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Models of particle detection in regions of space-time
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We investigate two models of measuring devices designed to detect a nonrelativistic free particle
in a given region of space-time. These models predict diferent probabilities for a free quantum
particle to enter a space-time region R; therefore, this notion is device dependent. The first model is
of a von Neumann coupling, which we present as a contrast to the second model. The second model
is shown to be related to probabilities defined through partitions of configuration-space paths in a
path integral. This study thus provides insight into the physical situations to which such definitions
of probabilities are appropriate.

PACS number(s): 03.65.Bz

I. INTRGDUCTIGN

The theory of measurement in quantum mechanics has
been a source of discussion and controversy for as long
as the subject has existed. Indeed, the Syracuse Uni-
versity Library Catalogue system returns a list of 13
books published since 1968 in response to the keyword
inquiry "quantum measurement. " Such a list may at best
be considered abbreviated as it neglects works predating
1968, such as von Nenmann's Mathematical Eoundotioris
of Quantum Mecharw'cs [2] and numerous research pa-
pers not found in books. Within this immense volnroe of
material, a number of important contributions have been
made by investigating specific examples (or at least mod-
els) of experimental situations, in other words, through a
study of measuring devices. These contributions include
the classic works of Mott [1],von Neumann [2], Bohr and
Rosenfeld [3], and DeWitt [4] as well as the more recent
studies of detectors in quantum field theories which are
summarized by Birrell and Davies in [5].

The basic procedures followed in these studies is to
first describe an appropriate classical measuring device
and to then quantize the coupled system consisting of
both the apparatus and the system to be measured. In
the above examples, the couplings considered single out
operators associated with the measured system that can
be said to be "measured" so that the "experiment" may
then be given an interpretation by the textbook proce-
dure in which the total state of the system is decomposed
as a sum of eigenvectors of this operator and the "proba-
bilities" to measure various eigenvalues are given by the
coeKcients in this sum.

At this point a comment is in order concerning the
use of quotation marks in this paper. It is the author' s
intention to use such punctuation to avoid a discussion of
the interpretation of quantum mechanics as the precise
meaning of the words "probabilities, " "measurement, "
and even "outcome" for each reader will be in8uenced by
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the interpretation to which he or she subscribes. Rather
than single out one set of such definitions for use here
or use complicated notation to distinguish between the
various meanings present in the literature at large, we
choose to use these words for any of the possible meanings
but to recognize that an ambiguity exists by enclosing the
words in quotation marks for every such use. When such
a term appears in the text, the intended meaning should
be clear kom the context (as in the above paragraph)
and is ultimately determined by the mathematical steps
used to calculate the corresponding "probabilities. "

Suppose then that we wish to predict whether a quan-
tum free particle will be found in some region B of
spacetime —a case that has received some attention [6—8].
An analysis in the spirit of [1—5] would begin with the
description of a classical detector and then proceed with
a quantization of the coupled detector-particle system.
A study of the quantum detector after the experiment is
completed determines the "probabilities" of the outcomes
through the norms of the relative states [9]i associated
with possible responses of the device and it may be that
the results are highly dependent on the device.

We therefore study models of two such detectors. The
first such model (A) is presented in Sec. II and leads to a
definition of probability of the familiar type given by pro-
jections of the free particle state onto parts of the spec-
trum of some Hermitian operator. On the other hand, the
model (B) presented in Sec. III is related to a definition
of such probabilities which has been previously proposed
[6—8] in terms of partitions of paths in a path integral.
We note that these two definitions are not equivalent, so
that this study may be used to develop an understand-
ing of the physical situations to which such definitions of
probabilities are and are not appropriate.

This discussion will constitute the bulk of the text,

We note that, while the terminology of Everett [9] is con-
venient here, the use of such terminology does not imply that
the following analysis assumes the Everett interpretation of
quantum mechanics.
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after which we will close with a discussion of the main
points and two appendixes. Appendix A presents a brief
discussion of bubble chambers in order to contrast this
device with models A and B. Appendix B reviews the
"ideal measurement limit, " which we use in our models.

II. SINGLE MEASUREMENT MODEL

For definiteness, we would like to analyze the detection
of a free nonrelativistic particle in 1+1 dimensions in the
space-time region R to the right of x = 0 between the
times Tq and Tq. Our detector will be de6ned by a pointer
which moves to the right when the particle is present in
region R. We will then say that the particle has or has
not entered R based on whether or not the pointer has
moved between times Tq and T2.

