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Centrifugal force: A gedanken experiment
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A simple gedanken experiment, the motion of a bead inside a rotating linear pipe, is considered.
It is shown that at large enough velocities a centrifugal force acting on the bead changes its usual
sign and attracts towards the rotation axis. The motion of the bead is oscillatory, resembling a well-

known case of the mathematical pendulum. A possible relevance of this highly idealized problem to
the real motion of charged particles in a pulsar magnetosphere is pointed out.

PACS number(s): 03.30.+p, 04.20.Cv, 95.30.Sf, 97.60.Gb

I. INTRODUCTION

At present an interest in the study of various physical
processes related to and provoked by rotational motion
in a number of astrophysical problems has an apparent
revival. The increase of interest to the phenomenon of ro-
tation is mostly due to series of highly unusual results of
Abramowicz with different collaborators [1-4]. They have
discovered some, very strange, dynamical effects of rota-
tion in strong gravitational fields of black holes. In partic-
ular, they have found that under certain circumstances,
the centrifugal force will attract towards the rotation axis
even in the case of a nonrotating (Schwarzschild) black
hole. This outstanding fact leads to the number of bizarre
rotational effects considered and discussed in Refs. [1-4].

The main purpose of this paper is to demonstrate that
the centrifugal force reversal effect is not characteristic
only for black holes but actually can appear also in the
framework of special relativity. Such a reversal occurs in
a relatively plain mechanical case: for a motion of a bead
inside a rotating pipe. This particular kind of motion is
considered in detail in the next section of the paper. We
derive an equation for the motion of the bead and Bnd
solutions of this equation. Actually, we find that if ini-
tially (at the moment t = 0) the bead is situated on the
rotation axis (rp = 0), and has an initial velocity vpg0,
then the motion of the bead is oscillatory: it moves out-
wards, reaches the point, where its azimuthal velocity in
the laboratory frame becomes equal to the speed of light

(a "light cylinder" radius r=r* = c/ur), turns and moves
now towards the rotation axis, passes above the rotation
axis and moves in the opposite direction just in the same
fashion. Such a motion in the case of zero friction is per-
manent with a constant period and a constant amplitude
(maximum separation &om the axis). The most impor-
tant peculiarity of this idealized gedanken experiment is
that according to the equation of motion we can easily
prove that under certain conditions the centrifugal force
acting on the bead changes its sign and becomes "cen-
tripetal, " i.e., it is attracted towards the rotation axis.
In particular, we find that if the initial velocity of the
bead satisfies the following condition:

vp v2
c 2

then the centrifugal force is always negative (i.e. , it is
negative for all values of the time coordinate t).

Certainly, this model is more mathematical than phys-
ical and is highly idealized since no pipe is rigid enough
to remain straight when the bead velocity becomes rela-
tivistic. Besides, to keep the "pipe+bead" system in the
condition of rotation with a constant angular velocity one

certainly needs an infinite amount of energy. At the same

time, the centrifugal force reversal effect is physically
meaningful since for large enough initial velocities vo it
occurs at r&&r'. There are several astrophysical cases
where this example may be relevant. In pulsar magneto-
sphere, for instance, magnetic field lines near the pulsar
surface act like "pipes" directing the motion of charged
particles, which emerge out of the pulsar surface with rel-

ativistic initial velocities. These particles move along the
field lines corotating, at the same time, with the dipolar
magnetic field of the pulsar. Evidently, when the plasma
of the pulsar wind approaches the "light cylinder, " the
Beld lines do not remain "rigid, " but are carried away by
the plasma, giving a way to the matter motion and the
analogy ceases to work any longer.

In the concluding section of this paper, we have dis-

cussed the results obtained and mention various astro-
physical situations and objects where these results may
be important.

II. MAIN CONSIDERATION

Let us consider a straight, long, and narrow pipe ro-
tating around an axis normal to the pipe, and a small
bead which can move inside the pipe without friction.
Let the radii of the bead and the pipe be equal to each
other. According to classic mechanics the bead will move
with acceleration, and if at the moment t = 0 the bead
is located at the rotation axis (rp ——0 at t = 0) and
has an initial velocity vo, then the radial distance &om

the axis will vary with time by the simple mathematical
law: r = (vp/&u) sinh(art), while the velocity of the bead
will, certainly, vary as vp cosh(ut). However, if the pipe
is long enough and its walls are absolutely rigid, then
the increasing velocity sooner or later will become rel-
ativistic. It seems evident that further increase of the
velocity will somehow be limited since the total velocity
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of the bead cannot exceed the speed of light. If the bead
reaches the light cylinder (at the radial distance r') then
the radial velocity shall become zero, so that the velocity,
which increases at the initial stage of the motion, must
decrease near the light cylinder.

