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Mean field for the vibron model: Dipole-moment function of diatomic molecules
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We have investigated the mean-Geld approach to the vibron model. The link between the algebraic
description of molecular vibrations, as described by the vibron model, and the usual variables in
con6guration space has been used to extract the dipole-moment function of diatomic molecules.
A comparison is shown between the vibron-model results and the experimentally derived dipole-
moment function for HF.

PACS number(s): 33.10.Cs, 03.65.Fd

Recently, a model based on Lie algebras has received
considerable attention. The model, called the vibron
model (VM), was originally [1,2] proposed for the treat-
ment of rotational and vibrational degrees of &eedom of
diatomic molecules. Successively it has been extended
to the treatment of vibrational modes of polyatomic
molecules [3—9] as well as to the representation of other
molecular structure properties [10,11]. As has been the
case for an analogous model developed for the treatment
of collective excitation of nuclei, the interacting boson
model [12], the mean-field approximation has been ap-
plied to the VM in order to give a geometrical picture of
an otherwise completely abstract approach. This plan,
originated by the work of van Roosmalen [13],was exten-
sively explored by Levit and Smilansky [14],Leviatan and
Kirson [15], and more recently by Shao and co-workers
[i6,i7].

In this work we will show the relations necessary to
go from the VM Hamiltonian to the potential energy
surface as well as from the VM dipole operator to the
dipole-moment function of single molecular bonds (di-
atomic molecules). In the case of the potential energy
surface, the comparison will be made with one of the
most celebrated and simple models for the rovibrational
motion of molecular bonds, the Morse potential model
(MPM). For the dipole-moment function, the comparison
will be made with the up-to-date dipole-moment function
derived from a combination of g,b initio and empirical
models.

The determination of the potential afFecting the two
nuclei of a diatomic molecule as a function of the internu-
clear distance r can be made using ab initio tec»piques,
based on electronic molecular orbital theory. Alterna-
tively, the potential can be determined on the basis of
spectroscopic information [Rydberg-Klein-Rees (RKR)
methods], occasionally combined with ab initio or model
potentials. However, in many practical applications, es-
pecially when dealing with polyatomic molecular sys-
tems, the use of potentials based on phenomenological
models is required because of the simplicity with which
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they can be derived. The Morse potential

V(r) = D, [1 —e (" "'&]

has been widely used for the representation of anhar-
monic molecular vibrations. Here, D, is the dissociation
energy limit and r, the equilibrium internuclear distance.

Note that there are three parameters for this model
potential: D„a, and r, One p. ossible method to derive
those parameters is to use the molecular constants ~„
~,y„and B„which furnish

2De = eXe8
D.

Sr, B, ' (2)

with s = ~,/2ur, g, . The wave functions are also avail-
able for the MPM and, therefore, the matrix elements of
common operators can be evaluated either analytically
[18,19] or numerically [20].

The vibron model has been proposed [1,2] to repre-
sent the vibrational and rotational degrees of freedom of
molecular bonds. It is, therefore, a model whose objec-
tive is similar to the MPM. However, the VM is based
on a very difFerent ground. In fact, it starts from assum-
ing a Hamiltonian written in terms of generators of Lie
algebras. In particular the Lie algebra associated with a
single molecular bond (e.g., a diatomic molecule) is as-
sumed to be the u(4) Lie algebra. It has been shown
that the anharmonic vibrational spectrum of a diatomic
molecule can be described by a Hamiltonian which con-
tains only generators of a subalgebra of u(4), namely the
o(4) Lie algebra. This situation is referred to as a dy-
namic symmetry for the VM. In fact, the Hamiltonian
for a single bond can be written as

H = Ep+ AC2[o(4)], (3)

where Eo is a term containing only conserved quantities
and A is a parameter to be Sxed as described below. The
operator Cz [o(4)] is the quadratic Casimir invariant of the
o(4) algebra. The energy spectrum obtained from this
Hamiltonian is altogether equivalent to the MPM spec-
tr»m and can be written directly since the eigenvalues of
Casimir invariants are known analytically [1,2]. Just as
in the case of the MPM, =the parameters entering the VM
can be derived &om the molecular constants
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1

~t(p) =— (s'+ pro)
1 + p2

(10)

N is the total number of bosons; Eo is the eigenvalue
of the Eo operator and serves only to deGne the zero
point of the energy spectrum, and therefore it is not to
be considered as a parameter of the model.

In order to study the link between the algebraic models
and the usual models based on geometrical variables, we

need to go into some detail of the boson realization of the
Lie algebras entering the VM. The boson realization of
the u(4) algebra has been utilized since the introduction
of the VM [1]. The concept of mean field for the VM was
introduced subsequently [13—17].