Speci6cally, we will assume that the coupling is of
a von Neumann type associated with measurement of

fT' dt H(z) during the time interval (Tq, Tq) so
that if Ag(t) is the pointer value at time t when cou-
pled with strength g to the particle and under the re-
tarded boundary conditions Ag(Tq) = Ap(Tq) we have

Ag(T2) = Ap(T2) + gXp. Similarly Xp is the undisturbed
(g=0) value of X.2 Note that X is just the total time spent
by the particle in region R so that this is consistent with
our decision to say that the particle entered region R if
and only if the pointer moves during the experiment.

We will also assume that the free (g=0) pointer evolu-
tion is trivial: Ap(t) = Ap(t ) and 7rp(t) = 7rp(t'), where x
is the quantity canonically conjugate to A. This may be
regarded as either an unphysical but useful mathematical
model or as the limit in which the kinetic energy term in
the Hamiltonian would cause the pointer to move a dis-
tance that is much less than the accuracy b, to which the
pointer can be read, i.e., such that P(T2 —Tq)/M « A.
Alternatively, we might take the &ee pointer Hamilto-
nian to be A2 (A might be the momentum of some other
free particle) in which case A would still be conserved
when the device and &ee particle do not interact. We
require conservation of A for the uncoupled device since
a pointer set initially to zero should remain at zero if no
particle is present.

The quantization of this model is then straightfor-
ward. As we will want to compare the disturbed (fi-
nite g) and undisturbed (g = 0) cases, we will in fact
construct a quantum theory for each g. We will use
the Heisenberg picture and choose representations car-
ried by Hilbert spaces isomorphic to each other and to
8 (R ) = 2 (R,;z) 2 (R;A). Of particular use will
be the isomorphism I &om the Hilbert space 'Rp of the
uncoupled system to the Hilbert space 'R~ of the system

It is interesting to note that it is difficult to construct such
couplings through an action or Hamiltonian principle without
Brst expressing Xo in terms of the operators P(Tq) and X(Tq)
through the uncoupled equations of motion, that is, without
essentially reducing it to an operator defined at the single
time Tq.

with coupling strength g that satisfies

(I, ) 'O, (t)I; = O, (t) (2.1)

P

for any operator Op(t) built from the basic operators

Xp(t), Pp(t), Ap(t), and harp(t) (the particle and pointer
positions and momenta at the time t in the uncoupled
system) and the operator Og (t) built in exactly the same

way but from the basic operators Xg(t), Pg(t), Ag(t),
and erg(t) at some time t & Tq. Because the coupling
begins only at time Tq, the same isomorphism satisfies
(2.1) for all t & Tq and this isomorphism corresponds
to our classical use of retarded boundary conditions (a
fixed g-independent initial condition) in comparing the
coupled and uncoupled systems.

Because our coupling is to be of the von Neumann type
associated with measurements of g, we take the quantum
dynamics to be defined so that

Og(T2) = I exp( —igfrpXp) Op(T2) exp(igfrpXp)(I )

(2.2)

Here Xp is the operator J&' dt Hp(z(t) ) in 'Rp and Hp (z(t))
Ja

is the projection onto the positive spectrum of Xp(t).
Note that I Xp(I ) g Xg since X is built from the
basic operators between times Tq and T2.

As is consistent with our use of retarded boundary con-
ditions, we will assume that the state of our system con-
tains no correlations between the particle and detector
at time Tq. That is, we take ~g& to be of the form

I+) = l&~) l&~) (2.3)

io =iy~oD (2.4)

for some Xy'. 'Rp g,T' M Rp &.T where kp D is the identity
operator in 'Rp D.T;. Similarly, for any operator Op of the
form (2.4), it will be convenient to define a corresponding
operator Of by Op ——Oy Il.p D.

The evolution (2.2) then leads in the usual way (see
[2,10]) to the statement that in the ideal measurement
limit3 we Gad

(VI&A(T )=A'dA'l0& ~ l(Xy = A'III, all, &I'd~x, (A'&

(2.5)

A brief review of this limit is presented in Appendix B for
comparison with our discussion of model 8 in Sec. III B.

in terms of the factorization 'Rg = 'Rg „,~, I3 'Rg D,~, of
the total Hilbert space 'Rg into a Hilbert space 'Rg,~2;
associated with the particle at time T» and a Hilbert
space 'Rg ~.T; associated with the detector at time Tq.
Here ~P„&and ~P~& are normalized states in 'Rg „,T, and