Let us consider this motion properly, in a reference
kame of the rotating pipe, where geoxnetry and dynamics
of the bead motion are the sixnplest. Hereafter, we shall
use geometrical units, in which G = c = 1. If the space-
time in the laboratory frame is just Minkowskian with
the usual metric,

ds—:—dr = dT —+ dX + dY (2)

then making the following transformation of variables,

(Sa)

X = r cos(ut),

Y = r sin(art), (Sc)

we can write the metric of the two-dimensional (in the
limit of infinitely narrow pipe) space-time inside the pipe,
rotating with constant angular velocity ur, which will be
of the following simple form:

ds = —dr = —(1 —cu r )dt + dr, (4)

Components of the corresponding Lagrange equation

d (BL) BL

dr (Bi~j Bz

may be written in the following way:

(6)

where 7. is a proper time of the moving bead, defined in
the usual way [5].

The Lagrangian for the metric (4) may be defined as
[5]

(dz ) (dr~ lL—= -u pl
i dr ) ~ dr )

1 (dt& (dry= — —(1 —~'r')
I

—
I

+
I

—
I2 &dr) &dr)

At the other hand, rewriting (8) as

(dt)'
qdr) 1 —ur r —(dr/dt)2'

and taking into account (7a) we can write a first order
differential equation for the function r(t) in the following
way:

dr (1 —u)2r2)
(1 —uzr') l. —

dg E2

A constant parameter E = —U&, coming in view in
these equations, may be treated as an energy of the mov-

ing bead in the reference kame of the rotating pipe, and
may be determined through initial conditions. In the
most general case, when at the moment t = 0 the bead
was at the position r = rp and had a velocity v = vp,
from (10) we can easily find out that

(1 —~'r p2)

1 —(ap2rp2 —vp

Evidently, 0 ( E & oo. If, for example, rp = 0 and
v0$0, then E = (1 —vo2) i~2 and is more than unity
(E))1, if vo=l). While, if vo ——0 and r0$0, then we see
that E = (1 —u2rz~)i~2 and, certainly, is less than unity
(E 0 if u)ro 1).

It must be noted that in the nonrelativistic limit the
energy of the moving bead, specified by (7) and (10),
reduces to the following expression:

E„,= 1+v /2 —ur r /2.

Deleting a unity which evidently describes the rest
mass energy (per unit mass) of the bead we can see
that the remaining terms have a clear "nonrelativistic"
physical meaning. In particular, v2/2 is a kinetic energy
corresponding to radial motion in the rotating reference
frame, while —~ r /2 is a so-called "centrifugal energy
[6],

" known in classical mechanics.
Now, we can rewrite (7) with the intention of getting

an equation for a radial acceleration of the bead d r/dtz.
Taking into account (Va) and (10) we obtain the following
equation:

, , (dt's—(1 —(u2r ) I

—
I

= const—:—E,(dr) (7a) d'r
dt2

(u2r 2, (dry '
1 —cu r —2I —

I1 —&u2r2
q dt )

(12)

d'r, (dt l
dr~ gdr)

(7b)

(8)

The result is

(dr& ' E2

(dr ) 1 —ur2r2 (7c)

A more simple equation, equivalent to (7b), may be de-
rived by combining (Va) with the usual algebraic relation
between four-velocities:

This is an equation of motion for the bead under con-
sideration. On the left hand. side appears a radial accel-
eration of the bead as measured in the reference kame
of the rotating pipe. However, note that T = t and
A=i/X2 + Y2 = r, so that this acceleration is equal to
the one measured in the nonrotating laboratory frame.
The saxne is true, certainly, for the right hand side of the
equation. It represents the force acting on the particle.
In the nonrelativistic limit it reduces to the conventional
expression for the centrifugal force f y ——iv2r Therefore, .
generally, the right hand side of (12) may be treated as
a generalized expression for relativistic centrifugal force.
We shall return to the analyses of the equation below,
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tl:—arccos(~r), (13a)

A =—cut, (13b)

m: 1/E— , (13c)

which reduces (10) to the more simple differential equa-
tion:

after finding solutions for the function r(t). It is eas-
ily proved that the solution of (10) may be expressed by
means of elliptical functions. For this purpose, originally,
let us make in (10) the following, useful substitution of
variables:

1
r(t) = —cn(A* —(ut), (18)

where cn is the Jacobian elliptic cosine [7]. Surely, (18) is
the general solution of the problem. However, hereafter
we shall deal with a restricted symmetrical case specified
by the initial condition r = 0 and vpg0 at t = 0. For this
particular case, it is easy to find that m = 1 —vo and
A
' = K, where K is a complete elliptical integral of the

first kind [7]. These circumstances allow us to rewrite
(18) in a somehow diff'erent form:

1 vp ) an(~t)
r(t) = —cn(K —~t)

(u & dn((ut)
'

d8
1 —m sin 8.

dA
(14)

The solution of this equation may be represented as

~ ~

+0 de

gl —m sin 8 p gl —msin 0

where, certainly, yp
——arccos(harp).

