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Regularized semiclassical radial propagator for the Coulomb potential
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We derive a regularized semiclassical radial propagator for the Coulomb potential, a case for
which standard approaches run into well-known ddBculties associated with a non-Cartesian radial
coordinate snd s potential singularity. Following Kleinert [Path Integruls in Quantum Mechanics,
Statistics and Polymer Physics (World Scientific, Singapore, 1990)], we first perform s quantum-
mechanical regularization of the propagator. The semiclassical limit is then obtained by stationary
phase approximation of the resulting integrals. The semiclassical propagator so derived has the
standard Van Vleck —Gutzwiller form for the radial Coulomb problem with a potential correction
(Lsnger modificstion) term included. The regularized semiclassical propagator is applied to compute
the autocorrelation function for a Gaussian Rydberg wave packet.

PACS number(s): 03.65.Sq, 03.65.Ge, 32.30.—r

I. INTRODUCTION

Recent advances in the semiclassical theory of non-
integrable systems [1—3], xnost notably the Gutzwiller
trace formula for the density of states [1], have led to
renewed interest in the semiclassical mechanics of few-
body Coulomb systems. Single-particle Coulomb prob-
lems that have been the focus of semiclassical methods
include the anisotropic Kepler problem [4], the Rydberg
electron in a magnetic field [5], microwave ionization of
Rydberg electrons [6,7], and the excitation of Rydberg
wave packets [8]. These efForts have prompted a reex-
amination of the classical-quantum correspondence for
two-electron atoms [9,10], and much has been learned
concerning the connection between correlated classical
motions (periodic orbits) of the electron pair and the
properties of doubly-excited resonant states [11—14].

Most of the aforementioned work has employed time-
independent (energy-dependent Green's function) meth-
ods. There is however a growing interest in the inves-

tigation and application of time-dependent semiclassi-
cal methods [15—18], in which the quantum-mechanical
propagator is replaced with its semiclassical (Van Vleck-
Gutzwiller) approximation [19,20] or generalizations
thereof [18]. Heller and co-workers have found that the
semiclassical approach yields wave packet autocorrelation
functions that are accurate for surprisingly long propa-
gation times, considerably longer than naive wave packet
spreading arguments would suggest [15,16]. This long-
time accuracy of the semiclassical propagator is possibly
an important clue to understanding the remarkable abil-
ity of periodic orbit quantization procedures to provide
reasonable approximations to the quantum spectrum in
several applications [2,3].

The application of time-dependent semiclassical meth-
ods of the kind introduced by Tomsovic and Heller [16] to
Coulomb systems is a natural development of the above

lines of research, especially in light of recent experiments
that probe the time evolution of electronic wave pack-
ets [21]. There are, however, certain technical diScul-
ties that arise due to the singular nature of the Coulomb
potential, and the appearance of non-Cartesian (radial)
coordinates [22].

One route to the semiclassical propagator proceeds via
stationary phase approximation of the integrals appear-
ing in a discretized version of the path integral form for
the quantum propagator [23]. For central field problems,
it is natural to use polar coordinates, in which case it is
necessary to face the problem of de6ning path integral
representations of the propagator in non-Cartesian coor-
dinates (for a full discussion of this problem, see [22]). A
second difficulty arises when attempting to pass to the
semiclassical limit of the radial propagator; since the ra-
dial coordinate z goes &om 0 to oo, rather than from —oo
to oo, there are difficulties when trajectories pass through
the origin (e.g. , for s states in an attractive Coulomb po-
tential). It has long been known that straightforward
application of &KB quantization to radial Coulomb mo-
tion yields an incorrect (l-dependent) energy spectruxn

[24], and that the WKB approximation itself breaks down
for s states as z + 0 [25]. In the time-independent case,
these difficulties are removed using the coordinate trans-
formation z = e~ introduced by Langer [25]. Langer's
transformation simultaneously moves the potential sin-
gularity at x = 0 to q = —oo, and introduces a correction
to the potential of the form AV = 52/8mz2. The WKB
approximation is valid in the new coordinate system.

In the present paper we deFine a regularized semi-
classical radial propagator for the one-dixnensional (1D)
Coulomb potential. Our approach exploits the natural
mapping of the Coulomb potential onto the Morse oscil-
lator [22,25], and may be viewed as an implementation
of the Langer transformation in the time domain. The
regularized propagator is then used to compute the auto-
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correlation function of a Gaussian Rydberg wave packet.
We note that Suarez-Barnes et al. (henceforth

SBNNT) have recently tackled the same problem using a
rather different approach [26]. We comment on the rela-
tion between the two theories in detail below. Mallalieu
and Stroud have also used a semiclassical propagator to
compute the time evolution of a Rydberg wave packet
[27].

II. PATH INTEGRALS

A. Standard theory

exact solution to the Schrodinger equation. Neverthe-
less, the path integral formulation provides a convenient
setting for approximate computations, particularly in the
semiclassical limit 5 ~ 0 [23,29,30]. The procedure for
passing to the semiclassical limit is well known [23], and
involves evaluating the integrals in the discretized version
of the path integral [Eq. (2)] by the stationary phase ap-
proximation in path space. The stationary paths turn
out to be the classical trajectories &om x to xp in time
t, and each such trajectory contributes with a weight
determined entirely by the classical mechanics of that
trajectory:

The path integral approach to quantum mechanics pro-
vides great insight into the concepts and computational
procedures of the standard formulation of the theory
[22,28,29]. Path integral expressions for transition ampli-
tudes provide moreover a direct route to the semiclassical
limit [23,29].

The quantum-mechanical propagator

K(xg„x, t) = (xh)U(t)(x ) = (xh[e
* '/"(x )

can be expressed as a path integral following the standard
procedure in which the evolution operator U(t) is "time-
sliced [22]" into N pieces:

ikt/h) —
) ( ~

i8t/Nh—
(2)

and N —1 complete sets J' ~x;)dx;(x;~ are inserted over
intermediate positions. For Hamiltonians of the form

A 2
H= +V(x), xER",

2m
(3)

complete sets of momentuui eigenstates can be inserted
and the matrix elements of the short-time (large-N)
propagator approximated as

HC/Nhi— '

imam(x; —x;+i)2

2th
(mN & ~

exp
E2~i~t

—iV(x;)tx exp (4)

As N -+ oo, the propagator is written as the path integral

&(» *- &) = / D(*(&)l~xv — LI*(~))~.I
The symbol f17[x(t)] denotes integration over all con-
tinuous paths connecting x to xg in time t, where the
measure in the space of paths is defined by the limiting
process outlined above [28]. A key aspect of the path
integral form of the propagator is the appearance of the
classical Lagrangian L = T —V in the exponent of the
inte grand.