Rg, g..T'~ .
We now note that since yo is de6ned for the uncoupled

system (in which the factorization 'Rp ——'Rp, z:t 8 Rp, D:t
is t independent), it can be written as the direct product
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of "probability densities, " where 1yt = A.') (&y
A'ldp„- (A') and II~iT, & ~ dA' are the spectral measures

evaluated at A' of the operators yy and A(T2), respec-
tively, and I

&
is the isomorphism from 'Rs „,T; to R'o,~ T;.

induced by the isomorphism Is Ro ~ Rs. Equivalently,

the decoherence functional (@111~—~ dA. ' II~—~ dA"lg)
converges in this limit to

lated to a path integral that sums only over paths which
avoid the region R. Subsection C relates model B to the
discussion given in [6—8] and subsection D analyzes the
difference between our approach and that of [6—8] in light
of the fact that device B disturbs the system it measures.

A. Model

17(A', A") = ($„111 —z dp, - (A') fl =z dp„-,(A")lg„).
(2.6)

TQ

(&l&xl gt) = (41 «6( z( )t) 14)
Tg

TQ

«(416(z(t)) I4)
T$

Tg oo

Ct Czp'(z; t)p(z; t),
T1 0

(2.7)

A general review of decoherence functionals is given in

[6,11,12] and in other works. The results are equivalent
and decoherence is trivial because each decoherence func-
tional involves only commuting projection operators.

As defined by the distribution (2.5), the "probability"
of finding A = 0 with arbitrarily high accuracy vanishes
unless the spectral distribution of yy is singular. That
is, it vanishes unless yy has a normalizable eigenstate in
'Ro„.z; with eigenvalue zero. That this is not the case
can be seen by taking the expectation value of yy in any
state 1$) 6 Ro, :r, :

We define model B by coupling Pq (t) = b(z(t)—
A)b(t —T) to a pointer for each (A, r) in R. Note that
these are "explicitly time dependent operators" in the
sense that &+& P (P, H) and that they are related to y
of Sec. II through

dt dAdr Pg, .
—OO R

(3.1)

It follows that y is nonzero exactly when

dAdr $(A, T)pg,
R

(3.2)

dAd7. 7rp Pp

is nonzero for some smooth function P and that classi-
cally devices A and B detect particles under identical
conditions.

Thus, for each (A, T) E R, we introduce a pointer coor-
dinate A&, and a conjugate momentum zg and define
model B through the action

where P(z; t) = (Plz; t), where lz; t) is the eigenvector
of Xy(t) in 'Ro,~,T; with eigenvalue z. Since an arbi-
trary state 14) can have P(z; t) vanish for all z & 0 only
for isolated times t, this integral is always greater than
zero so that yy does not annihilate any state in Ro„,2;
and therefore does not have any normalizable eigenvec-
tors with eigenvalue zero. It follows that in the limit of
ideal measurement, the particle is detected by device A
with "probability" one independent of the initial state

III. A MULTIPLE MEASUREMENT MODEL

While we based device A on the von Neumann mea-
surement of a single classical quantity yo, we will follow
a difFerent strategy for device B and build it instead from
many von Neumann measurements. While this may seem
like an»nnatural procedure &om the viewpoint of mea-
surement theory in quantum mechanics (where we usu-
ally follow a "one question, one measurement" principle),
this approach will lead to a de6nition of the probability
for a &ee particle to enter the region R given by partitions
of paths in a path integral [6—8]. We therefore pursue it
primarily as a way of understanding the type of physical
situations to which such a definition is appropriate.

Subsection A gives an overview of the classical model
which is quantized in subsection B. Subsection B then
shows that the corresponding "probabilities" can be re-

dAd~ xp Ap (3.3)

The Peierls bracket (A,B) may be thought of as the Poisson
bracket extended to quantities evaluated at different times by
using the equations of motion.

where again we have assumed that the pointers have triv-
ial free evolution. We then interpret the result of this
"experiment" by saying that the particle entered region
R if and only if some pointer is disturbed during the
time interval. Note that each coupling takes place in-
stantaneously and, as a result, each pointer Ap coupled
to Pp responds to the same value of P~ as it would
have if the (A, 7) coupling were not present. However,
the (A, r) coupling will effect the value of any P~~, ~ mea-
sured afterwards since from [13] we see that the change
induced in I(A2, r2) = I dt Pg, , , by the (Ay, rz) cou-
pling is given by

DI q I(Ag, ry) = (I(Ag)r]), I(A2, T2)) 8(ry, r2) $ 0,

(3 4)

where the bracket in (3.4) is the Peierls bracket4 and
we have used the notation of [14]. In language that is
more familiar &om quantum mechanics, this experiment
attempts to measure a set of operators that do not com-
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mute with each other and the result is that the measure-
ment of one necessarily eKects the outcome of the others.
In this sense then, model B describes a device which al-
ways measures a disturbed system.

