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Calculation of triple-differential cross sections in electron scattering on atomic hydrogen
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We a'esent calcu1ations of triple-differential cross sections (TDCS) for electrons scattering on the ground

state of atomic hydrogen at incident energies of 54.4 and l50 eV. The convergent close-coupling method is

used. For this target the method is fully ab initio. The total wave function is expanded in an ever increasing

Laguerre basis until convergence in the TDCS has been obtained. %e generally find good agreement with

experiment, though some small quantitative discrepancies remain.

PACS number(s): 34.80.Dp

The recent development of the convergent close-coupling
(CCC) method for e-H scattering by Bray and Stelbovics [1]
has taken the close-coupling formalism to its logical conclu-
sion. Rather than expanding the total wave function in a

complete set of exact target discrete and continuous states,
the expansion functions are obtained by diagonalizing the
target Hamiltonian in a large Laguerre basis which can be
extended to completeness. This ensures that the generated
states are all square-integrable, allowing for the application
of standard close-coupling techniques, and making the CCC
method equally applicable at all projectile energies. The util-

ity of the method relies on being able to obtain convergence
in the observable of interest as the size of the basis is in-
creased. Since the method is based on the close-coupling
formalism it provides complete calculations in the sense that
all transitions such as elastic, inelastic, ionization, and total
cross sections are calculated simultaneously.

The CCC method has been widely applied to various
problems in atomic physics. For example, it is able to pro-
vide quantitative agreement with the Poet-Temkin model

[2,3] of e-H scattering, where only states of zero orbital an-

gular momentum are considered [4]. This validated the use
of square-integrable states and showed that pseudoreso-
nances, typically associated with the use of square-integrable
expansions, disappeared as the basis size was increased. A
similar conclusion was drawn by Scholz [5] using the inter-

mediate energy R-matrix method, and by Konovalov and

McCarthy [6] using the J-matrix method. Another most im-

portant achievement of the method, which is particularly rel-
evant to this work, is the quantitative agreement with the
measurements of the total ionization cross section and spin
asymmetry in e-H scattering [7].

The method has also been generalized to incorporate hy-
drogenlike targets, atoms, or ions [8]. This provided for a

more sensitive application of the method due to the availabil-
ity of spin-resolved measurements [9] at a wide range of
energies in e-Na scattering. The CCC theory [8] is the only
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one that is able to obtain almost complete quantitative agree-
ment with these measurements. In these calculations the ef-
fects of exchange and continuum were found to be very
large, and were handled very accurately by the CCC formal-
ism. More recently, the CCC method has been applied to
e-He scattering at 30 eV [10],where it is the only one that is
able to achieve quantitative agreement with the n = 1,2,3 dif-
ferential cross sections.

In our view the CCC method is the most generally suc-
cessful reliable method for the description of electron scat-
tering on helium and hydrogenlike targets at all projectile
energies, and for any transition of interest. For the single-
electron targets (H, He+, . . . ), where the target wave func-
tions are known exactly, the nonrelativistic electron scatter-
ing problem may be solved numerically to a required
accuracy without approximation.

In this work we expand the application of the method to
the calculation of (e,2e) differential cross sections. The ex-
tension is very straightforward and in principle leads to an ab
initio method for the calculation of (e,2e) processes for hy-

drogenlike targets whose validity is independent of projectile
energy. Here we restrict ourselves to atomic hydrogen as the
target.

Close-coupling methods have already been applied to the
calculation of (e,2e) reactions by Curran and Walters [11]
and Curran, Whelan, and Walters [12].They used a small set
of square-integrable pseudostates, which were chosen to give
a good description of scattering to low-lying discrete states
[13].The usage of an orthogonal Laguerre basis allows us to
test the convergence by simply increasing the basis size,
without encountering any linear dependence problems asso-
ciated with nonorthogonal bases.

The (e,2e) problem for atomic hydrogen has attracted a

great deal of attention. Brauner, Briggs, and Klar [14] used
an approximate final-state wave function, which has the cor-
rect Coulomb three-body boundary conditions. This yielded
generally good agreement with experiment at high energies,
but had considerable difficulties in describing both shape and
magnitude at the lower energies. Jones et al. [15] have fol-
lowed a similar approach by including short-range effects in

the incident wave function and using a different electron-
electron correlation factor for the outgoing electrons, awhile
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still maintaining the three-body boundary condition. This re-
sulted in some improvement in the magnitude of the calcu-
lated cross sections. The close-coupling approach to
electron-hydrogen scattering relies on being able to achieve
convergence in the full expansion of the target discrete and
continuous spectrum. In this work we provide an outline of
such an approach.

