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New bounds to the maximum characteristics #,, and A, =h (uy,,) of the spherically averaged
electron-pair density 4 (u) and to the electron-electron coalescence #(0)=(8(u)) of a many-electron
system are shown in a rigorous manner (i.e., no approximate wave functions were used). The resulting
rigorous inequalities also allow one to bound a given interelectronic moment {##) from above and from
below. In particular, an interesting inequality is obtained for the electron-electron repulsion energy E,,
of an N-electron system: 2wh(0)u2,, <E, <3N (N —1)/4u_,,. For completeness, just to have an idea
of the worth of these results, some of the rigorous inequalities are numerically studied for two-electron
ions with nuclear charge Z =1, 2, 3, 4, 5, and 10 using a highly accurate electron-pair density 4 (u) con-
structed from the 204-term Hylleraas wave functions. The accuracy is found to increase, generally, with
increasing Z and decreasing order S of the involved moments.

PACS number(s): 31.10.+z, 31.20.Tz, 71.10.+x

The structural features of the three-dimensional
electron-pair density [1,2] I(u) and its spherical average
h(w)=@4m)~! [I(w)dQ, u=(4,Q,), u being the in-
terelectronic coordinate, strongly condition the electron
correlation properties in atoms and molecules. We may
cite Ref. [3] for a comprehensive review of the general
properties of 2(u) up to 1986. Therein one realizes that
the only known rigorous analytical characteristics of
h(u) are non-negativity and unimodality [4] G.e., it
displays a single maximum often away from the origin).
However, we have recently shown in a Hylleraas-type
framework that a related interelectronic function
h(u)/u% a>0, is not only monotonically decreasing
from the origin [5,6] but is also convex [5,6] and, even
more importantly, log-convex [7] for some specific a
values.

In this paper, we investigate in a rigorous manner (i.e.,
no approximate wave functions are used) some local
properties of the spherically averaged electron-pair densi-
ty h(u), namely its central value h(0) and the coordi-
nates [#paePmay =h(Uge,)] of its maximum, in a
rigorous inequality framework by means of the so-called
interelectronic moments defined by

(u)= [ul(du=dr [ “u"*h(u)du =4mpqs ,

a>-—3,
where {u,; k=0,1,2,...} denotes the moments around
the origin of the one-dimensional probability density
h(u). The former local quantity has a special physical
significance: the electron-electron quantity 4 (0) appears
in the calculation of the relativistic [8] and radiative [9]
corrections to the ground-state energy of atoms and ions
as well as in the realization of the correlation cusp condi-
tion [4]; moreover, A (0)={(8(u)), i.e., it is a measure of
the electron-electron coalescence [4,10,11].

The main results of this paper are (i) upper bounds to
h(0) and to the location u,, of the maximum of A (u),
and (ii) lower bounds to the intensity h.,, of that max-
imum. The upper bounds are obtained by applying the
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Stieltjes theorem to any N-particle system with a unimo-
dal particle-particle density 4 (u), and the lower bounds
are variationally found based only on the nonnegativity.
Then, for completeness, the quality of some of these
analytically rigorous bounds is numerically studied for
two-electron atoms by means of the recent 204-term Hyl-
leraas wave functions [12].

Upper bounds to h (0). The only existing upper bounds
are those of Ref. [10], which are given in terms of u,,
and one or more interelectronic moments. Among these,
the one-moment bound is given by

-2
h(0)< Uozﬁ% : (1)

max

whose quality is very poor. Here we find that
R(0)SUY, ¢=0 and k=0,1,2,...

with

1-8 k

umaxf;<uq—a>+A—o"'°j§lgj(q)A,, )

where 8, ¢ is the Kronecker delta, and 4; is the cofactor

of §;(g) in the determinant A, given by

1

U=

Eolg)  £&(q) &x(q)

§1(q)  &(q) Ex+1(q)
A= . : : ’

§x(q) Ex+ilq) S lq)

where the quantities £;(q) are given by

9 (,9-3)y_ q ;=
41T<u Y—h(Oul,., j=0

£(g)= 3)

j>o0.