B. Quantization

fore the limits are taken since II& and II& are commuting
projection operators.

In order to compute these "probabilities, " we note that
the expansion of II&~g) (or II&~/)) in terms of the ba-
sis [z, A; T2) of simultaneous eigenvectors of X~(T2) and

Ag g(T2) is given by the coefficients

We again define the quantum system for each value of
the coupling constant g in terms of a Hilbert space 'Rs
isomorphic to 8 (X)8l: (A), although now 8 (A) is the
Hilbert space 8 ((A:R m R)) defined by some measure
on the space of real functions on R. Since the coupling
exists only for Ti & t & T2, we have another "retarded"
isomorphism I:'Rp -+ Rg'defined by

(,A; T ~II ~g) = 0 dAd Ap,
)

x dx dip ~l'lip 7. 8
t A, ~,t

t'

x —exp — dAd7 Ai/2a
N ( R )

(3.5) xP„(xi), (3 8)

for all operators Op(t) and Oz(t) such that they are built
in the same way from (Xp(t), Pp(t), Ap p(t), ore p(t))
and (X~(t), Ps(t), Ap g(t), erg s(t) j, respectively. The
state of the system will again be assumed to be uncorre-
lated at time Ti.'~Q) = ~P„)8 ~PD) & R~ „T,8 R.g D,T',

for normalized states ~P„)and ~PD).
However, as we are not considering the reaction of a

pointer to a single undisturbed quantity, we cannot sim-

ply use the standard results to draw conclusions about
"probabilities" (or "decoherence") in the ideal measure-
ment limit but must derive the appropriate results our-
selves. We will model this derivation after the discussion
in Appendix B and begin by assuming that the initial
state ~PD) of our device is characterized by a width a
and is given explicitly by

= 1
~(tD) = — dAi, , exp — dAdw A /2a' ~A;Ti)N ". '

[ R

(3.6)

where P„(x)= (x; Ti~gri), 8& and 8& are step functions
with support on the positive and negative axes, respec-
tively, and the sum is over all paths x(t) from (xi, Ti) to
(x2, T2) and all pointer configurations and momenta sub-
ject to the boundary conditions Ap (Ti) = Ag i and
Ag (T2) = Ap 2. Because of the trivial evolution that
we have assumed for the pointer degrees of &eedom, the
integrations over the fields A and 7r at intermediate times
are particularly simple and their only eEect is to require

that A~ (T2) —A~ (Ti) = g I&' dt 'Pi, = gIg, [x(t)]. It
follows that we can calculate the "probabilities" 27&& and
27&& &om a path integral expression which, after a shift of
the integration variables Ay by the amount Ig [x(t)],
takes the form

(dx dx )
ei(~f«e [ Ij ««[+&1)

~y (x ) ~2
I l ~

t

t'

x dAp exp dAd~ Aq /a¹
in terms of the eigenstates [A; Ti) of Ap (Ti) and where»s chosen so that (r/~~PD) = 1.

We would like to say (in some sense) that detection of
a particle in the region B at a confidence level n occurs
when the response of the device is greater than no. This
means that we will need some measure of the response,
i.e., some choice of a function P in (3.2). In order to
weight all pointers equally, we choose P(A, 7 ) = 1.

We therefore associate the "detection" of a particle in
R with the projection II& onto the part of the spectrum
of I& dAdv A~ greater than or equal to na and we as-
sociate the projection II& ——11. —II& with the lack of
detection of a particle in region B. We then define the
"probabilities" for the particle to be (or not to be) de-
tected in B by an ideal measurement to be the limit of
the norms of these projections of ~Q) in which n + oo
but no ~ 0. Equivalently, we could define the "prob-
abilities" for the alternatives through the corresponding
limit of the decoherence functional

'D, = (/[II II [@)

for a 6 (),&), although decoherence is trivial even be-

x8& dAdv. (Ap + gIg ) —na . (3.9)
( R

Note that for a given path x(t) that spends a total time
T in the region R, the integral over the pointer fields
(specifically, the expression on the second line) gives just
the Gaussian measure (with width a) of the set SsT „of
all configurations such that f&dAd7 Ag +gT —na & 0,
which we will denote by p (SgT „~).