Since the path integral expression is equivalent to the
Schrodinger equation formulation of quantum mechan-
ics, for most systems it is not possible to compute the
path integral exactly, just as it is not possible to find an

K..(xh, x, t)

R= (2xifc) ~ )
V

(iR„
exp

~ 2

(6)

R„(xh,x, t) is Hamilton's principal function (the sta-
tionary value, from among all paths x(r), of the term

f L[x(r)]dr), n is the number of degrees of freedom, the
vertical bars represent the absolute value of an n-by-n
determinant, and M„ is the number of conjugate points
along the trajectory (see [1] for details). This sum-over-
classical-trajectories form for the semiclassical propaga-
tor is known as the Van Vleck—Gutzwiller propagator
[1,20].

B.DiRculties with non-Cartesian coordinates

xexp — I x7. d~

the path-weight pi [2:(t)] cannot simply be reexpressed as
a centrifugal contribution to the Lagrangian in the ex-
ponent. It is essential to note that the Lagrangian ap-
pearing in the exponent in Eq. (8) is that for the s-wave

(l = 0) radial problem [22]. The presence of the path
weight factor pi [x(t)] prohibits a straightforward station-
ary phase evaluation of the path integral, which is the

The standard procedure described above for semiclas-
sical evaluation of K rnus into difficulty when faced with
non-Cartesian coordinates, i.e., when x is restricted to
some domain other than R". For example, consider the
partial wave expansion of the propagator [22]:

K(xs, x, t)

„,) S,"'(Oh)S,"(0 )Ki(zh, z, t), (7)
(»&-) "'

h, i

which reduces the n-dimensional propagator K to a set of
one-dimensional radial propagators Ki. The difficulties
involved in obtaining a path integral representation for
the Ki are fully discussed in [22,31). The key point is
that, although Ki can be written in the suggestive form
[22]:

&~(» *- ') = /&I*(')) ~I*(&))
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essential step in deriving a Van Vleck —Gutzwiller sum-
over-classical-trajectories formula for the radial propa-
gator E~. Previous incorrect efForts to transform the
path-weight pi[z(t)] into a centrifugal potential correc-
tion term in L[z(r)] are discussed in [22,31].

so that H = E, then the dynamics of system Eq. (11)
with timelike parameter v, where dt/d7 = 1, is equivalent
to that of the original system.

In the extended phase space setting we now introduce
an x-dependent scaling of the time variable by changing
the Hamiltonian to

C. Example: One-dimensional Coulomb system R' = f(z)(H —E) (12)

The system to be treated in the present paper is a one-
dimensional Coulomb system corresponding to the 3D
radial Coulomb problem restricted to the l = 0 subspace,
with the Hamiltonian (cf. [26]):

1d'
2 dx

x&0. (9)

III. CLASSICAL REC ULARIZATION

Classical regularization procedures enable trajectory
integration to be continued through gravitational or
Coulomb singularities [32—34]. In this section we out-
line the classical regularization of the one-dimensional
Coulomb system introduced above. The classical limit of
the Hamiltonian of Eq. (9) is

Atomic units are used throughout. The wave function
inner product is (P~Q) =

Jo dzP'(z)g(z).
By the discussion above, we can see that an attempt to

obtain a semiclassical propagator by the standard treat-
ment will encounter difficulties, as z is restricted to the
domain x & 0. Moreover, computation of the Van Vleck-
Gutzwiller semiclassical propagator requires classical tra-

jectories to be continued past the collision with the sin-
gularity at z = 0; correct determination of the conju-
gate point count for these continued trajectories is not
straightforward. In the energy domain, Langer [25] noted
long ago that the conditions for applicability of the WKB
approximation were violated in the l = 0 radial Coulomb
problem as x + 0.

To eliminate the difIiculties indicated above, we adopt
the strategy of regularizing the propagator before taking
the semiclassical limit in the path integral calculation.
The quantum-mechanical regularization of the propaga-
tor is due to Kleinert [22], and is closely analogous to
standard regularization techniques in classical mechan-
ics. These regularization techniques are brie8y reviewed
in the following sections.

On the subspace 'R' = 0, the Hamiltonian equations of
motion with Hamiltonian '8 are equivalent to the origi-
nal equations of motion with the time parameter trans-
formed &om r to o by d7 = f(z)do T. he function
f(x) can now be chosen to remove the singularities in
the Hamiltonian. For example, in the one-dimensional
Coulomb problem, the function f(z) = zz gives a new
Hamiltoaian:

2x2'R'=z (I—E) = ' —Zz —Ez .
2

(13)

where the variable q can take any value &om —oo to oo.
The Hamiltonian (13) becomes

2

z,. E,2.
2

That is, the one-dimensional Coulomb potential is trans-
formed into a Morse potential [35]:

VE(q) = —Ee ~ —Ze~, (16)

parametrized by the physical energy E. Motion in the
physical Coulomb potential at energy E is mapped onto
the ~ = 0 "pseudo-energy" level of the Morse potential
VE(q), so that the particle will approach q = —oo (cor-
responding to x = 0) asymptotically. The singularity at
x = 0 has been removed to q = —oo, aad the time-scaling
ensures that the x origin is reached only in in6nite time.
[The proposed time scaling f(x) = z is, therefore, of lit-
tle practical use for integration of classical trajectories;
the scaling function f(x) = z followed by the change of
variables x—:(2 is used in actual computations [32—34].]