j + itq— j i
L2 (0=
For a given many-particle system, the higher the k value,
the more involved becomes the bound. Since we are
looking for analytically simple bounds, let us fix our at-
tention to the subcase k =0. Then, Eq. (2) reduces to
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U =——-L (%), 20, @

umax 41T

which considerably extends the inequality (1). Indeed,
apart from the fact that U =U,, the first few cases
g =0, 2, and 3 produce the following interesting expres-

sions:

h(0)=Tlim -4 (u973) , (5)
q—>04‘n'
no<up=2Sa L B ®)
417 umax 217- urznax
h(O)SUBJ)_—__:;_iEO_):_é_M___ll , (7)
477' u?nax 81T u?nax

respectively. Equation (5) gives the exact value of the
electron-electron coalescence in a limiting form, which
has been recently found by different means [11]. The in-
equality (6) allows the correlation of the total electron-
electron repulsion energy E,,=(u '), h(0) and the lo-
cation u,. of the electron-pair maximum. The inequali-
ty (7) gives an upper bound to 4 (0), which depends only
on u,, and the number N of constituent electrons. At
this point, it is worth remarking that the local properties
h(0), u gy, and h,, of h(u) which are being considered
in this paper provide rigorous bounds to the repulsion en-
ergy E,, of an N-electron system from above and from
below as

1/3
38’1N2(N —1h |, (8)

2mh(0)u?, <E, <
where we have taken into account the upper bound to E,,
recently reported [5].

Upper bounds to the maximum location u ... We have
recently found [5] a simple upper bound to u_,, by
means of the moments {u ~') and {(u ~2?) as

-1

umax§H052§Z_2; s 9)
which is valid for any many-electron system with a uni-
modal electron-pair density A4 (u). Bounds including
these two moments and others of different order are also
known [5]; however, they are much less analytically
tractable, although more accurate [6] than H,,.

Here we find that

(a+3){u?)
(B+3)(uf)

1/(a—B)

Umax S Gla,B)= , a>B>—3,
(10
which substantially generalizes the inequality (9). Indeed,
one can check not only that G(—1,—2)=H, but also

that

1/a+3)
(a+3){u®)

41h(0) ’
a>-—3, (11)

which can also be derived from the inequality 4 (0) < U’
shown in Eq. (4).
Some other interesting cases of the inequality (10) are

(a+3)<ua> 1/(a+1)
2wl ’

U ey <Gla,B— —3)=

Gla,—1)= a>—1, (12)

TABLE 1. Various ground-state properties of the 204-term Hylleraas wave functions used in the present numerical study. Atomic units are used throughout.
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a u

Gla,0)= | ————~ , a>0, 13)

(a,0) 3(u0) a (

and

G(a,a)=exp 1 +(u"‘1nu) a>—3. (14)
’ a+3 (ua> ’

To obtain Eq. (14) we have used the rigorous relation
d/dt{u')=(u'lnu). Since we use the normalization
(u®) =IN(N—1) for an N-electron system and
{(u~!)=E,,, the above expressions produce the follow-
ing important inequalities:
(a+3){(u®)

E,< " a>—1, (15)
umax
3IN(N—1)
@)z —u >0,
(u®) 2Aa+3) fmax> @ (16)

(Inu ) 2 IN(N—1)[Inu p,, — 171,

3
which explicitly show how various electron-electron
properties of an N-electron system get conditioned by
means of the knowledge of the maximum location u,, of
the electron-pair density. A special value a=0 in the in-
equality (15) leads to the following upper bound for the
repulsion energy:

g <3NWN-1)

ee —
4u max

) (17)

which is to be compared with that originally obtained in
Ref. [5] and shown in Eq. (8).

