of energy levels exist
within the trap. By exploiting an evaporative cooling tech-
nique, the trap will store about 10 cesium atoms, which will
interact with the resonant light of frequency
-(2m)4.0X10' Hz. A typical photon recoil energy will
then be -(2m)2 kHz, whereas the natural linewidth (half
width at half maximum) y-(2m)2. 5 MHz. The size of the
ground-state wave function in the condensate (assumed to be
of harmonic oscillator form) is a-10 p, m, whereas the reso-
nant wavelength, X-800 nm. We note that a for the ground
state of the condensate is several times bigger than

1//2M '„with M being the mass of Cs and A = 1.The a we
use takes into account the (expected) repulsive ground-state
interactions, which are believed to increase the size of the
condensate [10,11]. In general, atoms in excited electronic
states move in a different potential from that characterizing
the ground state. Here, we consider the case of zero potential
in the excited state (but other potentials should give qualita-
tively similar results).

The Hamiltonian governing the evolution of the atoms in
the trap takes the following second quantized form in the
rotating-wave approximation (RWA):

M= g Eggtg, +g (E' + too) et e
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where g, g denote atomic annihilation and creation opera-
tors for the nth state of the ground-state potential. For a
rotationally invariant potential, n is actually a triple index

(n„,n, n, ) T. he corresponding energy is Es=m, (n +nY
+n,). e, e denote atomic annihilation and creation op-
erators in the excited-state potential. In the case of zero po-
tential they annihilate and create plane waves of momentum
m. The corresponding energies are E' + coo= m /2M+ coo.
We consider here the transition from an s state to a p state
and therefore e 's and e~ 's have a corresponding vector
character. This is not the case for the transition in cesium
(6S,)2F = 4 to 6P3/2F = 5), but the character of the transition
is not essential for our conclusions. a&~ and a&„denote an-
nihilation and creation operators for photons of momentum
k and linear polarization ea„(p,=1,2). All operators fulfill
standard bosonic commutation relations. p(k) is a slowly
varying function of k related to the natural linewidth

7 =(8m ko/3c)~ p(ko)~, with ko= coo/c. y (k) describe
the transition from the nth state of the ground-state potential
to the mth state of the excited-state potential,

For weak light scattering at T=O, when all the atoms are
in the BEC, we linearize the atomic amplitudes around the
ground state, and substitute the operators g by their appro-
priate mean values [5,7],

(g,) (7)

This linearization reduces the Hamiltonian to a quadratic
form in the operators for photons and excited-state ampli-
tudes. The contact Hamiltonian after the linearization (7) is

M, =NB dR+t(R) P,(R)e (8)

where 8=6m'/($2mka) . It is an inhomogeneous collec-
tive shift which depends locally on the density of the atoms
in the ground state. Numerically, NB is about 62XN/10
MHz. Upon eliminating the atomic excited-state operators, a
scattering equation for the field operator takes the following
general form:

r/, (k)=(n~e '"'"~m). (2)

W=4me g r; r, 8(R;—R;), (3)

where r; and R; are electronic and atomic positions, respec-
tively. The sum extends over i&j, since the diagonal term
contributes to renormalization of the electronic transition fre-
quency. In the second quantized form the contact term can be
conveniently written in the coordinate representation, when
we introduce atomic fields:

(4)

t/y, (R)=g (R~m)e (5)

and their Hermitian conjugates. In terms of these fields it is

f
W~, = 4 mu' d Rt/it(R) +t(R) P,(R) Pg(R), (6)

where H= ~(er) ~

is the absolute value of the dipole moment.

The last part of the Hamiltonian has to be included when
the dipole approximation is used [12] and is usually ne-
glected. It is the contact interaction between atoms in the
excited and ground states. For atoms moving (or even con-
densing) inside the trap, such a neglect cannot be justified a
priori, since atomic wave functions may well overlap. Only
when the contact term is taken into account does the total
Hamiltonian include fully the strong resonant atomic inter-
actions due to electronic dipole-dipole forces and exchange
of transverse photons [13,14].