If we further introduce one more auxiliary notation

~* f"=
21 —m sin 8

we can rewrite (15) as

p = am(A' —A), (17)

where am is an amplitude of Jacobian elliptic functions
[7]. Accordingly, for r(t) we should have

where sn and dn are a Jacobian elliptical sine and a mod-

ulus, respectively [7]. The radial velocity of the bead may
be calculated directly through (19) and (10) and we get

dr cn(~t)
(2o)

It is worthwhile considering separately two asymptotic
cases of the solutions (19)—(20): vp«1 and vp 1. When
an initial radial velocity of the bead is sufficiently non-
relativistic, m 1, and taking into account an asymp-
totic behavior of Jacobi's elliptic functions [7] appear-
ing in (19)—(20) we find that r(t) (vp/u) sinh(~t) and
v„vp cosh(art) as it certainly should be (see the Intro-
duction). Another asymptotic case (vp 1) is less trivial.
It corresponds to the m 0 case and consequently leads
to r(t)=(vp/~) sin(~t) and v„=vp cos(rut).

In Fig. 1 we have represented the temporal evolution
of the radial velocity of the bead v„and the quantity
v~ =~r, which is equal to the azimuthal velocity of the
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FIG. 1. Temporal evolution of the bead radial velocity v„(dashed line) and azimuthal velocity v~ = ~r (solid line) for
difFerent values of initial velocity vp. Namely, (a) vp ——10; (b) vp = 0.3' (c) vp ——~2/2; (d) vp —0.99.
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bead in the laboratory kame. The curves correspond to
four difFerent values of vp. Namely, Fig. 1(a) is drawn
for the case vp = 0.001. The motion of the bead may
be described as follows: &nitially, both velocities (v„and
v~) grow almost simultaneously, but later the radial ve-
locity slows its increasing, reaches its maximum value

(v 0.5), and begins to decrease, while v~ continues
increasing and reaches the v~ = 1 value at the moment
t' = K/~, when the bead is at a distance r = r' from
the rotation axis and its radial velocity becomes zero.
This is a "turning point, " since here v„(t) changes its
sign, and the bead begins to move towards the rotation
axis with increasing speed. A modulus of radial velocity
in the time interval t' & t & 2t' varies exactly in the
same way as in the previous interval 0 & t & t*. At the
moment t = 2t' the bead is in its starting point r = 0
just above the rotation axis and it has the same velocity
vp but directed, this time, in the opposite direction. So,
the bead passes over the rotation axis and in the interval
2t' & t & 4t' repeats in the left half of the pipe the same
kind of motion.

Figure 1(b) is drawn for the case vp ——0.3. Qualita-
tively, it resembles the previous case. However, a maxi-
mum value of v„ is slightly higher and an average radial
velocity of the motion is apparently larger.

An interesting "threshold" case vp ——y 2/2 is rep-
resented in Fig. 1(c). From (10) we can see that for
this particular case initial radial acceleration is equal to
zero Thus, o.riginally, the bead moves almost uniformly,
but further on "effective centrifugal force" becomes neg-
ative and the bead moves with a decreasing radial speed.
Other qualities of the motion (i.e., its periodical charac-
ter) remain the same as in the above mentioned cases.

Finally, Fig. 1(d) represents the case vp = 0.99. It cor-
responds to the asymptotic case m 0 discussed above
and consequently the curves for v„and v~ are well ap-
proximated by the usual trigonometric cosine and sine,
respectively.

Thus, we see that the character of the bead motion is
"oscillatory. " The period of the "oscillations" P—=4t' =
4K/u. In Fig. 2 we have represented the dependence of
the function ~P on the value of initial velocity vp. The
period tends to infinity when vp-+0 (as it should be),
while when vp~l,

(21)

It must be noted that &om the mathematical point of
view the problem we are considering closely resembles the
well-known example of a mathematical pendulum motion
[6]. In particular, note that period of "oscillations" is
proportional to the complete elliptical integral of the first
kind in exactly the same way as it is for the pendulum
problem.

In order to understand more deeply the qualitative
character of these solutions it is useful to introduce the
concept of an "efFective potential" U(r) Substitutin. g
v = dr/dt in (12) from (10), we can rewrite the equation
of motion a

d r BU(r)
dt2

= u r (2m —1) —2mur r = — . (22)Br
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FIG. 2. Dependence of the dimensionless period uP of the
bead "oscillations" on the value of its initial velocity eo. Note
that ~P = 4K, where X is a complete elliptical integral of
the first kind.