To prove the general upper bounds U? and G(a,B)
given by Eqgs. (2) and (10), respectively, we use the unimo-
dality of the electron-pair density, according to which
one can write that

o, (w=(ul,  —udh'(u)20, ¢=20.
q

The moments of this univariate non-negative function,
i.e., the quantities

Ei(g)= fowufq&q(u)du ,

can be easily shown to have the values given by Eq. (3).
Then, a straightforward application of the Stieltjes
theorem (which is valid for any non-negative density
function) to ¢,(u) produces the following Hadamard
determinantal inequalities [14,15]:

Em(q)  Emii(q) Em+x(q)
Em+1(@)  Eniaq) Em+r+1(q)
A= : : : 20,
Em+xk(@) Emirk+1(q) Em+21(q)

for any real non-negative m and ¢, and k =0,1,2,... .
Now, setting m =0 and developing the resulting deter-
minant A, =A{” with respect to the first row, one can
easily obtain the desired bounds UL? to h(0) given by Eq.
(2). On the other hand, in the case k =0 the inequality
A{™=E, (g)> 0 produces

(j+q){u/ti73)
j€ui™3)

which gives rise to the second desired bounds G(a,B)
given by Eq. (10) after a trivial change of variable. More-

umax S

1/q
y » J»,g>0,
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over, one can obtain new, better, but more complicated
upper bounds to u, from the cases k > 0.

Lower bounds to the maximum intensity h_,,. Recent-
ly [5] it has been variationally shown that the value A,
of the electron-pair density at its maximum is bounded
from below as

b > Hla,B)= -1
4

1/(a—P)
[(B+3)Nup)]+s | 7°
[(a+3){(u®)]f*3 ’
a>p>-—3.
This inequality was analytically proved and discussed in
Ref. [5] and its accuracy was numerically analyzed in
Ref. [6] for some heliumlike atoms. The use of a similar
variational technique allows us to find (i) lower bounds
which depend on three interelectronic moments, as, e.g.,

172
5 5V5Cu ) | () (w2 —(u")? i
mex T 542 (u®)5(u™2) ’
and (ii) a lower bound which depends on the interelect-
ronic mean logarithmic radius {Inu ) as given by

S 3{u®) (Inu )
max — 417. (uo)

Let us point out that the combination of the inequali-
ties (16) and (18) allows us to bound, from above and
from below, the interelectronic mean logarithmic radius
(Inu ) in terms of the maximum characteristics of the
electron-pair density as

NN —1)[Inu p, — 1]

h

h —1-3 . (18)

8h max

Ry ey

<(lnu ) <IN(N—1)

for any N-electron system.

Numerics. To give the reader an idea of the quality of
the bounds found in this paper, we have numerically
studied the accuracy of some of them in the two-electron
ions with nuclear charge Z=1 (H™), 2 (He), 3 (Li*), 4
(Be?*), 5 (B**), and 10 (Ne®*). To do that we have used
the most accurate electron-pair density # (u) in the litera-
ture constructed from the 204-term Hylleraas wave func-
tions. Various ground-state properties obtained from
these wave functions are given in Table I. It lists the to-
tal energy E, the central electron-pair density 4 (0), the
intensity A, and the location u,, of the maximum of
the electron-pair density, the values a; and a, for which

TABLE II. Accuracy of the upper bound U, 1]‘1', given in percents, to the cen-
tral electron-pair density 4 (0).

q z=1 Z=2 z=3 Z=4 Z=5  Z=10
0.00001  100.0 100.0 100.0 100.0 100.0 100.0

0.0001 99.98 99.98 99.98 99.98 99.98 99.97
0.001 99.76 99.82 99.81 99.79 99.78 99.72
0.01 97.69 98.22 98.09 97.93 97.78 97.24
0.10 80.63 83.76 82.48 81.07 79.82 75.47
0.20 66.97 70.46 68.04 65.63 63.57 56.74
030 56.64 59.40 56.09 53.03 50.49 4250
0.40 48.44 50.11 46.17 4275 39.99 3171
0.50 4172 42.26 37.93 3437 31.58 23.58
0.60 36.10 35.61 31.09 27.56 24.87 17.47
0.70 3132 29.97 25.43 22.04 19.52 12.89
0.80 27.22 25.18 20.75 17.57 15.28 9.49
0.90 23.67 2111 16.89 13.97 11.92 6.96
1.00 20.58 17.67 13.71 11.08 9.27 5.09
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TABLE III. Accuracy of the upper bound U (1’1', given in percents, to the cen-
tral electron-pair density 4 (0).

TABLE 1V. Accuracy of the upper bound U (2'1’, given in percents, to the cen-
tral electron-pair density h(0).