In the first quantization picture the contact term has the
form

f

akim
—ickav& XP

fg
dk' dt'

Jo

XM(t t';k, p„k—', p, ')a~i„i(t'). (9)

The kernel M(t t', k, p, ,—k', p, ') can be evaluated analyti-
cally in the case of a zero potential or an harmonic potential
in the excited state (for details see Ref. [15]).Here we stress
only that the kernel in Eq. (9) has a simple physical meaning.
Namely, it describes the amplitude for the process of absorp-
tion of a photon with momentum k' at time t', accompanied
by the formation of a wave packet in the excited-state poten-
tial. This wave packet then undergoes evolution until it re-
combines to the ground state at time t, emitting a photon of
momentum k. The evolution includes the free part and the
effects of the contact potential. Note that the free evolution
of the wave packet in the time interval 7.=t —t' consists
primarily in quantum diffusion and drift caused by the mo-
mentum of the absorbed photon [16].When the wave packet
drifts away from the center of the trap and diffuses suffi-
ciently strongly, recombination accompanied by emission be-
comes impossible. Thus the kernel M(t t '; k, p, k', p—') d,e-,
cays on a characteristic time scale 1/I . It is easy to verify
that I' must be of the order of gru, k /2M 1/I is sim. ply the
time needed for the excited-state wave packet to move a
distance -a with the recoil velocity. We estimate that
I -800 Hz, although its effective value can be larger due to
spontaneous emission into noncondensed states, which we
neglect in this Rapid Communication.

When the limit a~~ is taken in Eq. (9) we recover the
results of Refs. [5,6]. Momentum becomes then a proper
quantum number and the dispersion relation exhibits a
"gap." Such a solution decays, however, on a time scale
1/I and is not the one we are interested in. For t~~ [or
practically, t&) 1/I —1/(800 Hz)] the incident field has
enough time to penetrate the system and a long-time coher-
ent response will build up [17].In this limit the solution for
the scattering, Eq. (9), becomes
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(ak~(t))- uB(k —kr ) 8'~„e

+B(k,p, ) 8(ck cu—L)e (10)
o 4

where u is the amplitude of the incident coherent field, coL

and kr its frequency and wave vector, and B(k,p) is the
scattering amplitude. Thus, as t~~ only coherent elastic
scattering is possible.

The scattering amplitude in this on-shell approximation
[Eq. (10)], see Ref. [18], satisfies

k,'
B(k,p) = —2m'( —is)L, ', k, p, ,kl, pL) —2m —g dQ»

I

o 3—
L 2—

'0

—10 0
u,-~, (GHz)

10

X M( —i (oL, k, p, ,k', p, ')B(k', p, '), (b)

where lkl=lk'l=lkil=~i/c w»ie ~(z.k p k' p') de-
notes the Laplace transform of M(r;k, p, k', p'). The inte-
gration is over the solid angle dAk .

The quantity of interest is the total number of scattered
photons of frequency ~L per unit time and normalized to the
total number of photons incident upon the area ma (normal-
ized cross section), given by

o 4

rr(~L) 2 2 2 d+»IB(k p) I'
c a

(12)

—1.0 —0.5 0.0
v,-u, (MHz)

0.5 1.0

B(k,p, ) = g BI(kl )PI(cos(8))g(2l+ I)/4m, (13)
1=0

where PI(x) are Legendre polynomials. The B&(kL) are

—2~Nl p(k, )l'(4~)'g, /(42~)'
B1=

I+ 2~Nl p(k, ) l'(4~)'gk,'/( v'2~)'c
(14)

where

—222
l

oc e j I(kra().
(15)I +i(coo col +NB'exp[ ——(2/2])J 0

One might try to solve Eq. (11) using the Born approxi-
mation, i.e., neglecting the second, self-energy term on the
right-hand side. Such attempts fail miserably, partially due to
the large optical thickness of the condensate. Self-energy
terms are extremely important close to resonance and one
must fully account for them. We have solved Eq. (11) nu-

merically. To accomplish this we discretized the solid angle
and solved the resulting finite set of linear equations. One
can also construct an approximate analytic solution for Eq.
(11), if one neglects the dependence of M on the polariza-
tion product Kk„Ek„.This is a good approximation, since
the scattering occurs mainly in the forward direction and the
scattered photons have polarizations that are approximately
perpendicular to kl and do not couple to each other.