The boson realization of the Lie algebras entering the
VM Hamiltonian can be done by introducing a scalar
boson s carrying angular momentum and parity t = 0+
and a dipole (or vector) boson p carrying angular momen-
tum and parity l = 1 . All the operators and Casimir
invariants can then be written in terms of creation and
annihilation operators for these two kinds of bosons. For
example, the Casimir invariant of o(4) is written as

C2[o(4)] = D D+ J J, (5)

where

i)„=[p' x s+ s' x p]~'l, @=0,+1,

and

p =0, +1. (7)

Here, the creation 8t, p„o +& and annihilation 8,p„—o ~q
operators for 8 and p bosons have been introduced to-
gether with the usual conventions [3] for scalar ( ) and
tensor (x) products and for the conjugations s = s,
p„= (—)"y „.The number operators for s and p bosons
take the usual forms

ns —8 ~ ~) np —p p,t. " t. -

and consequently the operator for the total number of
bosons is just N = n, + n„. All the terms in the VM

Hamiltonian are number conserving; it follows that N is
diagonal in any representation of u(4) and its eigenvalue
is equal to ¹

Following the line of Ref. [15] we will introduce now

the mean Geld for the VM. The N-boson system gener-
ates a mean field within which the N bosons move. The
four eigenstates of the mean field furnish an approximate
representation for the N-boson system. It can be shown
that the boson condensate which the bosons occupy can
be constructed as the application of a linear combination
of single-boson operators depending only on one real pa-
rameter p. It can be expressed by

on the boson vacuum. The energy surface is given by
the expectation value of the Hamiltonian in the boson
condensate,

E(p) = (p;N i
I

i p; N)

p= Ei + 4AN(N —1) 1+p2 2

2p2
a(r —r, ) = —ln

1 2 (12)

where a is the MPM parameter given above and r, the in-
ternuclear equilibrium distance. Thus, the relation (12)
provides the mapping of the parameter p into the geo-
metrical variable r. It is clear that defining y = a(r —r, )
as p E [0, oo) then y C (oo, —ln2]. Using the transfor-
mation (12) it is easy to derive the energy surface as a
function of the geometrical variable r,

V(r) = Ei+ AN(N —1)[2e " "' —e " "' ], (l3)

where Ei —— AN(N —1)—satisfies the requirement
V(r, ) = 0. It is, at this point, possible to make a di-

rect comparison between the mean-Geld potential of the
VM and the Morse potential. The r dependence of the
two potentials is the same; at large internuclear distances,
while the Morse potential tends to the constant D„ the
VM mean-field potential of Eq. (13) tends to the same
value, but only in the limit of large ¹ In fact, it can
immediately be seen that

2

D, = ' = —AN
44)e ge

(14)

which is the large r limit of Eq. (13). This situation is
not at all surprising since the mean-Geld approximation
is expected to be correct only in the leading order in 1/N
[13].

In the traditional approaches the dipole-moment func-

tion is expressed as a power expansion of type

In this equation, Ei can be fixed by the condition E(p =
1) = 0. In fact, p = 1 is a minimum of the energy
surface and, as will become apparent below, it should
correspond to the minimum of the potential energy at
the equilibrium distance.

Up to this point, no correspondence has been given be-
tween the parameter p and the geometrical variables of
the molecules. There have been some previous sugges-
tions that this parameter should be related to the inter-
nuclear distance for diatomic bonds [15—17] but no clear
relation was shown. We propose here that the relation
between the parameter p and the internuclear distance r
in a diatomic molecule is given by

p (r) = ) Mg(, r —r,)", (15)

The boson condensate is therefore constructed by the
multiple application of the creation operator

where all the constants Mg need to be determined empir-
ically &om the comparison with the measurable matrix



50 BRIEF REPORTS 865

elements [(f ~ p(r)
~

i)[ . For example, the MPM can
be used to derive the initial (i) and final (f) state wave
functions and then the constants Ms can be determined
by comparison with a proper set of experimental data.
It is clear that this is not a model for the dipole-moment
function itself but a phenomenological representation of
the p(r) More sophisticated techniques have been de-
veloped which are based on the Pade approximants [21]
but even though reliable dipole-moment functions can be
derived using these methods, no physical model enters in
the evaluation of p(r).

On the other hand, ab initio calculations furnish the
most reliable dipole-moment functions for internuclear
distances close to the equilibrium position. However,
even the sophisticated ab initio techniques need to be
cured to correctly represent the dipole-moment functions
at large separation distances [22].