However, the resulting Hamiltonian 'R' no longer has the
standard form p /2+ V(z), and the variable z is still
restricted to be non-negative. Both issues can be resolved
if we next make a point transformation to variables (q, pz)
originally introduced by Langer [25]:

(14)

= p*' ZH= ———
2 x (x & o). (1o)

The Hamiltoaian equations of motioa are clearly singu-
lar at x = 0 due to the presence of the Coulomb potea-
tial. To regularize the equations of motion, we fj.rst in-
troduce an extended phase space (x,p, t, E) [32], with-
the Hamiltoniaa:

If we restrict attention to the invariant subspace 'R = 0,

IV. QUANTUM REGULAR1ZATXON

The quantum analogue of the classical regularization
discussed above is the so-called Duru-Kleinert mapping
of the path integral for one problem onto another [36].
The key aspect of the Duru-Kleinert mapping is a trans-
formation of both space aad time coordinates ia the path
integral. Pull details are given by Kleinert [22]; in the
present section we apply the space-time transformation
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of the previous section to the 1D Coulomb Hami&tonian
H of Eq. (9).

Consider the propagator:

K(z&, z., t)= (z&le '+'i"lz )
dE;at ih

lim e ~ zg
g-+0+ 2mh E —H+ig

The key to quantnm regularization is the identity [22]:

1 1
. = g(*) . - . . g(*)E —H+ig g(z)(E —H+iii)g(z)

= -g(z)'8 'g(z), (18)

where the last line defines a new (regularized and E-
dependent) Hamiltonian 'R, analogous to the classical
regularized Hamiltonian 'R. The identity (18) turns the
propagator into

K(zs, z, t)
OO

= —lim dEe '' "(z-slg(z)i 'g(*)lze)2' g~0+

-ig(»)g(zo) „.
2z g-+&+

x dE e-'~'~"(»l~-'lz. ),

which can be written as a double integral:

to
x d'

, + g(h(q))(V(h(q)) —Ejg(h(q)) +»(q)

with the potential correction term» [22]:

fP 1h"' 3 (h")~v=- ——
m 4 h' 8 g

h' j

(22)

K(zs, z, t)

g(»)g(*-) dE, ,z~ys
™

d,—K(.. .E)25 '
0

(20)

where the integrand K(zs, z~, a, E) is the scaled-time

propagator (zsle "+~"lz ) for the regularized Hamilto-

nian 'R (which is E dependent).
At this point, we would like to write the propagator

K as a path integral and then pass to the semiclassical
limit. This is not possible, however, because the incorpo-
ration of the regularizing function g changes the kinetic
energy in 'R to a nonstandard form (exactly as in the
classical regularization). Instead, we make a coordinate
transformation z = h(q), with h'—:dh(q)/dq = g(h(q)),
which transforms the Hamiltonian

1 g2
'R = g(z) —— + V(z) —E g(z) (21)

V. THE SEMICLASSICAL LIMIT

The quantum propagator K'(q&, q, a, E) determines
the time evolution in a system with a Cartesian-like coor-
dinate q and a well-behaved potential Vz (q) +b V(q). To
determine the semiclassical limit of the original propaga-
tor K(zs, z~, t), we therefore replace K'(qs, q, a, E) by its
semiclassical limit, in the standard Van Vleck —Gutzwiller
sum-over-classical-trajectories form:

K (,)
[g(»)g(zo)l'" dE, -,z~(s

2xh
O' R'

x da ) (2zih)
Qe ~%& &qs&qo

in time a

& iR' iz Mi l
x exp

g h 2
(26)

Expression (26) is difBcult to evaluate, since we must
determine the q-space trajectories that connect q to qs
in scaled time a for el/ values of the physical energy E
(which appears in 'R' as a parameter), and then integrate
over s and E. In the spirit of general semiclassical theory
[30], we shall do both integrals by stationary phase, and
thereby find considerable simplification.

First, me evaluate the s integral using the stationary
phase approximation. We must determine trajectories

O'R" K 8%.' ~

is however just the negative of the trajectory pseudo-
energy e = '8' [1]. (The physical energy E is considered
fixed at this point. ) The stationary points a' are there-
fore all scaled times taken by trajectories that go &om q
to qg at e = 0. These scaled times depend on E, since the
underlying Lagrangian does, so we write them as a'(E).

Evaluating the contributions to the integral &om each

Details of the derivation of the potential correction term» by explicit transformation of the path integral are
given in [22]. The correction term can also be obtained
by direct transformation of the Schrodinger equation.

The final result for the transformed propagator is [22)

K(,)
[g(»)g(* )]" dE, ,z—~ps

2xh

x daK'(h (zs), h (z ), a, E),
0

(24)

where iC' is a new propagator defined by K'(qs, q, a, E) =
(qsle ""'"lq-) with lq)

-=lz(q))""
For the one-dimensional Coulomb problem, we use the

regularizing function g(z) = z, in analogy with the classi-
cal regularization procedure, and use the Langer transfor-
mation z = h(q) = e'i. The regularized quantum Hamil-
tonian is then

—Zei —Ee ~+1 dz
2

hz
(25)

2 dq 8m'

which describes a Morse oscillator with shifted potential

V~(q) + &&(q).
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stationary point we have [1)

~ (,)
[a(xs)e(x-)]'~' dE, -,z~ys

2vrh

O R OR
x

OqbOq~
at e(E)=0

i, i7r(Mi + M2)
x exp —R—

2

where

(27)

1 if 0 R'/Bs (0
0 if 0 R'/Os ) 0 (28)

R' and its derivatives are evaluated at (qs, q, s'(E), E).
Next, we do the E integral by stationary phase; the sta-
tionarity condition is &@ (R'(qs, q, s'(E), E)) —t = 0.
This derivative is shown in Appendix A to equal t*(E),
the physical time taken by the trajectory. The station-
ary points E* are therefore those values of the physical
energy E which make t*(E) = t, i.e., when there is a q
trajectory with e(E') = 0 that takes physical time t to
get &om q to qb. Evaluating the contribution &om each
such trajectory, the semiclassical propagator becomes

&-(* *- t) = [~(* )g(*-)]"
—iE't/h O R' -' O2R' —-' dt* —~/'2

OqbOqa 'Os 8E
trap' ga ~qg

at e(E~)=0 in time t

i, iver(Mi+ M2+ Ms)
exp —R'—

2
(29)

