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Anomalous commutation relation and modified spontaneous emission
inside a microcavity

Masahito Ueda and Nobuyuki Imoto
NTT Basic Research Laboratories, Morinosato W-ahamiya, Atsugi shi-, Kanagama A/3-01, Japan

(Received 7 February 1994)

Usual quantum-optical operator relations for a beam splitter are shown to lead to an anomalous
commutation relation inside a microcavity. The physical origin of this anomaly is identified as
self-interference of the mode whose coherence length is longer than the round-trip length of the
cavity. Altered spontaneous emission of an excited atom is found to be a direct manifestation of
this anomalous commutation relation. The anomalous Heisenberg uncertainty relations, which are
derived from the commutation relation according to the Schwartz inequality, cannot be detected
by probing the internal field with a beam splitter. The anomalous com~utation relation, however,
can be related to the change in the efFective re6ectivity of the beam splitter. The simi&arity and
difFerence between an excited atom and a probe beam splitter are discussed.

PACS number(s): 03.65.Bz, 42.50.Dv, 42.50.Lc

Recent interest in quant»m optics and cavity quantum
electrodynamics has focused on various aspects of manip-
ulating vacuum Huctuations in the electromagnetic field.
Squeezing light [1—3] is one form of manipulation, de-
fined as the redistribution of the quantum noises of two
noncommutable observables by preserving their uncer-
tainty product. Suppressing or enhancing the sponta-
neous emission rate of an excited atom in a microcavity
is another example, one which is usually ascribed to the
change in the density of relevant modes in the cavity [3,
4].

In this paper, we show that conventional quantnm-
optical operator relations for a beam splitter lead to an
anomalous commutation relation inside a microcavity. In
addition, we discuss the physical origin and implications
of this result. In closing, we discuss a possible way to
probe this anomaly.

Let us consider a single-mode monochromatic electro-
magnetic field which fills the inside and outside of a mi-
crocavity, as is shown in Fig. 1. Here, a is the operator
for the incoming mode, b represents the internal mode
propagating to the left, c represents the one propagat-
ing to the right, and d is the outgoing mode operator.
We adopt continw~m-mode analysis to treat the field [5,
6], in which the commutation relation for the input field
is written as

a., a', =

Based on the boundary conditions at the mirror and the
half mirror, three inter-relations between the four mode
operators are derived. For simplicity, we assume that the
mirror at z = I is mad—e of a perfect conductor in which
the electric field amplitude vanishes. This gives

b ileL —ileL
4P 4aP ) (2)

where phase shift by propagation is taken into account
with wave number k. At z = 0, the half mirror gives the
operator relations

b = ta +rc
and

d =tc +ra (4)

These two hold [7, 8] when t and r are the amplitude
transmittance and refiectivity satisfying the relations

[t[ + ~r~ = 1 and t'r+r't = 0.
For simplicity later in the process, one can choose the
phase shift of transmission and reHection without losing
generality:

t = iv'1 —R and r = —VR, (6)

Re8ectivity
=1

ReSectivity
=8

b

where R (0 & R & 1) is the power refiectivity of the half
mirror. From Eqs. (2)—(6), we can express b, c, and
d by incident mode operator a, resulting in

(7)

z= —L z=o
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e
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FIG. 1. Microcavity and field operators.
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[b- b.' ] = [c- c.'] = b (ur' —(u),
1 —2~Rcos(KrL/c) + R

using Eq. (1). Here, wave number k is replaced by ur/c.
This equation indicates that the commutation relation
is anomalous inside the cavity. The coefFicient of the b

function is plotted in Fig. 2 as a function of u for several
values of refiectivity R. This figure clearly shows the
crossover between the continuum spectrum in an open
space (R = 0) and the almost discrete spectrum in a
high-Q cavity (R = 0.99).

Let us examine the physical origin of this anomaly.
It is easily understood that simultaneous equations (2)
and (3) are related to the requirement of self-consistency
for the internal Beld operator after one round-trip in the
cavity. This means that we have implicitly assumed
a long-wave-packet mode having duration longer than
one round-trip. Such a long-wave-packet mode interferes
with itself during the multifolded round-trip in a cavity.
As a consequence, the amplitude of the internal mode
is either enhanced or suppressed in comparison with the
modes in the free space. This causes the change in the
commutator-bracket value.
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FIG. 2. The commutator-bracket value inside a microcav-

ity as a function of the wave number k for several values of
the re8ectivity R.

Similar mode operator relations can also be found in pre-
vious papers [9, 10], where the relations are used only for
obtaining the input-output relation of the cavity. In this
paper, however, we pay attention to the commutation
relation inside the cavity, and the importance of mode
definition time will be emphasized later. From Eq. (9)
and its Hermitian conjugate one can derive

[d, dt, ] = [ix, iit, ] .