Now consider a path such that T ) 0. Note that for
small na we have IJ, (S&T ~~) & p (S~Ty2) and that as
o —+ 0, the measure p is concentrated on configurations
near Ag = 0. It follows that p, (S~T „)+ 0 in the
ideal measurement limit where n ~ oo but no —+ 0 and
that paths which enter R do not contribute to (3.9) in
this limit. Note that we must, however, keep the coupling
constant g fixed or send it to zero more slowly than o. in
order for this conclusion to be reached. In this way, the
limit of small coupling does not commute with the limit
of ideal measurement.

However, for a path with T = 0 the integral over
pointer configurations gives the value y, (S „),which
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approaches 1 in the limit n + oo, even when n~ ~ 0.
Thus we find that in the "ideal measurement limit" the
"probability for the particle to avoid the region R" is
given by the expression

17 fd+ d+ 5 c(Sfree [R1j—Sfree [~~])Xy 22j C

paths A R=Q

x 14'~(») I' (s.iO)

which can be related to the analysis of [6—8].

C. Probabilities by partitions of paths

The above expression was presented in Refs. [6—8] as
part of a proposal for the definition of probabilities for the
particle to enter or avoid the region R through partitions
of paths in a path integral. Specifically [6—8], associate
the operator C~ (C&) in the Hilbert space 'R~, r of an
isolated free particle with the alternative "particle does
(not) enter R," where

tional (3.12) several times, it will be convenient to refer
to it as the "Hartle-Yamada-Takagi (HYT) decoherence
functional. "

We note that 17&+& ——'DH++, so that 17» must also agree
t

with 'VR+R whenever the alternatives decohere for both
decoherence functionals. Since the integral (3.11) has
been calculated before, we quote the result of [6,7] that
any "probability" between zero and one may be found,
depending on the state lg). We then note that this re-
sult is quite difFerent from what we found in Sec. II, but
do not concern ourselves further with the calculation of
expression 3.10.

As mentioned above, II& and II& always decohere since
they are commuting projection operators, although the
same is not true of CR and CR. As a result, 17 and B
are not identical. This difFerence is investigated in the
following subsection and may be summarized by saying
that the decohering effect of device B is not included in
the HYT decoherence functional.

D. The disturbing nature of device B

(*z't2lcxl*i'ti) = cSg, ,
paths flR=Q

(3.11)

(4lcic. l4) (3.12)

for a E (R, R}. Although C~ = X —C&, decoherence is
not immediate since neither CR nor CR is a projection
operator. Since we will mention this decoherence func-

and CR = X —CR. Here the sum is over all paths that be-
gin at (2:i, ti) and end at (x2, t2) without passing through
the region R, Sg„,is the action for the nonrelativistic free
particle, lx; t) is an eigenstate of the time-dependent po-

sition operator X(t) with eigenvalue z, and ti and t2 are
any times respectively to the past and future of R.

Probabilities are then defined through the decoherence
functfonal

At first glance it may be tempting to say that, since
(3.7) is a decoherence functional for the device while the
HYT result concerns the &ee particle, we should not be
surprised that the two decoherence functionals 27+ and
27HYT do not agree. However, this statement is not en-
tirely satisfactory since, in the ideal measurement limit,
we do find exact agreement for the corresponding deco-
herence functionals in a von Neumann measurement (see
Appendix B for an illustration involving device A). The
explanation lies in the fact that, as pointed out in [7], we
in general expect a measurement that takes place over an
extended time to disturb the system being measured. We
now show in detail how this occurs in model B and how
it accounts for the discrepancy between B and B

To do so, we first note that model A associates with
II~ the projection operator III- -,I-, ,&0 and with II&g+o( g)
the projection operator III— I—

) &+0 in the sense that

= h .Wl& & l4) =, 1', .Wlf 4(x' — )&;„..p.-~- ~r -, (x')

a' g n I g(I ) ~ ~Xf (S.iS)

where the notation lim ~; refers to the limit in which
the measurement becomes ideal, the projection opera-
tors correspond to the operator I yo(I ) i, the spectral
measure corresponds to the operator gt, and a, a' C (),
&}. Since II„-,— = II- — k D and 1 —II-,
(j. —IIxf x ) ]Lo ~ in terms of the projection opera-
tor II+f ~ onto eigenvalues of yy, the naive decoherence
functional (2.6) defined by the state lg„)and the projec-
tions II„-—~ and Il —II+ z agrees with 'V