The term R' and its derivatives are now evaluated at
(qs, q, s'(E'), E'), and

1 if dt'/dE ( 0
0 if dt*/dE ) 0 . (30)

R (qs, q, s*(E*),E') —E't = R (xb, z, t), (31a)

O R' O R'dt* O R''*"(*-'a,.a,. a. dE (31b)

Remarkable simpli6cation of the semiclassical propaga-
tor of Eq. (29) occurs if we express the right-hand side in
terms of the classical mechanics of the original system in
x variables toith a corresponding potential correction term

l l
b,V(h (z)) l l

included. For the one-dimensional

Coulomb case, the potential correction is just the usual

Laager modification s, [25]. As discussed in detail in
Appendix B, a q-space trajectory from q to qs at pseudo-
energy e(E') = 0 of real time duration t matches up with
a trajectory in real space from x = h(q ) to zs = h(qs)
in real time t. In addition, if we denote by R'(zs, x, t)
Hamilton's principal function for the original system with

the potential correction, and by M' the number of con-

jugate points, then, as shown in Appendix B:

This form for the semiclassical propagator is, remarkably,
precisely the Van Vleck —Gutzwiller expression obtained
for the original problem including the Langer correction
to the potential. Our approach via the regularized quan-
tum propagator therefore justifies inclusion of the Langer
modi6cation in the time-dependent semiclassical propa-
gator. A similar result was obtained by Gerry and Ino-
mata [37]. See also Ref. [1], Sec. 13.5.

VI. SEMICLASSICAL AUTOCORRELATION
FUNCTION FOR 1D COULOMB PROBLEM

In this section we use the regularized semiclassical
propagator derived above to compute a wave packet au-
tocorrelation function (survival amplitude) for the one-
dimensional Coulomb problem Eq. (9). For this case the
regularization qualitatively changes the underlying clas-
sical mechanics, since all trajectories in the unmodified
potential reach the singularity at x = 0, and semiclas-
sical continuation (including a conjugate point analysis)
through the Coulomb singularity is not straightforward.

We shall compute the autocorrelation function C(t)
for a wave packet Q(x) = (xi/(0)) evolving under the
Hamiltonian (9):

'L7r+i exp ——(Mi + M2 + Ms)
2

1 Z7r
exp ——M'

+i
(31c)

C(t) = (y(0) l@(t))

(y(0) IU (t) ly(o))

dx dxb * xb x K xb, x, t.

K, (xs, x, t)

1 ). 82R'

i/2vrih ..
(iR'

l
exp

l

iM'7r )
)I

Using these expressions in Eq. (29), we obtain our final
result: The semiclassical approximation for C(t) is obtained by

replacing the quantum propagator K with its regularized
semiclassical approximation and computing the double
integral over x and x& numerically [15]. Following Heller

[15], we use an "initial value representation, " which con-
verts the integration over initial and final position to one
over initial position and initial momentum:
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( I i"'
&(&) = Jd*./&* 0*(*.)0(*.)~l ~2zih)

) i/2
X dp Zg —Xg

iR(z„z ) ivy.
X exp (34)

where zq(z, p ) is the final position after time t of the
trajectory with initial position z and momentum p .
Integrating over zs we have

) 1l2

&(&) = J ~*.f d~. 4'(*)0(*.) l,g2z.ih)
BzR

x (z„z.)zs ze
eKp

iR(zg, z ) ivz.

2.

We consider initial states g(z) that are minimum un-
certainty Gaussian wave packets localized in both posi-
tion and momentum, so both integrations can effectively
be restricted to finite ranges of zs and ps, and thus com-
puted by a simple discretization. In a general application
of the initial value representation, one would use numeri-
cal integration to determine the final values of z&, R, and
BzR/Bzs8z . However, the classical equations of motion
for the Coulomb-plus-Langer potential are explicitly sol-
uble, so that, for given (z,p, t), the final position zq can
be obtained by a straightforward Newton search, and all
quantities in (35) easily computed [38].

We have applied the above procedure to compute the
semiclassical C(t) for a Gaussian Rydberg wave packet
of the form

g(z, t = 0)

1 (*—(z))'
, exp i(p)(z —(z))—

ACT 4 2d , (36)

I
4

I
ll f ] I)

II I

II II Ill~Ill I I I

11 I
I )

I
II !I I II

I II

I

10 15
t

20

FIG. 1. Semiclassical (solid line) and exact quantum
(dashed line) autocorrelation functions IC(t) I

for the Rydberg
wave packet, Eq. (36).

with ((z), (p)) = (7200, 0) (corresponding to the outer
turning point of the trajectory at the energy of the

~ L
52 56

l

60
n

64 68

FIG. 2. Semiclassical (solid line) and exact quantum (filled
circles) eigenstate overlap spectra for the Rydberg wave
packet Eq. (36); intensities are plotted as a function of the
quantum number n(E) = (—2E) . The semiclassical spec-
trum is obtained by Fourier transforming the semiclassical
autocorrelation function C(t). The exact quantum and semi-
classical spectra are scaled to have the same value at n = 60.

n = 60 level) and width 0 = 600. These parameters
were chosen to match those used by SBNNT [26]. The
exact survival amplitude was determined by expanding
the wave packet (I) as a linear combination of bound hy-
drogenic s-state eigenfunctions g(z) = P„c„P„(z)(the
contribution from the continuum is negligible), where

P„(z) =,z» ze ~"Li i(2z/n) (the radial hydrogen
wave function including an extra factor of z to account
for the z2 in the three-dimensional volume element). We

have C(t) = (g)e 'H ~"Ig) = P„~c„)ze ' " ~", with the
expansion coefficients c„=f dzg(z)P„'(z) obtained by
numerical quadrature.

The semiclassical and exact autocorrelation functions
C(t) for initial state (36) are shown in Fig. 1 for times
up to 20 periods of the central (n = 60) orbit. The pe-
riodicities of the oscillations of C(t) are well reproduced
by the regularized semiclassical propagator; the ampli-
tudes of the oscillations in our semiclassical approxima-
tion appear to be less accurate than those obtained by
SBNNT [26]. Fourier transformation of C(t) gives a semi-
classical approximation to the hydrogenic spectrum [15].
The semiclassical and exact overlap spectra for vP(0) are
shown in Fig. 2. Here, our semiclassical results are very
accurate and of the same quality as those obtained by
SBNNT [26].