Assuming that the incident field satisfies the normal com-
mutation relation (1), it is concluded that the outgoing
field also satisfies it. On the other hand, Eqs. (7) and (8)
lead to

Conversely, if we assume localized pulse modes, the
anomaly disappears because there is no self-interference.
To see this, let us consider a localized pulse mode by
Fourier transform of the continuum sufBx ~ into time t

Gt = — l(dC G
27r

[d„dt, ] = [a„at,] = b(t' —t) . (14)

This means, as is expected, that the outgoing pulse mode
also satisfies the normal commutation relation. As for the
internal pulse modes, using Eq. (11), one can obtain

Ibi b'
1
= [ci c'

l

=h(t' —t)+) v'R b! t' —t—
c j

+) dR b~ t' —t+
c )

where 21/c is the round-trip time. The first b function
corresponds to the normal commutation relation due to
the fact that there is no pulse-mode self-interference. In
other words, the pulse mode does not know whether it
is in a cavity or &ee space. The second summation term
of the b' functions indicates the memory of past pulses
bounced in the cavity with a decay factor gR~. The
third term indicates the influence of the pulse on the fu-

ture pulse series. This means that the eHect of the cavity
round-trip appears as an intermode correlation without
self-interference for the localized pulse modes. The com-
mutation relation for each Fourier component, however,
is not necessarily normal, which is the main argument of
this paper.

A detector sensing only a single Fourier component
might detect some trace of the anomalous commutation
relation. An example of such a detector is an excited
two-level atom having a sharp linewidth. The emission
probability, including spontaneous and stimulated emis-
sion, is proportional to the square of E [12], which is

expressed, using continuum-mode analysis, as

—ace(t+z/c)
4%6'0CA

2
—i~(t —z jc)

This indicates a pulse mode which is localized to time t
at z = 0 and satisBes the commutation relation

[a„aJ,] = b(t' —t),
according to Eq. (1). The input-output relationship of
a beam splitter is complicated when t and r depend on
frequency. Here, however, we assume that there is no
&equency dependence —no response delay —in t and
r. In this case, index ~ may simply be changed into t in
Eqs. (3) and (4). Thus, &om Eqs. (10) and (12), one can
easily obtain
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where A is the beam's cross-sectional area. With Eqs. (2)
and (16) one obtains

2 dwrkrV~~' bt b + [6—, b~]),
2KE'p CA 2

[1 2%41(z+Lr)/c]

[1
—2'L4I (X+II)/c]

7 (17)

when Eq. (1) and the rotating wave approximation
are used. On the right-hand side of . Eq. (17),
bt b i corresponds to the stimulated emission rate,
while the commutator-bracket part corresponds to the
spontaneous-emission rate. With Eq. (16), spontaneous
emission is given by

1 vR2 1 —~R'

where sin [~(z+ L)/c] is spatially averaged, and a high-

Q cavity condition (R 1) is assumed. By using the
cavity-quality factor Q—:z, where 7 is the photon life-

time in the cavity, Eq. (19) reduces to F = ~&". The
QAthree-dimensional version of this result is F = &, which

agrees with conventional results [4].
The suppression/enhancement of the spontaneous

emission can be understood &om the viewpoint of self-
interference. When a two-level atom has a narrow spec-
tral linewidth Au, that is, when the atom exhibits a
sharp &equency selectivity, the time interval the atom
needs to specify the &equency is of the order of T =
27[/6~. The mode-definition tiine for the atom is thus
T. When T is much longer than the time required for
one round-trip in the microcavity, an optical wave packet
having time duration T interferes with itself, and the ef-
fective field amplitude at the position of the atom differs
&om that in &ee space. The spontaneous-emission rate is
thus either suppressed or enhanced. When the two-level
atom has a wide linewidth, making its mode-definition
time shorter than the round-trip time of the cavity, the
atom either emits or absorbs a photon before the pho-
ton interferes with itself in the cavity. The space inside
the cavity is equivalent to open space for the atom, and
there is no suppression or enhancement of spontaneous
emission. Thus the origin of the modification of spon-
taneous emission is the same as that of the anomalous
commutation relation.

Heisenberg uncertainty relation for a set of two non-

F= sin [(u(z+ L)/c], (18)
1 —2~R cos (2[dL/c) + R

where F is the spontaneous-emission-modification factor,
which must be unity in free space. Equation (18) indi-
cates that the spontaneous-emission rate is modulated
both in terms of resonance frequency u and atom posi-
tion z. As a consequence, the spontaneous-emission prob-
ability per excited atom is either suppressed or enhanced
inside a microcavity, based on the commutator-bracket
value. The right-hand side of this equation reduces to
the well-known spontaneous-emission enhancement fac-
tor in one special case [4, 13]. With a resonant wave
number, F becomes

commuting observables is derived from the correspond-
ing commuation relations using the Schwartz inequal-
ity. Because we have shown that the commutation
relation between the a~»hilation and creation opera-
tors is anomalous, we know that commutation relation
between any two noncommuting observables, say, Geld
quadrature-phase components and number-phase opera-
tors, is anomalous. The corresponding uncertainty rela-
tions should, therefore, exhibit anomaly inside the cavity.
One may expect that the anomalous uncertainty relation
can be detected by measuring two conjugate observables
in the inside field. If, however, one puts a probe beam
splitter of re6ectivity R in the cavity to extract the in-
side field, as is shown in Fig. 3, one can easily find, by
straightforward calculation, that the outcoming beam ex-
hibits the normal commutation relation. This is due to
the vacuum modes coupled into the cavity with the probe
beam splitter. It is not possible to extract the internal
field as it is. It is therefore not possible to measure two
conjugate observables in the internal field which violate
Heisenberg's uncertainty principle.