For our particular case (zp ——0, vpg0), taking into ac-
count (13c) and (11) we can rewrite (22) in the following

way:

2r
0= (u r (1 —2v2) —2(1 —vz)(uzr2 .0 (23)

It is evidently seen fi'om (23) that the centrifugal force
is really negative for any rg0 when vp ) ~2/2.

An explicit expression for U(r) is

r
U(r) = (1 —2m) ynuuzrz .

III. CONCLUSION

In this paper, we have investigated the quite simple
gedanken experiment: the motion of a bead inside a

In Fig. 3 we have represented the function U(x) (z:ur)—
for four different values of vp, corresponding to the cases
shown in Figs. 1(a)—1(d). In 1(a) and 1(b) the curves
have "secondary" minimums, so that the bead beginning
motion jrom the point z = 0 accelerates while "rolling
down" to the "secondary" minimum point, and then
hampers until it reaches the point z = 1, stops and begins
to move towards the rotation axis. Figure 1(c) is repre-
sented by a "potential well" with an almost plane bottom,
where initially, as we have seen earlier, motion should be
with almost constant velocity. In 1(d) the form of the po-
tential naturally implies the motion with the centrifugal
force always "attracting" towards the rotation axis.
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FIG. 3. Effective potential for the bead motion as a func-
tion of the quantity z = ~7 = v„ for different values of the
initial velocity vp of the bead. (a) vp ——10; (b) vp = 0.3;
(c) vp ——~2/2; (d) vp = 0.99.

straight, long enough pipe rotating around an axis nor-
mal to the symmetry axis of the pipe. Considering the
problem we have shown that under certain circumstances
a centrifugal force acting on the bead, and determining
the character of its motion, changes its sign and attracts
towards the rotation axis. Centrifugal force reversal oc-
curs at the distances &om the rotation axis close enough
to the "light cylinder radius" for arbitrary values of the
bead initial position ro and velocity vo. For the particu-
lar case, when at the initial moment t = 0 the bead was
situated on the rotation axis (rp ——0), we have found
that the bead would move between the points r = +r'.
When vp ) ~2/2, the centrifugal force acting on the bead
would be negative during the whole course of motion.

Strictly speaking, we have considered a mathematical
model of a relativistic body moving under a constraint of
a rigidly rotating straight pipe. It must be emphasized
that speaking about the "oscillatory" motion of the bead
we do not pretend that our model has any physical mean-
ing out to the "velocity of light" circle. Certainly, such a
motion in reality is impossible because to ensure the ro-
tation of such a device with a constant angular velocity
one surely needs an in6nite amount of energy and, be-
sides, no real pipe may be "absolutely rigid" and sooner
or later will be broken by the relativistic moving bead.

Thus, the described "oscillation" is not actually a physi-
cal prediction, but instead must be regarded as a mathe-
matical idealization. That is why we call this model the
gedanken experiment and say that it is highly idealized.

However, considering this gedanken experiment we

have found a very strange effect —centrifugal force rever-
sal. If the initial velocity of the bead is high enough cen-
trifugal force changes its sign already at r&&r' and when

vp ) ~2/2 the centrifugal force acting on the bead is
reversed from the very begi~~ing of the motion —during
the whole course of the motion. This result seems to
be of principle importance. The effect appears in the
more or less usual rotating frame, well described in the
framework of special relativity [8]. Thus, we can say that
the centrifugal force reversal effect may occur in special
relativity. Let us remember that up to now it was ac-
knowledged that such an unusual reversal phenomenon
was inherent only in such general-relativistic objects as
black holes [1—4].

There is one point that must be emphasized in a spe-
cial way: According to the obtained solutions the mov-

ing bead —a body with nonzero mass —reaches at
certain moments of its motion the speed of light (v~ = 1

when t = nK/u; n = 1, 3, 5, ...,). At a first glance, this
fact seriously contradicts the common special relativistic
dogma. However, the controversy is, as we think, imag-

inary. Actually, azimuthal velocity of the bead in the
laboratory frame v~(t) has instantaneous values equal to
the speed of light at certain moments of time but for ar-
bitrary Pnite time intervals the average velocity of the
motion is always less than 1. Thus, the bead always
moves with v~ & 1, though the instantaneous value of
the velocity may be equal to 1.

We are almost certain that the simple effect found in
this paper should have different astrophysical and physi-
cal applications. In all those astrophysical objects (such
as stellar and accretion disk winds, bipolar outfiows in
active galactic nuclei, etc.), where a rotation and rel-
ativistic velocities are present, and magnetic 6eld lines
may act like "pipes" directing the particles motion along
themselves, the effect may appear in a natural way. For
example, such a situation may exist in a pulsar wind
between the pulsar surface and light cylinder of the pul-
sar. Consideration of concrete applications is beyond the
scope of this paper, and is planned to be performed in
our forthcoming research.
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