VII. DISCUSSION AND CONCLUSIONS

In this paper, we have derived a regularized semiclas-
sical radial propagator for the Coulomb problem. The
derivation of a semiclassical propagator in this case is
not straightforward due to the Coulomb singularity and
the non-Cartesian nature of the radial coordinate. In our
approach, we 6rst regularize the quant»m propagator fol-
lowing Kleinert [22]; the regularized quantum propagator
thus obtained is then replaced by its semiclassical limit,
which has the standard Van Vleck —Gutzwiller form. The
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propagator of interest is now a double integral over en-

ergy and (scaled) time. Performing both integrals by sta-
tionary phase yields the result, Eq. (29). A detailed anal-
ysis then shows this expression to simplify, remarkably, to
the form (32), which is simply the Van Vleck —Gutzwiller
semiclassical propagator for the Coulomb potential plus
Laager correction 5 /8mz2 [25].

The regularized semiclassical propagator is applied to
compute the autocorrelation function (survival ampli-
tude) C(t) for a Rydberg wave packet centered at the
n = 60 level. Although our semiclassical method does
not reproduce the oscillation amplitudes in C(t) quite
as accurately as the approach of Suarez-Barnes, Nauen-
berg, Nockleby, and Tomsovic [26], the Fourier transform
of the semiclassical C(t) yields a wave packet eigenstate
spectrum of accuracy comparable to that of Ref. [26].

Several points remain to be discussed. First, it is nec-
essary to clarify the relation between the semiclassical
propagation method of SBNNT [26] and the approach
developed here. At each time t, there is a set of peri-
odic orbits with initial condition (zoz, p = 0) and period
t/j Follow. ing Heller [39], SBNNT employ a Gaussian
ansatz for the time-dependent wave packet in the vicin-
ity of each reference trajectory, and use a quadratic ex-
pansion of the potential about the trajectory to deter-
mine the time-evolved Gaussians [26]. The autocorrela-
tion function C(t) then consists of a sum of terms, one
term for every reference orbit. The reference trajectories
change as the propagation time t changes. As SBNNT
have noted, the quadratic expansion of the potential fails
in the vicinity of the origin. Although SBNNT claim that
"this causes no problems once the trajectory remerges
from the origin, " there is in their approach no well de-
Gned continuation of the dynamics through the poten-
tial singularity. In particular, the relative phases of the
branches of the wave packet are not determined. SBNNT
simply set the relative phases equal to unity [26].

In Appendix C, we show that the SBNNT expression
for the wave packet autocorrelation function is obtained
by replacing the quantum propagator with the (unregu-
larized) Van Vleck —Gutzwiller form in the usual way, and
performing the double integral over radial coordinates x
and x' by stationary phase, after expanding Hamilton's
principal function to second order in displacements about
the reference point (zo~, zo~). In this approach, the rel-
ative phases of the wave function branches are also in-

determinate, due to the breakdown of the conditions for
validity of semiclassical mechanics at the potential sin-

gularity; this breakdown is, of course, the motivation for
introduction of a regularized semiclassical propagator.

A second point concerns the relation of our results to
previous work on the Coulomb propagator.

The exact quantum Green's function for the Coulomb
potential has been known for some time [40], but a
"closed form" expression for the Coulomb propagator was
only obtained recently by Blinder [41]. Blinder's result is
complicated, and its semiclassical limit is not easily found
(see also [42]). Our numerical results (cf. Fig. 1) indicate
that our regularized semiclassical propagator (32), which
is defined in (transformed) configuration space, is not ex-
act. On the other hand, in several instances semiclassi-

cal approximations for the Coulomb problem yield exact
results. In the pioneering work of Gutzwiller, a semi-
classical approximation to the momentum space Green's
function was found to give the exact spectrum and exact
wave functions for the H atom [43]. The general ques-
tion of "correspondence identities" has been discussed by
Norcliffe [44]. Rost and Heller have recently shown that
the semiclassical propagator in the momentum represen-
tation gives the exact quantum result for the Coulomb
scattering differential cross section [45]; even interference
effects due to exchange symmetry of identical particles
are reproduced exactly.

These results illustrate the representation dependence
of the quality of semiclassical approximations, and raise
the interesting question of the determination of an opti. -
mal representation for a given problem.

Finally, we note that the regularized propagator dis-
cussed here has potential applications beyond the prop-
agation of one-electron Rydberg wave packets. As noted
in the Introduction, there has beea much recent interest
in the semiclassical mechanics of two-electron systems
[9,10]. One model system that has received much at-
tention is a "collinear" model of He with two (radial)
degrees of freedom (zi, z2) [10,11,33,34]; this model can
be thought of as two s-state (l = 0) one-electron systems
coupled together by an interaction potential 1/(zi + z2)
that depends only on the radial variables. Study of the
collinear model has provided much insight into the na-
ture of "near-collinear" doubly-excited states in the full
three-dimensional He atom [9,12]. Previous work on the
semiclassical mechanics of collinear Helium has however
implicitly used the unregularized propagator, and has
extensively exploited the homogeneity properties of the
unmodi6ed Coulomb potential. Regularization of the
collinear Helium problem would modify the potential by
addition of a term

1 1
EV(zi, z2) = (37)8z2 Sz2

Addition of this term would have two consequences.
First, the effective potential would no longer be homoge-
neous of degree —1, and the classical phase space struc-
ture would thea be energy dependent. Second, the "sym-
metric stretch" or Wannier mode, which for E & 0 is
infinitely unstable [33], would have a finite (albeit large)
instability exponent. The effects of regularization on this
and other few-particle systems remain to be explored.
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APPENDIX A: STATIONARY PHASE
CONDITION FOR THE E INTEGRAL

The stationary phase evaluation of the s integral in Eq.
(26) leads to the appearance of s*(E), the scaled time
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required to go from q to qs at pseudo-energy 'R' = 0.
(Note that 'R', l, and R' denote the q-space Hamilto-
nian, Lagrangian and Hamilton s principal function, re-
spectively, all of which depend on E parametrically. ) For
the second stationary phase integration over E, we need
to know && [R'(qs, q, s'(E), E)]. In this appendix we

show that it is simply t'(E), the physical time taken by
the corresponding trajectory in x space.