It is, however, possible to detect the modified
commutator-bracket value as the change in effective re-
fiectivity R,'& of the probe beam splitter. Defining R',ir as
the differential ratio of output probe intensity over input
probe intensity, it is easy to show that

R'e = R'(1 —R+ RR')
1 + R(1 —R')2 —2~R(1 —R') cos(2uL/c)

(20)

We now assume R' « R (thus R' « 1) because the
probe beam splitter should not disturb the field under
consideration. This allows us to write

R'.e 1 —R
1 + R —2~R cos(2~L/c)

(21)

Refiectivity
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FIG. 3. Microcavity with a probe beam splitter inside.

where E' is the modification factor of the refiectivity of
the probe beam splitter. This coincides with the modi-
fication factor of the commutation relation in Eq. (11).
Thus the re6ectivity of the probe beam splitter in &ee
space is effectively enhanced or suppressed in the cavity,
as is the spontaneous-emission rate of an atom. The ori-
gin of this phenomenon is the same as that of the anoma-
lous commutation relation, i.e., the self-interference in
the monochromatic field. The modified refiectivity can
be observed using a monochromatic probe beam, but not
one with a short pulse, for the same reason as given be-
fore.
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Equation (21) difFers from Eq. (18) by the factor
sin [cu(z+ L)/c], which is position dependent. It is worth
clarifying the similarity and difference between the two
detectors, an excited atom and a beam splitter. First, a
detector should be able to couple with the local electric
(or magnetic) field inside the cavity in probing the al-
teration of the internal field amplitude. Furthermore,
&equency selectivity is required to detect the anoma-
lous commutation relation because the commutation re-
lation appears for (quasi) monochromatic modes. Both
an atom and a beam splitter (with a monochromatic
probe beam) satisfy the above conditions. Hamiltoni-
ans for both schemes are also similar in that excitation
of the probe is coupled to deexcitation of the field as

and

H = icba, b, + K'b a~»b, (beam splitter) (22)

H = ebot+ K'*bto (atom: Jaynes-Cummings),

(23)

where z is the coupling constant, b the field inside the
cavity, a~, b, the photon creation operator of the probe
beam, and &t the transition operator of the probe atom.
The modification of the commutator bracket effectively
leads to the modification of e, which physically means
the modification of the effective reflectivity for the probe
beam splitter or the modification of the spontaneous-
emission probability for the probe atom.

The difference between the two detectors is that an
atom does not identify the propagation direction while a
beam splitter does. An atom responds to the square of
the summation of the electric fields such that it senses
the interference between the right- and left-propagating
waves, which is indicated by the sinusoidal oscillation
with respect to z in Eq. (18). A beam splitter identifies
these waves and diffracts them in the opposite directions,
thereby insensitive to the interference between the coun-
terpropagating waves. It may be worth pointing out here
that, in a ring cavity such as the one in Ref. [10], there is
no self-interference between counterpropagating beams,

and the factor sin [u(z + L)/c] is thus wiped out even
for a localized two-level atom —an atom and a beam
splitter equivalently sense the anomalous commutation
relation uniformly in the ring cavity.

In conclusion, we have shown that conventional
quantum-optical operator relations for a beam splitter
lead to an anomalous commutation relation inside the
microcavity. We identified the physical origin of this
anomaly as self-interference of the mode inside the mi-
crocavity. We also demonstrated that suppression or
enhancement of the spontaneous emission of an excited
atom inside a microcavity is a direct manifestation of the
anomalous commutation relation. However, the anoma-
lous Heisenberg uncertainty relation, which results from
this commutation relation by using the Schwartz inequal-
ity, cannot be detected. This means that the internal cav-
ity field is not observable if we choose the monochromatic
beam mode. For pulse modes, the internal field becomes
observable because there is no self-interference and one
can extract the modes as they are. The commutation
relations for electric and magnetic field quantities are al-
ways normal, so long as local-mode description is used.
Their Fourier components, however, can exhibit modified
commutation relation under some boundary conditions,
such as a microcavity.

We have also pointed out that the anomalous mag-
nitude of the commutator bracket can also be detected
by a probe beam splitter just as the effective reflectiv-
ity is modified. The origin of this is the same as that of
the modification of the spontaneous-emission rate. The
difference is that the beam splitter does not exhibit the
position dependence, whereas an atom does. We have an-
alyzed the requirements for a detection scheme that can
sense the anomalous commutation relation inside the cav-
ity, and pointed out the similarity and difference between
an atom and a probe beam splitter.
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