After neglecting the polarization dependence of M,
B(k, p, ) can be expanded in spherical harmonics. For
k=kl(sin&@os@, sin@in/, cos8), kL=kl(0, 0,1), and

e„,=(1,0,0), the expansion is

FIG. 1. Scattering cross section of the BEC for N= 10 (the rest
of the parameters as given in the text). (a) shows the overall shape;
(b) is an enlargement of the central region.

Here (=R/a is the radial coordinate scaled to the width of
the ground state, and j&(x) denote spherical Bessel functions.
Comparison of the above formula with the numerical solu-
tion of Eq. (11) shows that the approximate solution de-
scribes very well the line shape, although it underestimates
the overall cross section.

When the contact term (6) is neglected, the total cross
section,

o =2+ B&(kL)kL/(c a ),
1=0

(16)

becomes the sum of Lorentzians, characterized by the width

y,ff=I + yL, with1 1

yr =N3$2mye "I' I~+ t(kza )/(2kta),+2 (17)

where II(x) denote modified Bessel functions.
For l && kL a, all y~ 's are roughly equal to y,ff

=3Ny/(2k~a ) [7].One might think that if only low angu-
lar momentum harmonics contributed to scattering, the cross
section would be a sum of Lorentzians with approximately
the same width, i.e., it would itself be Lorentzian. However,
the y~ s decrease quite significantly with increasing l. In
fact, the contribution from higher l's is also important. As a
result, the line shape becomes non-Lorentzian, and exhibits a
very narrow spike close to resonance (Fig. 1). The lower
bound for the width of this spike is determined by quantum
diffusion rate I ~800 Hz. Typically, with N= 10, it is a few



R3568 LI YOU, MACIEJ LEWENSTEIN, AND J. COOPER 50

times broader than j. . This narrow feature in the spectrum is
an analog of the coherent Dicke narrowing [8]. It is worth
noticing that even close to resonance the angular distribution
of the scattered light has a width of the order 1/(kLa) [15].

The situation changes somewhat when the contact term
(6) is taken into account. However, for the parameters con-
sidered here, the differences are hardly noticeable. Physi-
cally, within our model, we have included all the effects of
atom-atom interactions due to exchange of transverse pho-
tons. Such interactions are repulsive, and divergent as 1/R at
short distances. Therefore, the singular part of these 1/Rs

terms can be regarded to be already essentially of the form of
a contact potential. Inclusion of the full contact Hamiltonian
(3) does not then change the overall picture significantly. The
curve in Fig. 1 was calculated for %8=62 (MHz), and ex-
hibits a slight asymmetry of order of 0.3%, in contrast to the
result obtained for NB=0 without the contact term. But for
other choices of parameters, the effects of contact interac-
tions can be more pronounced. In particular, additional struc-
tures in the line shape may be possible between coo and
uio+NB [15], since in this region some of the atoms are
shifted into resonance with the incident light.