For a given physical energy E, there is a q-space tra-
jectory qp(o) which takes scaled time s'(E) to get from

q to qs at '8' = 0. To be precise (it is essential to not
miss any dependences), we write [qp(o')](qs, q, s'(E), E);
the four slots (qy, q;, ot t, E) indicate that for each choice
of 6nal point qy, initial point q;, total time o«&, and E

I

(which determines the underlying Lagrangian and Hamil-

tonian), we have a trajectory parametrized by o. (from 0
to ot t). Thus, the function we are difFerentiating is

8 (E)
R'(qsq- s (E) E) = « ~'[[qp(~)] [qp(~)] E]

0

(Ai)

wher' [qo(o)l = [qo(o)](q q s"(E) E) and [qo(~)1 =
[qp(o')](q&, q, s'(E), E). Notice that 8' depends explic-
itly on E, as well as implicitly through the trajectory q0.
Taking the derivative gives

(R'(qs, q, s'(E), E)) = l [[qp(s'(E))], [qp(s'(E))], E] + do

. [[q.( )] [q.( )] El ""„' +

+ [[qp(o)1 [qp(o)1 E] „E+ E + El[qp(~)l [qp( )1 E] .Bl . ~B[qp(o)] ds' B[qp(o)] ~ BZ'

Bq
'

~
ot t dE E

~
E (A2)

Here, [qp(s'(E))], [qp(s'(E))], [qp(~)], [qp(o')] and their derivatives are evaluated at (qs, q, s'(E), E).
various simplifications. First, we have

[qp(s'(E))](e q- "(E),E) = qs (A3)

(by definition, the position at the final time is the final position). In addition, the Euler-Lagrange equations teil us

s. . Finally, we have &@
——[g(h(q)))2, since

Together, we have the simplification

m '2
—[~(~(q))]' &(q) —E —&V(q). (A4)

e s (E)
dE(R'(qs q- "(E) E)j = ~'[[q ( '(E))],qs, E] E +

0

-2 (E)
g(h(qp(o))) do +

0

~~)40(~)l «* ~)to(~)I)

+— . [as above]
d BZ' B[qp(o)] ds' B[qp(o)) &

do Bq o tot

Next, we integrate the last line by parts, with

d M'
B. [[q ( )] [q ( )1 E]

da Bq

B[q.(o)] d"
+ B[qp(o)]

BZ'
. [[qp(~)] [qp(~)] E]

Bq

B[qp(~)1 d" + B[qp(~)]
B, , dE BE

(A5)

(A6)

Clearly, the —v du term will cancel the rest of the integral, leaving only the boundary terms at o = s'(E) and o' = 0.
The values of u on the boundary give the greatest simplification.
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First, qp(0) is not affected by a change in nt t or E, since it is always equal to q . Thus, u = 0 at the lower endpoint
cr = 0. Similarly, [qp(s'(E))](qs, q, a'(E), CI) = qs for any value of CI, so the &@ term in u at the upper limit is also
zero. [The fact that it is &@ and not && means exactly that we vary the fourth slot tpithout afFecting the E inside
a (E).] The remaining term is a bit tricky. From the definition of the derivative [A = s (E)],

cI[qp(A)] . [qp(A)](qs, q, A+ h, E) —[qp(A)](qs, q, A, E)
qb& qa» = lm

t9o «t I +p+- h

(qp(A)l(q»q- A+ h E) —qs

h-+O+ h
(A7)

Wqp(A)]
(qs, q, A, E) = [qp(A—)](qs, q, A, E).

+tot
(As)

By expanding [qp(a = A)](qi„q, A + h, E) about o =
A + h and inserting it into (A7), we find that

It is easy to check that the following two Hamiltonian sys-
tems are equivalent, in the sense that any solution x(q )
of the Grst equation will, when transformed by the above
rules to q(o ), also satisfy the second, and vice versa:

The result of the integration by parts is therefore

(R'(qi„q, a'(E), E))

[g(*)l'
(82a)

s'(E) - 2

g(h(qp(o))) do

d8
+~'l(q (p"(E))] qs El „E

da' 88'
-(qp(s'(E))] „E ~. ((qp("(E))] q»E].dE Bq

(A9)

,'+[ (h( ))]'(V(h( )) — }+ ( ) =o. ( )

Thus, we can relate [qp(o)](qg, q, a, E'(qs, q, a)) and

[ z(pv')]( z,sz, t), where the former is the q-space path
(time parametrized by cr) Rom q to qs in time s at the
special value of the parameter E = E' which makes the
pseudo-energy equal to zero, and the latter is the z-space
path (time parametrized by 7 ) from z to zs in time t:

The scaled time 0' is related to the real time r by
g[h(q)] do' = dq [22], so that integrating g2 over cr &om
o = 0 to e = s'(E) gives t'(E), the physical time taken
by the trajectory. Moreover, we note the appearance of
'R' = q a. —8'. Since 'R' = 0 on the path qp, we have

Bq

(R'(qs, q, a'(E), E))

(qp(cr)](qs, q, a, E') = h '( xp(q. ) (zs, z, t)),
where

cr

[g(h(qp(~'))]' «'
0

zg ——h(qt, ), z = h(q ),

(Bs)

(B4a)

(B4b)

(( o(' ( ))l» 1„+t ( ) = t ( ).