We can now contrast this line of reasoning with the
corresponding deductions for device B. Again, we found
that the desired decoherence functional could be com-
puted using operators associated only with the particle

,W Ill-11- I&) = Hlc, -c,- I@) (s.i4)

for a E (&, &},where Cs & is defined by its matrix ele-
rnents

(2:2,A2,' T2]cg,& I2:i, Ai., Ti)

= h(A2 —Ai) dze' "- (3 15)
pethe A R=Q t

I

and not with the device. Specifically, in the ideal mea-
surement limit we found that
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and the sum is over all paths that begin at (xi, Ti) and
end at (x2, T2). The complimentary operator Cg & is then
defined as Il —Cg &. Since ~xi, Ai, t) = ~xi') t)~Ai, t) with
respect to the t-dependent factorization 'R~ = 'R~ p.t ts
'Rg, D q, Eq. (3.15) implies not that the operator Cg & is
of the form Cy |3 Ilo D for some operator Cy in 'Rg p
but that C~, & is of the form

Cg, & = Cg,p, & (@ID (3.16)

where Cg „&maps 'Rg ~.z, to 'Rg ~ z; an. d ID is the iso-
morp»sm In~A;Ti) = ~A;T2) from 'Rg D,z, to 'Rs ~.~, .

The relationship to the operators C& and Cg that de-
fine the HYT decoherence functional can be made clear
through the introduction of two more isomorphisms that
relate the free particle Hilbert space 'R~ on which C&

and CR are defined to 'Rg„,z; and 'Rg„z,. Th. e iso-
morphisms Is t 'RF —. + 'Rs „,q for t c Ti, T2 are defined

by Ig, ~z;t) = ~zI t) so that C &
——Is z;CItI z and

IL —Cg z &
——Ig ~, (X —C&)I z . The subtle point is that

Cg & ——Il —Cg & g Ig z, (II —CR)I ~ )3 ID. (3.17)

That this is so can be seen by adding the right-hand side
above to Cg &.

(3.19)

and therefore that the decoherence functionals 'V and
B are identical. Since this is exactly the line of rea-
soning used above to relate 'V to the "naive" result,
we attribute the discrepancy between 27 and. D to
the fact that this reasoning is not applicable here. That
is, we attribute the difference to the fact that the "re-
sponse" of device B is to an operator Cg &, which differs
from its uncoupled version Co & so that we may refer to
it as "disturbed" by device B.

IV. DISCUSSION

but Iz;I& I~ is the isomorphism between 'R„,z, )3
'R~,z; and 'R„,z; 'R~ z; induced .by the corresponding
factorizations of the Hilbert space 'Ro of the uncoupled
system. This isomorphism therefore differs from the iden-
tity operator in any 'R~ for which the coupling constant
is nonzero.

How does this all relate to our characterization of
device B as a "disturbing" apparatus? We note that
the operators picked out by device A were of the form
III-. ll-l, ——(I ) ilia, ~ I and hence were "undis-

turbed. " Suppose the same were true of Cg &, i.e. , that
Cg, &

—— Ig Co &(I ) . In this case, since expression
(3.15) holds for all g, it holds in particular for the un-

coupled system g = 0. Since, for the uncoupled system
(3.17) is an equality, it follows that

two devices lead to quite different interpretations of the
question, "What is the probability that a quantum free
particle will be detected in a space-time region R?" as
is illustrated by the different calculations performed and
different results obtained in Secs. II and III. We there-
fore conclude that this question is not well defined with-
out reference to the kind of detector that will be used and
that different prescriptions for the calculation of proba-
bilities are appropriate to different physical situations.
In particular, since B is associated only with device
B and not device A, this study indicates the type of sit-
uations to which probabilities defined by partitions of
configuration space paths in a path integral are and are
not appropriate, although the sense in which B is
associated with device B is not quite the usual one.

Which of our models and therefore which calculation
would be relevant to an actual experimental setting will

depend on the experimental details, although Appendix
A suggests that the most likely answer is "neither A nor
B.'" Which model is more relevant to philosophical dis-
cussions of "measurements in space-time regions" will be
subject to the interpretations of the philosopher. We
may, however, make the distinction that device A per-
forms a single von Neumann measurement while device
B does not and that device A responds to an undisturbed
value of' y while the response of B is related to the dis-
turbed operators C& and C&.

