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We study the effects of the resonant dipole interaction between identical atoms undergoing polarization-
gradient laser cooling. A generalized master equation, which includes both the atom-field interaction and the
dipole-dipole interaction between atoms, is derived. We then apply this equation to the particular case of two
identical atoms cooled simultaneously by a one-dimensional cooling field. We show that, as the average
center-of-mass separation between the two atoms is reduced to be less than an optical wavelength \/27, the
population of the ground motional state of the atoms begins to decrease sharply, indicating a breakdown of the
cooling mechanism due to the enhanced atom-atom interaction.

PACS number(s): 32.80.Pj, 42.50.Vk

In the past few years, one has witnessed remarkable
progress in the field of laser cooling and trapping of neutral
atoms. In most of the existing theories on sub-Doppler laser
cooling [1-3], one neglects the atom-atom interactions, and
calculates the interaction between individual atoms and the
cooling fields only. Such single-atom theories have their ob-
vious limitations. With the development of new cooling and
trapping techniques, the achievable densities of cold atomic
vapors at the present stage are such that the average separa-
tions between vapor atoms are on the order of a few wave-
lengths of the cooling field. For higher vapor densities, it
remains interesting to see how the interactions between iden-
tical atoms in the field affect the outcome of laser cooling.

There are some previous studies [4,5] on the effects of the
long-range resonant interactions between atoms undergoing
laser cooling or trapping. They are carried out in the so-
called semiclassical regime, in which the center-of-mass
(c.m.) motion of atoms is treated classically. A recent calcu-
lation [6] does include a quantal treatment of the atomic c.m.
motion, but the spatial localization of atoms in the cooling
field is absent from the model. The experimental observa-
tions of discretized motional energy spectra of atoms in one-
dimensional optical molasses [7] provide evidence of the
quantization of the atomic motion, as well as the spatial lo-
calization of atoms in the cooling field (atom crystals). It
seems necessary to extend the earlier semiclassical theories
to include the quantized c.m. motion of atoms and the spatial
localization effects of atoms. In this Rapid Communication,
we derive a generalized master equation describing the inter-
action between N atoms undergoing laser cooling. Then,
based on this equation, we calculate the steady-state density
matrix of two identical atoms simultaneously cooled by a
pair of counterpropagating, linearly polarized fields with or-
thogonal polarizations (optical molasses).

The Hamiltonian describing a system of N atoms interact-
ing with one-dimensional incident fields, which propagate
along the z direction, and the spontaneous modes of the
vacuum can be written as

H=H,+H;+H,;, , (1)

where H, and H are the free Hamiltonians of the atoms and
the vacuum field, given by
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respectively, where P, is the c.m. momentum of the /th atom,
w is the unperturbed atomic transition frequency, Pé is the
excited-state projection operator of the /th atom, and ay ,
(a};)\) is the annihilation (creation) operator for the field
mode (k,\). Notice that H, includes the atomic translational
degree of freedom as well through the momentum operator
P,. H;,, describes the interaction between the atoms at c.m.
positions R;’s and both the incident fields of frequency w
and the vacuum modes. Under the rotating-wave approxima-
tion (RWA), it is given by
N
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In the above equation, the atomic raising operator oﬁg is
given by

1
o= 21 (—1)ol(q)e, , )
=

where, using appropriate Clebsh-Gordan coefficients for cou-
pling, the components (rig(q) are given by

oll@)= 2 (Tmlgll.m ) my(Tgmgl ,  (5)
mg,me

and J,,J, are the ground- and excited-state angular mo-
menta.
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are the Rabi frequencies associated with the incident and
vacuum fields, where & is the cooling field amplitude, d,, is
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the dipole matrix element between the ground and the ex-
cited state, and V is the quantization volume. Finally, €,
and €(z;) are the polarization vectors of the vacuum mode
(k,\) and the cooling field, respectively.

Following the standard procedure of treating the vacuum
as a reservoir and eliminating the vacuum field modes [8],
one obtains the equation for the atomic density matrix as
dp(t) 1 !
—’;(t—?weﬁp(t)—p(t)H:ff]+r21 f dp' 2. N,(p')
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where I' is the natural linewidth of the excited state. The
angular distribution functions N,(p') for the emission of a
spontaneous photon with a polarization component g and a
momentum #p’ along the z direction for an isolated atom
are given by [9]
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The non-Hermitian effective Hamiltonian H., in Eq. (7) is
given by
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where A=w—w, is the cooling field detuning, and
R,;=R;—R, . The two tensor operators e and B are given

by
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respectively, where R is the unit vector in the direction of
R. They describe the dependence of the strength of the reso-
nant interaction between two atoms on their mutual separa-
tion. In particular, e is related to the modification of the
atomic relaxation rate due to the resonant interaction, and
B to the shift of the energy levels of one atom in the presence
of another [10].

|

RAPID COMMUNICATIONS

R2831

It is known for polarization-gradient cooling [11] that op-
timal cooling effects can be achieved in the limit of weak
fields and large detuning (the secular limit), i.e.,

|A|>T,Q . (12)

At present, we assume that the excited-state energy shifts of
the atoms due to their mutual interaction, which are of order
T|B(R )|, remain small compared to A|A|. As a result,
adiabatic elimination of the electronic excited state is pos-
sible. This assumption imposes a lower limit on the closest
average distance b (impact parameter) that two atoms can
approach each other in our model. However, under the secu-
lar limit, the distance b can be much smaller than the laser
wavelength N\ without invalidating this assumption.