(A10)

S

[g(h(qp(~')))]' «'
0

(B4c)

APPENDIX B:RELATING REGULARIZED
q-SPACE DYNAMICS TO THE LANGER

MODIFIED z-SPACE SYSTEM

We start with the basic relations for the Kleinert reg-
ularization: z = h(q), h'(q) = g(h(q)), p = pqig(h(q)),
d~ = g(h[q(o. )]}'do., and

h~ 1h"'(q) 3 (h" (q) i
m 4 h'(q) 8 ( h'(q) )

1 (dxi »(h '(x))
2 id~) [g(x)]2

From (B3), we find the following relation:

(85b)

Thus we have related the z-space Hamiltonians and tra-
jectories to their partners in q space. We next relate the
corresponding Lagrangians:

—[g(h(q) )]' (&(h(q) ) —E}—»(q)1 (dqb'
2 I, dP)

(B5a)

d(«(~)](qs q- 'E*)
dcT

1 dx0 07

h'(q (0)) dT oIcr

",*.'(-) [g(«"(-)))]

= g(h(qp(~))) „
'

(~) (B6)
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Inserting this into (B5a), one can see

(o) (qb, q, a, E'), [qo(o)](qb, q, s, E'), E'

= [g(h(q (o)))] I
LI (&) (zb zo t), [x (r)]( xb, x, t)

~

+ E'
~, (B7)

( dxo

)

subject to the relations (B4). Integrating l over cr from 0 to s to get R', and using the relation [g(h(q))]2do = dv,
leads easily to

R'(qb, q, a, E') = R'(zb, z, t)+E't.

Equation (B8) is one of the key relations that enable us to transform the expression (29) into the Langer modified
Van Vleck propagator (32). Another important relation involves the densities (the second derivatives of R' and R')
[1]:

—1
BsR'(qb, q, a, E') (8 R'(qb, q, a, E')

qb qa 8 28

8'R'(zb, x, t) Bt(xb, x,E')
BzbBz BE (B9)

82R'(qb, q, s, E') Be(qb, q, a, E')
Bs

I'Ba(qb, q, e, E') )
Be )

Hence, we must prove that

To prove this relation we first note that

(B10)

82R' Bt 82S' 8 S'

BzbBz BE Bz BE BzbBE
(B12)

and likewise in q space, replacing x by q, t by 8, and E
by e. Hence, we must show that

l

domain "action") to second derivatives of S' (an energy-
domain "action") as follows [1]:

, 82R'(qb, q, a, E') Ba(qb, q, e, E')
Be

, 8 S'(qb, q, e, E")8 S'(qb, q, e, E')

82R'(zb, z, t) Bt(xb, x, E')
( )BxbBx~ BE

82S'(xb, x,E') 82S'(zb, z, E')
B13

BzbBE Bx BE

It is useful to relate the second derivatives of R' (a time- Since a
——pb and a

———p, (B13) becomes

Bpb(qb, q, e, E') Bp' (qb, q, e, E')

e=o

Bpb(xb, z, E') Bp (zb, z, E')
BE BE (B14)

Next, we use the relations for p in each system

p' = +V'2e —2g[h(q')]'(V(h(q')) —E*),

p = +/2E' —2V(x),

to compute the derivatives

(e = 0) = +1/Q —2g[h(q')]2(V(h(q')) —E'),

= +1//2E' —2V(x).

(B15)

(B16)

nr 1 iver
v'iexp ——(Mq+ M2+ Ms) = exp ——M'

2 2

(B17)
where M' is the number of conjugate points in x space
(including the Langer correction to the potential), Mq
is the number of conjugate points in q space, M2 is 1 if
g2 I

is negative (and 0 otherwise), and Ms is 1 if z& is
negative (and 0 otherwise). In other words, we need to
show that

1' 1 iK
exp ——(M~ + M2) = —exp ——(M' —Ms)

2 i 2

The desired result (B9) follows immediately.
Finally, we consider the relation between conjugate

points. We seek to show that

gal /= exp ——(M —Ms + 1)
2

(B18)
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Note that Mq + M2 is just the number of energy-shell
conjugate points in the q space (cf. the argument on p.
188 of [1]), given by the number of times &s & / &,
blows up along the trajectory. If we convert && in (B9)

O' R' 8~ 8~to —
&.. . we see that

& & / » is just a con-
Bgg 84/~ 88

stant (
~ l ~ l) multiple of the analogous density ra-

tio
& & / &~, in the (Langer-corrected) x space. The

two ratios will therefore blow up at the same points, so
that the energy-shell conjugate points are the same in
the transformed and the original systems. Hence, we just
need to show that M' —M3+ 1 is the number of energy-
shell conjugate points in the Langer corrected original
system. Again, using the fact that &&

———( &~, )

Mg =
(

Mg =
(

1 —Mg =
(

if Bt/BE & 0
if Bt/BE & 0,

B2R)/Btz + 0
if B2R'/Bt & 0,

if B2R'/Bt2 ) 0
if B2R'/Bt2 & 0 . (B19)

Hence (again, cf. p. 188 of [1]), 1 —Ms is exactly the
correct term to add to the number of conjugate points
M' to get the number of energy-shell conjugate points,
as required.

APPENDIX C: ON THE APPROACH OF
SUAREZ-BARNES) NAUENBERG, NOCKLEBY)

AND TOMSOVIC [26j

A semiclassical method has recently been proposed
by Suarez-Barnes, Nauenberg, Nockleby, and Tomso-
vic (henceforth SBNNT) to propagate a Rydberg wave

packet for the 1D Coulomb potential [26]. The approach
of Ref. [26] differs Rom that taken in the present pa-
per, and in this appendix we explore the connection be-
tween the two methods further. SBNNT do not provide
a full derivation of their working equations [Eqs. (7) and

(8) of Ref. [26]] in [26), so in this appendix we derive
their results bringing out the essential approximations
and connection with the standard Van Vleck —Gutzwiller
approach.

We start with an initial wave packet @(x) = (x~g(0)},
and propagate to time t in the standard way

Q(x, t) = (2vrit)) ') dz' ) (x, x', t)
O~R

i9x~ t9xg

iR(z, z', t) iPx exp ' ' ——g(z', 0).
h 2

(C3)

As we have emphasized throughout the present paper,
however, it is not valid to assume the validity of the Van
Vleck form without including the Langer modification in
the potential.