To summarize, we have calculated the line shapes for co-
herent scattering from a BEC, using a somewhat more accu-
rate theory than previously employed. This line shape has
three appealing properties. First, it exhibits a very broad
resonance of width of the order of y,ff. To detect even a

partial condensation it will be sufficient to shine a strongly
detuned light on the system of cooled atoms. Those atoms
that are not in the condensate phase will Rayleigh scatter
with a cross section of effective linewidth y ((&y,ir) and
will not significantly contribute. Condensed atoms will pro-
duce quite a strong signal. Second, the very narrow feature
(-I ) in the spectrum at coL= uio suggests obvious applica-
tions of this system for precision spectroscopy. This is one of
the comparatively rare examples of a situation in which such
a narrow resonance is present. (The Dicke narrowed spec-
trum [8] is also similar in shape with this sharp spectral
feature. ) Yet the response of the system at this resonance is
strong. This is in contrast to normal narrow resonances asso-
ciated with weak transitions. From the experimental point of
view, the spike at coL =cuo is especially interesting, since it
will not be smeared out due to fluctuations in the number of
condensed atoms. One should stress, however, that other dis-
sipative processes, such as spontaneous emission out of the
condensate might lead to some increase of I' [15].Third, the
line shape is non-Lorentzian, asymmetric, and in some cir-
cumstances exhibits additional interesting features.

We thank all members of the BEC Seminar at JILA and
K. Burnett, K. Gibble, and G. Shlyapnikov for enlightening
discussion and comments. M. L. thanks JILA for the support
of his Visiting Fellowship. L. Y. and J. C. are supported in

part by NSF Grant No. PHY90-12244 through the University
of Colorado.

[1]C. Monroe et al. , Phys. Rev. Lett. 65, 1571 (1990).
[2] H. F. Hess et al. , Phys. Rev. Lett. 59, 672 (1987); N. Masuhara

et al. , ibid 61, 935 (19.88).
[3] R. van Roijen et al. , Phys. Rev. Lett. 61, 931 (1988).
[4] Special issue of J. Opt. Soc. Am. B 6 (11) (1989), edited by S.

Chu and C. Wieman.

[5] H. D. Politzer, Phys. Rev. A 43, 6444 (1991).
[6] B.Svistunov and G. Shlyapnikov, Zh. Eksp. Teor. Fiz. 97, 821

(1990) [Sov. Phys. JETP 70, 460 (1990)];98, 129 (1990) [71,
71 (1990)].

[7] J. Javanainen, Phys. Rev. Lett. 72, 2375 (1994).
[8] R. H. Dicke, Phys. Rev. $9, 472 (1953);S. G. Rautian and I. I.

Sobel'man, Usp. Fiz. Nauk 90, 209 (1966) [Soviet Phys. Usp.
9, 701 (1967)].

[9] C. R. Monroe et al. , Phys. Rev. Lett. 70, 414 (1993).
[10]Such a change of a assumes the density profile of the conden-

sate to be Gaussian. To be more precise one should use realis-

tic density profiles such as those obtained using the

Bogoliubov-Hartree method [11].Details of the density pro-
files do not qualitatively affect our results, however.

[11]R. V. E. Lovelace and T. J. Tommila, Phys. Rev. A 35, 3597
(1987); J. Oliva, Phys. Rev. B 39, 4197 (1989);E. Cornell and

K. Burnett (private communications).

[12] E. A. Power, Introductory Quantum Electrodynamics, Math-

ematical Physics Series Vol. 24 (Longmans, London, 1964).
[13]E. A. Power and S. Zienau, Philos. Trans. R. Soc. 251, 427

(1959).
[14] The elimination of the electromagnetic field from Eq. (1) leads

to an effective field theory of interacting atoms. W. Zhang

et a/. , Phys. Rev. Lett. 72, 60 (1994); G. Lenz et al. , ibid 71, .
3271 (1993).

[15]M. Lewenstein, L. You, and J. Cooper (unpublished).

[16]This evolution is evidently true in the case of zero potential in

the excited state, but is also true for a harmonic potential if
r&& Uco, . In the latter case, the wave packet does not have time

to reverse its motion and give rise to backscattering.

[17]The limits a~co and t~~ do not commute.

[18]J. R. Taylor, Scattering Theory: The Quantum Theory of Non

relativistic Collisions (Wiley, New York, 1987).