To eliminate the electronic excited state, one makes the
substitutions

i0/2 ra/4
o.‘lg'e_*gl: - r/2— iAal{ge[a'Ieg' €(z)] +l§1 (T/2=iA)?
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Pl-(ghTE (13)
in Egs. (7) and (9) [12]. To lowest order in

(T/|AD|B(R;;)| and T/|A|, the resulting density-matrix
equation for the atomic ground states is then given by

dp(t)/dt:[Hg f+H;ff’p(t)]/iﬁ+[p]re1ax . (14)
The zeroth-order Hamiltonian H S,f is the sum of the atomic

kinetic energy and the light-shift potentials associated with
the atomic ground-state sublevels, given by

P2
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1

where the potential depth U, is
Uy=hA(Q/2)%/(T%22+ A?). (16)

The modification to the ground-state Hamiltonian due to the
resonant dipole interaction between different atoms, H ;ff, is
given by

Hy= ‘ﬁr'l% (oh. € (2)]
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where
I''=T(Q/2)%/(T'%/22+ A?). (18)

The relaxation term [ p},.;,, in Eq. (14) can be written as
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From Egs. (15)—(18), the ratio between the magnitudes of
the dipole interaction energy H ;ff and the single-atom light
shift H S,f is given approximately by the factor
(T/|ADIB(Ry;7)|. In the secular limit (12), H,;; can be
small compared to Hgf .

In the following, we apply Eq. (14) derived above to the
specific case of two identical atoms undergoing one-
dimensional polarization-gradient cooling. The cooling fields
are two counterpropagating, cross-polarized fields. The po-
larization vector of the total field € is given by

€(z)=(—1i)sin(kz)€, +cos(kz)e_; . (21)

We calculate the steady-state atomic density matrix with the
inclusion of the dipole-dipole interaction between these at-
oms. In this one-dimensional case, the atomic motion along
the field propagation direction needs to be quantized, while
the atomic motion transverse to the laser axis remains arbi-
trary. As a model, we fix the transverse separation between
the two atoms at a distance b, while allowing the quantized
motion of atoms along the laser direction. We are primarily
interested in the dependence of the two-atom density matrix
on the separation b. For the internal level scheme of the
atoms, we choose a simple Jg=1/2—J,=3/2 transition.
Transitions between states with higher angular momentum J
could also be studied starting from Eq. (14), but we expect
the main features to be similar.

Since we restrict ourselves to the case where H ;ff is small
compared to the single-atom Hamiltonian Hgff, we can ex-
pand the atomic density matrix in the eigenstate basis of
HE £5 i.e., the product space of the Bloch states of the two
atoms |v{,qq,€1)1|v2,92,€2),2[2], where v;=0,1, ..., is
the band index, g; is the Bloch index, and €;= * denotes the
two internal ground-state sublevels |m g=*1/2) of the at-
oms. In general, the density-matrix elements can be written
as

', '
p(V191€1v191€1;V191€,V191€;)

=1<V1,ql,E1|2<V2,Q2a€2|P|Vi’q{,fDllVﬁ,QE,fé)z .

(22)

Certain terms of the density matrix can be neglected un-
der given conditions. In the secular limit (12), the energy
separations between Bloch states with different band indices
v (which are on the order of |Uy|) are much greater than the
relaxation rates of these states due to optical pumping (of
order I'’). As a result, one is able to neglect the fast oscil-
lating, off-diagonal terms of the density matrix and keep only
those matrix elements with v, + v,= v{+ v5 [13]. Even with
this simplification, the number of remaining density matrix
elements can still be enormous. To minimize the numerical
computation, we choose to include the lowest Bloch states
with v<8, which proves to be sufficient in describing the
localization of atom in the light-shift potential wells.