The wave packets considered by SBNNT are of the
form

g(z, t =0)
1

, exp i(p)(x —(x))—(z —(z))'
7l0 4 20 , (C4)

i R(x, z', t) iR(xp, zo, t) i B'R
2h Bz2

i 02R
(*o,*o,t)(z' —zo)(* —zo)5 BZ~Bxb

i 02R
+—

2 (zo *o,t)(z —zp) .
2 xQ

(C5)

that is, the product of a real Gaussian centered at z = (z}
and a plane wave of momentum p = (p). We now imagine
doing the integrals over x' and z in Eq. (C2) by station-
ary phase, with attention focused only on the imaginary
part of the exponent. For real Gaussians with zero aver-
age momentum Q} = 0, the dominant contributions to
the double integral will come &om the vicinity of points
where , —— ——0, or p = pb

——0. Hence, the most
important coordinate pairs (x, z') are those which are
close to some (xp~, zoic), where there is a classical trajec-
tory which starts at zoic with zero momentum and returns
to xo~ in time t. For each value of the time t, there is
a discrete set of such trajectories, distinguished by the
Kepler period t/j (Note t.hat we assume continuation
of the classical trajectory by elastic reflection from the
singularity at the origin x = 0.)

Motivated by the above discussion, we now expand
Hamilton's principal function R in a Taylor series in its
two variables about the central point x = z' = xp (for
convenience, we drop the index j, though in the end we

will have to sum over all the xp~). The first derivatives
are zero at (xp, xp) since both momenta are zero. There
is then a zeroth-order term and three second derivatives:

Q(x, t) = dz'K(x, x', t)g(x', 0).
0

The autocorrelation function C(t) is defined as

c(~)= f ~*&*(*,o)V(*, ~)

dx dx' * x 0 K x, x', t x', 0.

(Cl)

02R 02R
(xp, xp, t)(x' —xp) + (xp, zp, t)(x —xp) = 0,

Ox xa xb
8 R

0 0 ( 0& 0~t)
x xo (x —xp).s, (xp, xp, t)

(C6)

Next, we do the integral over x' by stationary phase. The
stationarity condition is

The quantum propagator K in (Cl) is now replaced by
its semiclassical approximation, which is assumed to have
the standard Van Vleck form for the unmodified Coulomb
potential V(x) = —Z/x:

The classical mechanics for the one-dimensional Coulomb
problem with elastic reflection from the origin is explic-
itly soluble, and the exact expressions for the second
derivatives of R give
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—2Ez2
(xp, xp, t)—3tZpg + 2Zxg —x2p pg

—2Ex~
—BtZ(o) + 2Z*, —x', (o) (o)

—Exp
Z

Hence, by (C6), x',
~ ~

= z, so the stationary value of the exponent is

2E z—'(Btp pb+2x pb —2zbp )
zp~ xp~ t

2 zp~zp) t 2Bx~Bzb Bz~ Btp~pb + 2z~pb 2zbp~ B—tZpb + 2Zzb x~p~pb

(C7)

iR(x, x, t) i(z —z )2 B2R B2R B2R
(zp, zp, t)+ 2(xp, zp, t)+2 (xp, xp, t) . (C8)

Again, we can insert exact expressions for the second derivatives of R to compute the bracketed term

B2R 82R B2R
2 (zp, zp, t) + 2 (zp, zp, t) + 2 (zp, zp, t) =

z~ zb 3tp~pg + 2z~pg —2zgp~

We require the limiting behavior of the ratio (C9) as p, pb -+ 0. Let x = —
&

—e and zb = —
&

—eb. Then,

p = —/2Ze + O(e ),
Zp

pb = ——/2Zeb+ O(eb) .'75

Xp
(clo)

If we now compute the m~merator and denominator of (C9) to order Qe we have

B2R B2R BsR
, (x, z„,t)+, (x, z„t)+2 (z, z„t) =

za zb

stzy v'2zeo 2z stzvsv'2zes 2z 4g + O(&)
RQ ~CQ RQ RQ

2'/—2Zeb —27~/2Ze~ + O(e)

3tZP~/2Ze—~/zp —BtZPb/2Zeb/zp + O(e)
2'/—2Zeb —2p /2Ze + O(e)

—StZ zs' + 0(+e) =, + 0(+e).
0

(Cl1)

iR(xp, zp, t) 3itZ(z —zp) 2

4hzsp
(cl2)

Since R(zp, zp, t) = —BEt=, this is just

Hence, the stationary value of the exponent becomes
I

and that z'„~ = z, so the amplitude is just exp[—i(y +
4)/2]~(*, o)

Hence, with the above approximations we have

( ) ). i(y +4) SitZ
2

BitZ SitZ(z —zp)2
4~3 (clB)

In addition to the stationary value of the exponent, we
must compute the amplitude contributed by the station-
ary phase integration:

g2R
—1/2

(27rih) ~ exp[—ig/2].Bz (C14)

In conjunction with the original prefactor, assumed
slowly varying, the 6nal amplitude is

8 R X/2
(xp, xp, t)

8~Rs, (xp, xp, t)
p[—(&+4)/2]&(*!. o).

(C15)

We have already shown that this ratio of densities is —1,

4hzsp, .

At this point we note that the value of the phase fac-
tor exp[—i(yz + P~)/2] has not been speciffed. Determi-
nation of the phase P~ in the semiclassical propagator,
Eq. (C4), presents some difficulty for, although the clas-
sical trajectories are easily continued through collisions
with the singularity at the origin, the usual semiclassi-
cal analysis breaks down there [25]. Indeed, one of the
points of the present paper is that one should regularize
the quantum dynamics before passing to the semiclassi-
cal limit. SBNNT however claim without proof that the
phase drops out, so the reference trajectories add with
"relative phase equal to unity [26]." If we accept this as-
sumption concerning the relative phases of the root tra-
jectories, then inserting the wave packet @(x,O) of Eq.
(C4) and performing the Gaussian integration over x ex-
plicitly recovers the expression for C(t) given by SBNNT
[Eq. (7) of [26]].
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Equation (C16) expresses the time evolved wave packet
g(z, t) at time t as a superposition of terms, each of which
consists of the original (unspread) wave packet multiplied

3 gg&
by a phase factor exp &' + ' '„,"' . This form for

OJ

g(x, t) arises by approximating the semiclassical time-
evolved state (Cl) in the vicinity of those points in phase

spac. . where it overlaps the initial wave packet (cf. Fig.
I of [26]) by quadratic expansion of Hamilton's principal
function and stationary phase evaluation of the integral
over x'. Of course, this procedure is well suited for com-
putation of an autocorrelation function, as the regions of
overlap are the only points of interest.
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