The dipole operator of the VM has been discussed in
detail in Ref. [11].For transitions in a given vibrational
band, it can be identified with the operator D introduced
above in Eq. (6),

1.2
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T~' = d,D„, y, = 0, +1 (16)

where do is a parameter to be fixed by the value of the
molecular dipole moment. This operator gives the correct
matrix elements for the rotational transitions within a
given vibrational band. In order to take into account
the possibility of transitions between difFerent vibrational
bands, additional terms need to be incorporated into the
expression for T . For example, it has been shown [11]
that it is possible to reproduce the matrix elements of
the dipole operator for several hydrogen halides using an
expression of type

T ' = —) ds[e"""'D„+D„e"'"~].
2 k=o

In this expression, n„ is the p-boson number operator
defined above and ds and As additional parameters to
be fixed by comparison with experimental quantities. A
few terms may be necessary when treating transitions to
very high overtones.

The mean-Beld approximation (MFA) and the analysis
made above allow us to derive the dipole-moment func-
tion for the VM. In fact, let us first assume a dipole oper-
ator T@i of the kind shown in Eq. (16). Its expectation
value in the condensate will be

FIG. i. Dipole-moment functions (a) p(p) with dG in units
of Debyes and (b) p(r). See the text for explanation.

p2

T (p) = ) 2Nd' e ' '+~'.
1 + p2

(20)

moment function presents the correct behavior at both
the small and large r limits, namely, the dipole moment
increases as the internuclear distance increases up to a
maximum and then decreases rapidly at very large r.
This situation itself is an improvement over the conven-
tional models based on power expansions. In fact those
models predict erratic behavior of the dipole-moment
function outside the range of a few atoinic units in the
vicinity of the equilibrium distance. Our calculation also
shows that the dipole operator D has the correct physical
content besides furnishing the correct matrix elements for
rotational transitions.

An improvement of the simple expression for the dipole
operator can be obtained using the operator of Eq. (17).
In this case the mean-field expression for the dipole-
moment function becomes

T (p) = y(p) = 2NdG (Is)

Using the mapping provided by Eq. (12) for going &om

p to r we can easily obtain the dipole-moment function
of the VM in the mean-field approximation,

~(r) = T '(p(r)).

The result of this calculation is shown in Fig. 1. In
the upper part of the figure, the simple function (1S)
is shown whereas in the lower part the corresponding
dipole-moment function is shown as a function of the ge-
ometrical variable r. It can be seen that the VM dipole-

Again, using Eq. (12) we can evaluated the dipole mo-
ment as a function of the internuclear distance.

The results of this calculation are shown in Fig. 2. In
this case a comparison is shown with the dipole-moment
function of the HF molecule [22]. The data are a com-
bination of experimentally derived quantities (full dots
in the Bgure) and extrapolations based on Pade approx-
imants (crosses). We can see that the maximum of the
dipole-moment function moved &om the position corre-
sponding to the equilibrium distance (see Fig. 1) to ap-
proximately the experimentally derived value. At very
large internuclear distances the two models give a no-
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ticeable discrepancy. This is due to the fact that the
calculations based on phenomenological models, includ-
ing those shown in Fig. 2, assume a I/r4 dependence of
ts(r) at large r. The operator of Eq. (17), instead, gives

a dipole-moment function proportional to p ge " for
large r. Even though not immediately apparent, we can
expect that an algebraic operator which gives the same
large r behavior can be derived.

The accuracy of the MFA calculation obtained using
the operators given in Eq. (17) is comparable with that
presented in Ref. [21]. To improve the agreement with the
data of Ref. [22], additional terms in the dipole operator
can be added.

Our analysis of the VM mean-6eld approximation
showed that the relation given in Eq. (12) allows for
a link between the parameter p and the geometrical vari-
able r. Thus, the VM boson condensate built as a func-
tion of the real parameter p can be related to the geomet-
rical con6guration of the molecule. As far as the dipole-
moment function is concerned, even though the results of
the mean-field approximation can be improved by adding
more terms in the dipole operator, we can conclude that
the VM dipole-moment operator has the proper physical
content and that the general trend of the calculations is
reliable.

In the simplest case analyzed here, namely, that of a
diatomic molecule, the only geometrical variable which
has a physical content is the internuclear distance r. It
is, however, possible to extend the method to the inter-
pretation of the multiple geometrical variables appearing
in the description of polyatomic molecules. In fact, the
mean-field approximation to the VM has been already
derived for triatomic linear [17] and bent [16] molecules

N =44
do = 0.10123 Debyes

0—

r (A)

FIG. 2. Dipole-moment functions of HF. The full dots are
values derived from the experimental infrared transition ma-
trix elements and the crosses are extrapolation values ob-
tained using the Pade approximants [22]. The solid line is

obtained as described in the text.

and the present methodology can be extended to treat
those cases.

We hope that our analysis will serve for a more
complete understanding of the relations between the
abstract algebraic approaches and the traditional ap-
proaches based on geometrical variables.
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