The total wave function
~
W t+l), where S is the total spin,

and the notation (+) indicates incoming plane-wave and
outgoing spherical-wave boundary conditions, may be writ-
ten as [1]

~nik)&kJn~T'~ok, )

where ~ko) is a plane wave denoting the the incident projec-
tile with momentum ko, ~0) indicates the incident target
state, E is the total energy, and the ~nl) states with corre-
sponding energy e„~ are obtained from the diagonalization of
the target Hamiltonian. The sense of Eq. (1) is that the equal-
ity is achieved only in the limit 1,N~~~. As the left-hand
side of the T matrix contains only square-integrable states,
which are associated with discrete energies (and hence mo-
menta), one cannot apply it directly to the calculation of
(e,2e) dif'ferential cross sections. Instead one needs an inter-
polative method for arbitrary allowed momenta k, , kb. We
define the required T matrix by

&k.x' '(kb)IIT'I«-. ) =&k.x' '(kb)III. V'Iq"").
where V is given by [1]

V = V(+V)2 EHIg+( —1—) [H —E(1—8)]P„, (3)

and is used to obtain the T matrix in Eq. (1).Here H is the
total Hamiltonian, P, is the space-exchange operator, Vq is
the Coulomb potential in projectile space, and V&2 is the
electron-electron potential. Any nonzero constant 8 leads to a
unique T matrix [1].The operators I& and I2 are the identity
operators in the designated space. For the outgoing electrons
k, and gt l(kb) we use a plane and a Coulomb wave, re-
spectively. In the case of target eigenstates ~f) (discrete or
continuous) the T matrix (2) reduces to the usual result

&k.f1T'10ko) = &k.fl( i+ ~t2) [1+( —1)'P,]lq'"")
(4)

In our discretization of the target space we replace J2 in
Eq. (2) by the projection onto the target-space identity op-
erator I2 X& „~n l )& ln ~,

——which ensures that a square-
integrable representation of ~yt &(kb)) is used. We use

~maxN= X& '0 N& to denote the full set of states. The T matrix in

Eq. (2) may be readily evaluated once the time-consuming
part of the calculation, solution of (1), has been completed
using a partial-wave expansion [1]. We note that if

(kb)I in (2) is replaced by any of the coupled states
&ln~, then the original &kin~ T ~0ko) used in (1) is obtained.

Now we turn to the consideration of convergence in the
results as the basis size N is increased. A major difference
between scattering and (e,2e) calculations is that in the
former case the target states in the required T matrix ele-

ments have small orbital angular momentum l. Often taking
l~ 1 = 3 in the coupled set of states is sufficient for con-
vergence in the required scattering T matrix. However, in

(e,2e) calculations this is rarely so. We require as many
target-space 1 as are necessary to adequately describe the
slowest of the outgoing electrons (the orbital angular mo-
mentum I. of the fast electron may be arbitrarily large). De-
pending on the kinematics, 1 may readily exceed 10 (not to
be confused with /, „).There are no problems with existence
of integrals for 0~1~1,„due to the projection operator
I2 . For l larger than 1 in the partial-wave expansion of

l(kb)~ we only calculate the direct contribution, drop-
ping the square-integrable representation of J2. In this way
we circumvent the problem of nonexistent integrals (see last
paragraph on page 344 of Curran and Walters [11]for more
detail). For higher energies, in the present very-asymmetric
kinematics, direct scattering is dominant and is included for
all 1 necessary to describe the slower of the two outgoing
electrons. The exclusion of exchange for larger 1 may be
tested by varying 1 in the close-coupling formalism, and
based on these tests the 1,„=4 choice is adequate for the
calculations in this paper.

There is another aspect of convergence that has to be
tested. Given an 1 we must ensure that our results are
stable, as the basis sizes N~ are increased within each 1. We
find that an optimal way of achieving this is by choosing the
basis parameter X.

~
for each N& [8] such that one of the re-

sulting states has the same energy as the slow electron. Tak-
ing an initial k&= 1, typically after ten iterations, the required
energy for one of the states may be achieved to six-figure
accuracy, with the final X

&
having only varied from the initial

one by no more that 10%.This way we find that taking a few
more than ten states within each 1 is sufficient to obtain
convergence in the presented calculations. This reduces the
problem of convergence to just a variation of 1,„.