'] zZ=1 zZ=2 Z=3 Z=4 Z=5 Z=10 q zZ=1 zZ=2 zZ=3 Z=4 Z=5 Z=10
0.00001 100.0 100.0 100.0 100.0 100.0 100.0 0.00001 100.0 100.0 100.0 100.0 100.0 100.0
0.0001 99.99 100.0 100.0 100.0 99.99 99.99 0.000 1 99.99 100.0 100.0 100.0 100.0 100.0
0.001 99.91 99.96 99.96 99.95 99.95 99.93 0.001 99.93 99.98 99.98 99.98 99.98 99.97
0.01 99.07 99.53 99.52 99.47 99.42 99.22 0.01 99.31 99.75 99.77 99.76 99.73 99.61
0.10 91.72 93.61 92.29 90.92 89.68 85.22 0.10 93.84 95.43 94.22 92.92 91.75 87.40
0.20 85.05 84.33 80.27 76.80 73.93 64.78 0.20 88.92 87.09 82.80 79.17 76.18 66.58
0.30 79.32 73.68 67.10 62.16 58.34 47.29 0.30 84.72 76.62 69.41 64.09 60.01 48.32
0.40 74.16 62.94 54.82 49.26 45.20 34.25 0.40 80.92 65.60 56.59 50.60 46.27 34.77
0.50 69.34 52.94 44.23 38.70 34.81 24.84 0.50 77.30 55.13 45.49 39.56 35.45 25.09
0.60 64.72 44.08 35.49 30.33 26.79 18.08 0.60 73.73 45.78 36.34 30.85 27.16 18.19
0.70 60.23 36.47 28.42 23.76 20.64 13.18 0.70 70.13 37.74 28.97 24.08 20.85 13.24
0.80 55.82 30.06 22.74 18.63 15.92 9.62 0.80 66.42 30.99 23.10 18.82 16.03 9.65
0.90 51.48 24.72 18.19 14.61 12.28 7.02 0.90 62.59 25.39 18.42 14.72 12.35 7.03
1.00 47.21 20.31 14.56 11.46 9.48 5.11 1.00 58.63 20.78 14.70 11.53 9.51 5.12

the electron-pair function 4 (u)/u“ is monotonically de-
creasing and convex, respectively, and various interelect-
ronic moments {u?) of integer and half-integer orders .
Table I also includes, when available, the previous best
values reported by Thakkar and Smith [13] for compar-
ison.

In Tables II-1V, the quality of the upper bounds U7,
k =0, 1, and 2, to the electron-electron coalescence mea-
sure h(0) is discussed for the aforementioned two-
electron ions, respectively. It is observed that not only
Uy, as rigorously shown in Eq. (5), but also U{? and
U tend towards the exact value of 4 (0) in the limiting
case ¢—0. For a fixed Z, the accuracy of the upper
bounds decreases when ¢ increases, while for a fixed g,
the higher the nuclear charge, the less accurate the upper
bound.

A similar numerical analysis of bounds to u_,, and
h,..x has also been done. We only note that, although
rigorous, they are not as accurate. In particular, the ac-
curacy of the inequality (18) is about 35% in all the ions
here considered.

To summarize, the interelectronic moments {u?) of a
many-electron system have been used as basic elements to
study in an inequality framework some local electron-

electron properties, namely the central value 4(0) and the
maximum characteristics (u,,,hn,,) of the spherically
averaged electron-pair density A (u). The resulting ine-
qualities are simple, compact, and transparent if, at most,
two moments are included. In the case where we consid-
er a higher number of moments, the corresponding
bounds to ~£(0) and u_,, get much more involved but
more accurate.

Looking at these inequalities in the opposite way, one
finds how the interelectronic moments get bounded by
means of the analytical properties of the electron-pair
density h (u) specified by h(0), u,,, and h,,. In this
sense, the upper and lower bounds, given by inequalities
(8) and (17), to the total electron-electron repulsion ener-
gy E,, of an N-electron system would be worth pointing
out.

Finally, the worth of some of the present inequalities
has been analyzed in several two-electron ions by means
of the highly accurate 204-term Hylleraas-type wave
functions recently constructed [12]. Generally speaking,
the lower the order of the involved interelectronic mo-
ments and the nuclear charge, the more accurate the cor-
responding bound.
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