Finally, we would like to point out that the model dis-
cussed in Sec. III is our interpretation of the HYT deco-
herence functional and we have given no proof that this
interpretation is unique. The author would, however. be
willing to conjecture that the only interpretation of 27

given by a study of detectors is more or less the one that
we have described, provided that the various terms in
this statement can be more or less precisely defined. In
support of this conjecture, note that [6] describes such

decoherence functionals as intuitively related to an infi-

nite product of projection operators and the calculation
of such path integrals in [7] uses a skeletonized version

of the product Q, g(z(t)). Such a product is naturally
related to models similar to B in which a large number of
independent interactions take place at successive instants
of time. Any further clarification of this issue, either by
a formalization of the above conjecture and subsequent
proof or by a description of other measurement models
that provide an alternate interpretation of the HYT de-

coherence functional, would be much appreciated.
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APPENDIX A: BUBBLE CHAMBERS

We have analyzed two "devices" designed to detect the
presence of a particle in a spacetime region B. These

Neither apparatus described in Secs. II and III bears
much resemblance to common measuring devices actually



50 MODELS OF PARTICLE DETECTION IN REGIONS OF SPACE-TIME 945

used to detect particles in space-time regions. In this ap-
pendix also, we will not discuss an accurate model of a
real such device nor do we analyze the simplistic "model"
of a bubble chamber that we do present in the manner
of Secs. II and III. We describe this model only to show
that neither device (A or B) models an apparatus resem-
bling a bubble chamber and choose the bubble chamber
for its historical value as the following discussion applies
equally well (and equally poorly) to photographic film,
scintillation counters, and other such devices.

Each localized group of molecules in a bubble chamber
constitutes a degree of freedom: a group either nucleates
a bubble or it does not. Let us assume that the chamber
is "cold" and that these rnolecules do not move signifi-
cantly during the experiment so that we may associate
one degree of freedom with each point of the space in-
side the chamber. Each of these degrees of freedom is
sensitive to the amount of time that the particle spends
in its vicinity, since the longer the particle stays nearby,
the more likely it is that a bubble will form. In order to
relate bubble chambers to the "devices" described above,
we might construct a model which has one "pointer" vari-
able Ap for each point A in the chamber, such that each
of these pointers interacts with the particle through a
von Neumann —like term when the particle occupies its
position between the times Ti and T2. We might choose,
for example, the action

pointer at time Ti is ~g (0); g, Ti} peaked around Az
0, where

—(A —A') /2cr

~g~(A');g, Ti) = dA ~A;g, Ti) (Bl)

is a normalized state in 'Rg Q Ty though the precise form
B1 will not be essential to our discussion. Since the ini-
tial state of the pointer has a finite width cr, we would like
the pointer to move at least this far to the right before we
can confidently say that a particle has been detected. Let
us therefore define "detection" of the particle as the pres-
ence of the pointer at least no to the right of the origin
at time T2 so that we will be concerned with the pro-
jections II~AT;~&„and II~~T,~&„ontothe appropriate
part of the spectrum of f& dAdr Ap (T2) Deco. herence
is then immediate since these projections commute. Note
that classically we might say that our "confidence that
the pointer has responded to the presence of a particle"
is determined by n, while the "absolute inaccuracy" in
the measurement is given by no. .

Now the pointer values before and after the experiment
are related by

As(T2) = As(Tr) + gIs gp(Is )

so that, if the state of our system is

IW) = I4) lg (o);g, Ti)

dAdt xgAp.

Stot = Sfree + dC
—oo Ag chamber

f dt
Ag chamber

(AI)

for some normalized ~((()~) 6 'Ry, T;, it is also of the form

IS) = f &I „,(x ) 0(xi)lx.i) I is (uxi);a&~) (s4)

Such a model couples pointers to the integrals Xp

f dt f dr 'Pg (t) over times r C (Ti, T2) instead

of to the integrals y = f dt f&dAdr'Pg (t) over all of
R as in model A or to the individual J' dt 'Pp as in
model B. Thus we see that aeither of the devices de-
scribed in Secs. II and III models such a device.

We should commeat once again that even the model
just preseated is far from an accurate description of a real
bubble chamber. An important feature of the real device
is its discrete nature: the degree of freedom at a given
poiat either "triggers" (aucleates a bubble) or does aot
so that the bubble nucleatioa proceeds probablistically.
For a classic description of bubble chambers which does
capture this discrete feature, see [1].