The steady-state solution of the atomic density matrix p
can be obtained by integrating Eq. (14) starting, for example,
from the initial density matrix of two isolated atoms. Figure
1 shows the dependence of the population of the ground
motional state of each atom,

m=2, 2, p(0geOge;v'q'e'v'q'e’) , (23)

ror o
q,€ vV ,q €

on their mean separation b, for a potential depth
Uy=—100E, and a detuning A/I'=-—10, where
E;=%2k*2m is the photon recoil energy. For b=\/2m, the
value of 7, is virtually indistinguishable from that of an
isolated atom. In this distance range, the dipole-dipole inter-
action between the two atoms is dominated by the long-range
radiative part, which decreases with the atom separation
R, as 1/(kR ;). The fact that the modifications to ,’s are
small in this distance range indicates that the long-range ra-
diative interaction between the two atoms has negligible ef-
fects on the outcome of Sisyphus cooling for this particular
system. As b is further reduced below the wavelength
A/2m, the static dipole-dipole interaction between two at-
oms, which varies as 1/(kR,)*, becomes dominant. One can
see from Fig. 1 that the population of the ground motional
state starts to decrease sharply below this distance range,
indicating a breakdown of the conventional polarization-
gradient cooling scheme.

In Fig. 2, we show the cooperative populations of the two
atoms, defined as

m(*,5)= 2 plrgtvgt;v'q'tv'q')
v,v',q.q"

(24)
m(+,F)= D,

’ ’
v,v ,49,.9

p(vgxvgx;v'qg'¥v'q'¥) ,

as a function of b. As b is reduced below A/27 and the
population of the ground motional state starts to decrease,
the probability of both atoms occupying the same internal
ground sublevel (either m,=1/2 or —1/2) becomes less than
the probability of their occupying the opposite ones (one
atom in m,=1/2 and the other in m,=—1/2), ie,
m(*,*)<wm(%,¥). Since the internal state of an atom lo-
calized in a potential well is determined by the polarization
of the field at the position of the well (either o* or ¢7), Fig.
2 also shows that atoms tend to be localized in light-shift
potential wells where the field polarizations are opposite as
their mutual interaction becomes enhanced.

The above results can be qualitatively understood as fol-
lows. First, the radiative part of the dipole-dipole interaction,
established through exchange of transverse photons between
both atoms, has negligible effects on the outcome of cooling.
The photon-exchange processes can create coherences be-
tween atomic motional states with the same band indices v
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FIG. 1. Population of the atomic ground motional state 7,. The poten-
tial depth U, /E;= —100, and detuning A/I"=—10.

but different Bloch indices g (Rayleigh coherences), as well
as coherences between states with different band indices v
(Raman coherences). The magnitudes of both the Rayleigh
and Raman coherences are proportional to the factor
|xsl%psl, where xj is the transition matrix element between
the initial and final states, and p; denotes the population
difference between the initial and final states. For the Ray-
leigh coherence, although the transition probability | x4/ can
have appreciable magnitude (given approximately by the op-
tical pumping rate I'"), the population differences between
Bloch states with the same v and different g’s are small for
the lowest motional bound states[14]. For the Raman coher-
ences, the opposite is true: the population differences be-
tween Bloch states of different indices »’s can be of order
unity; however, due to the small degree of overlap of the
wave functions between these different vibrational states, the
transition probability | x4/, or the Franck-Condon factor, is
small[14]. As a result, both the Rayleigh and the Raman
coherences established through exchange of transverse pho-
tons have negligible values, and the modifications to the
atomic density matrix induced by the radiative dipole-dipole
interaction are small.

Second, as the transverse separation b decreases below
N\/27r, the strength of the static dipole-dipole interaction be-
tween both atoms increases rapidly. The dipole interaction
leads to extra couplings between different motional states of
each atom, which redistribute populations among these
states. As a result, the population of the ground motional
state 7, is reduced. One can also understand the results
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FIG. 2. Cooperative populations of two interacting atoms 7(*,*) and
7(*,+). The parameters are the same as in Fig. 1.

shown in Fig. 2 based on the above argument. The two atoms
interact most strongly when they are separated only by the
distance b in the transverse direction, and localized in the
light-shift potential wells associated with the same internal
atomic state. The strong dipole-dipole interaction leads to an
increase in the populations of the excited motional states. An
atom in an excited motional state can be transferred quickly
to a different internal state due to enhanced optical pumping,
which then becomes localized in the light-shift potentials
associated with this other internal state. As a result, atoms
are less likely to occupy the same internal states as the op-
posite ones.

Although we consider a one-dimensional cooling configu-
ration in this calculation, the results here should help us to
understand the situations in two- or three-dimensional mo-
lasses. For atomic vapor densities sufficiently low that, on
the average, there are much less than one atom per potential
well, one expects the effects related to the dipole-dipole in-
teraction to be small, since the separation between adjacent
potential wells is at least A/2, which is beyond the distance
where the static dipole interaction between atoms starts to
become important. However, as the density of cold atoms
increases to a point where there can be more than one atom
in a single potential well, cooling will be significantly lim-
ited due to the strong resonant dipole interaction between
atoms.
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