In this paper we provide calculations for 150 and 54.4 eV
electron-impact ionization of atomic hydrogen. At the former
energy there are relative measurements (normalized experi-
mentally) of the triply differential cross sections (TDCS) for
three angles of the fast electron and three energies of the
slow electron [16]. Using a nine-state pseudostate calcula-
tion, Curran, Whelan, and Walters [12] demonstrated the
large effect of the second term in (1), which brought about
very good, but not quite perfect, agreement with experiment.
They demonstrated a significant difference between the mag-
nitudes of their results and those of Brauner, Briggs, and
Klar [14],and requested further theoretical and experimental
work in order to resolve the remaining discrepancies. We are
able to provide accurate results at this energy by performing
much larger calculations than those of Curran, Whelan, and
Walters, demonstrating convergence in the close-coupling
formalism.

At the 54.4-eV projectile energy there are unnormalized
relative measurements of the TDCS for four angles of the
fast electron and one energy of the slow electron [17].Here
Jones et al. [15],following the work of Brauner, Briggs, and
Klar [14] and Brauner et al. [17] demonstrated that simply
adding the three-body Coulomb boundary condition to the
distorted-wave Born approximation (DWBA) results in a
very large effect bringing about qualitative agreement with
experiment. Klar, Konovalov, and McCarthy [18] showed
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that it is not necessary to satisfy the final-state boundary
condition if the initial-state boundary condition is satis e .
We are able to show that the very important electron-electron
correlation may be readily treated via the close-coupling for-

ro ectileIn Fig. 1 we present our CCC calculations for a projecti e
energy of 150 eV. These have been obtained by coupling
13s, 12, 11d, and 10f states (l,„=3).In describing t e
slow and fast electrons we used 1~15 and L ~70, respec-
tively. We have established convergence by performing a se-
quence of smaller calculations. Our results (CCC) are com-
pared with the experiment of Ehrhardt et al. [16] and
calculations of Jones et al. [15] (3DWBA), Brauner, Briggs,
and Klar [14] (BBK), and the close coupling with pseu-
dostates calculation of Curran, Whelan, and Walters [12]
(PSCC). We see that there is generally good qualitative
agreement between all theories and experiment. Since the
target is atomic hydrogen, we would expect complete quan-

titative agreement with our CCC calculations, as is the case
for the total ionization cross section and spin asymmetry [7].
However, we see that this is not so. Comparison of the CCC
and PSCC results shows that the latter were very nearly con-
vergent. In our view any larger calculations than those pre-
sented would not yield significantly different results. The
good agreemen o et f the 3DWBA calculation with experiment
and the CCC and PSCC calculations shows the improvement
over the BBK in obtaining better magnitudes.

The 54.4-eV results are presented in Fig. 2. The measure-
ments of Brauner et al. [17] are not absolute, though the
normalization is the same for all four angles 8, . As our
calculations are a e obl t reproduce the total ionization cross
section [7], we are confident in the accuracy of the magni-
tude of our calculation, and so have normalized the experi-
ment by best visual fit to the CCC calculations. These have

l =4). This is a SS-state calculation that generates asmRx
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many as 155 channels, and using techniques outlined in Ref.
[8] may be performed on a desktop workstation with 256M
of core memory. The smaller projectile energy allows us to
take L~40. The agreement with experiment is very good,
and is of the same quality as that at 150 eV, which is not the
case for the other presented theories. The very large electron-
electron correlation effects, as demonstrated by Jones et al.
[15], are even better treated within the close-coupling for-
malisrn. The difference between the PSCC and CCC results
indicates that the nine states used by Curran and Walters [11]
are insufficient at this energy. Though the 3DWBA results
are not in as good agreement with experiment as CCC they
have considerably better magnitudes than the BBK results.

In conclusion, we found that we are able to obtain good
agreement with the TDCS at 54.4- and 150-eV projectile
energies. It is a little disappointing that we are unable to

obtain complete quantitative agreement with the presented
measurements, particularly at 150 eV, where convergence in

the multichannel expansion is readily achieved, and the rnea-

surements have been put on an absolute scale [16].Further
experimental investigation would be very helpful. The appli-
cation of the CCC method to the calculation of (e,2e) TDCS
at lower projectile energies is currently being undertaken,
where early indications are that the larger electron-electron
correlation effects will require bigger I,„ in our calcula-
tions.
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