APPENDIX B:THE IDEAL MEASUREMENT
LIMIT

In this appendix, we brieBy review how the standard
"probability" distribution for measurements is reached in
the ideal measurement limit. Specifically, we derive the
result (2.5). We begin by assuming that state of the

= (0~II~(T,)( ~W)

~
—(A —gg) /no

dy,„-(y) dA
2KCT

l&(~)l'. (»)

in terms of a factorization defiaed by the commuting op-
erators I yp(I ) and As(Tz). Here ~g~(yr);g, Tz) is
a normalized state defined in analogy with ~g (y); g, Ti)
of Eq. (Bl) aad ~yr) is the eigenstate of I yp(I )
with eigenvalue yr. The measure dyer(yr) is the spec-
tral measure for the operator gy aad the function P(gr)
is given by P(yr) = (yr, Ti ~P), where ~yr ,'Ti) is the eigen-
vector of yy with eigenvalue gr in 'Rs ~,T;. The projection
that corresponds to the "avoids R" alternative is then

n~(,,),„.(y) = f zI,*-, (x )4(x )I~ ) & l~-(ux ); ~, r*),

(B5)

where

—(A —gg) /2'
~I.(»);T,) = dA

'
~A;T, )

2~A

and the "probability" for detecting the particle in region
R is defined by

Strictly speaking we derive the result (2.5) only near A' = 0,
though the general result followers in the same +ray. In addition,
we note that Eq. (2.5) is only needed near A' = 0 for the
discussion of Sec. II.

Note that for any n & 0 this goes to zero in the limit
o —+ 0 since gy has no normalizable eigenvectors arith
eigenvalue y & 0. Note also that we keep the coupling
constant finite while taking this limit or at least, if the
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limit of small coupling is to be taken, we must send g to
zero more slowly than 0. In this way, we see that the
limits of small coupling and ideal measurement do not
commute.

Since cr —+ 0 is the limit in which the measurements
become more and more accurate, we say that the proba-

bility is one for a perfect detector to find the particle in
region R with any confidence level n. We may in fact take
the limit n —+ oo simultaneously with the limit o. ~ 0 so
long as the "absolute inaccuracy" nor becomes zero in
this limit as well. We therefore refer to the limit n + oo,
no. m 0 as the "ideal measurement limit. "

[1] N. F. Mott, Proc. R. Soc. London Ser. A 126, 79 (1929).
[2] J. von Neumann, Mathematical Foundations of Quantum

Mechanics (Princeton University Press, Princeton, 1955).
[3] N. Bohr and L. Rosenfeld, Kgl. Dansk. Vidensk. Selsk.

Math. Fys. Medd. 12, 8 (1933) [English translation in
Selected Papers of Leon Rosenfeld, edited by Cohen and
Stachel (Reidel, Boston, 1978)].

[4] B. DeWitt, in Gravitation: An Introduction to Current
Research, edited by L. Witten (Wiley, New York, 1962).

[5] N. Birrell and P. C. W. Davies, Quantum Fields in
Curved Space (Cambridge University Press, New York,
1982).

[6] J. B. Hartle, in Gravitation and Quantization, Proceed
ings of the Les Houches Summer School of Theoretical
Physics, 1992, edited by B. Julia (North-Holland, Ams-
terdam, in press) (see, in particular, Sec. V.3.2).

[7] J. B. Hartle, Phys. Rev. D 44, 3173 (1991).
[8] N. Yamada and S. Takagi, Prog. Theor. Phys. 85, 985

(1991);see also 86, 599 (1991);8'7, 77 (1991) for related
results.

[9] H. Everett III, Rev. Mod. Phys. 29, 454 (1957); in

The Many Worl-ds Interpretation of Quantum Mechanics,
edited by B. DeWitt and N. Graham (Princeton Univer-

sity Press, Princeton, 1973).
[10] B. DeWitt, in Foundations of Quantum Mechanics,

edited by B. D'Espagnat (Academic, New York, 1971).
[11] R. Griffiths, J. Stat. Phys. $6, 219 (1984).
[12] M. Gell-Mann and J. B. Hartle, in Complexity, Entropy,

and the Physics of Information, SFI Studies in the Sci
ence of Complexity, edited by W. Zurek (Addison-Wesley,

Reading, MA, 1990), Vol. VIII.
[13] R. E. Peierls, Proc. R. Soc. London 214, 143 (1952).
[14) B. DeWitt, in Relativity, Groups, and Topology II, 1988

Les Houches Lectures, edited by B. DeWitt and R. Stora
(North-Holland, New York, 1984).


