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The exposition of the formalisms of the quantum optical phase has been provided commencing
from the quantum mechanics of a massive particle. The clockwise and counterclockwise components
of the planar motion are shown to correspond to the signal and idler modes in the heterodyne
detection scheme. The appropriate ideal phase proposal has been embodied in this scheme.
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I. INTRODUCTION

In a review paper [1], which was unique for a consid-
erable time, the paradoxical quantum phase was treated
alongside the rotation angle operator. The solution of
the quantum phase problem devised by Newton [2] re-
sembles the rotation angle operator and the recently de-
veloped Ban concept of the phase angle operator [3] is
similar to that of the rotation angle operator in spite of
the use of thermofield language. The treatment of Ban's
operator as an ideal concept and the interpretation of the
Shapiro-Wagner model [4] as the feasible phase concept
have been performed by Hradil [5].

The rotation angle is characteristic of the polar coor-
dinate system and ~by reintroducing the Cartesian coor-
dinate operators and their conjugate momenta, we can
arrive at the annihilation and creation operators of har-
monic oscillators. An analogy between this mechanical
system and the optical one enables us to go &om the
annihilation operators of linear polarizations to those of
circular polarizations. We can compare the latter opera-
tors with the operators of the signal and idler modes in
the Shapiro-Wagner model. Of course, the polarizations
used in the exposition of these connections can be dis-
tinguished &om realistic polarizations occurring in the
process of measurement. Recently, the general princi-
ple underlying various measuring schemes has been elu-
cidated [6]. Finally, we indicate Ban's phase operator
in this physical system and compare it with the original
rotation angle operator.

II. TWO-DIMENSIONAL
HARMONIC OSCILLATOR

Some papers of fundamental importance consider the
quantum rotation angle and the quantum phase (see
[7,8]) always in the framework of two different models.

In this paper we would like to show that there exists a
model enabling us to study the angle of rotation and the
phase simultaneously. This model, besides, is related also
to the detection schemes (the heterodyne detection). We
will consider a two-dimensional harmonic oscillator, i.e.,
a particle moving freely in the plane and subjected to a
quadratic potential. The Hamiltonian reads

&=
2 (p. +p,')+»('+y'), (2.1)

where m is the mass of the particle, 6 is the elasticity
constant, x, y are position coordinates, and p~, p„are
the appropriate conjugate momenta, i.e. ,

[z,p ]= ill, [y, p„]= ill, [x,p„)= 0,

(2 2)

[y, p-]= o, [*,y] = 0, [P., P„]= 0,

with 0 standing for the zero operator.
Let us note that some mathematical difBculties are

connected with the relations of canonical conjugation
(2.2), which are discussed in a recent paper [9].

Introducing the annihilation operators

1'=~(
(2 3)

[at, at]= 0, [a, at] = 0, [a„,at] = 0,

we can rewrite the Hamiltonian (2.1) in the form

fulfilling the commutation relations (at, at are the cre-
ation operators)

[a,at]= i, [av, at] = i, [a,a„]= 0,
(2.4)
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( t 1) ( tH = hid/ o~o~+ —
l
+ ~/ oyoy+

2) E 2)
(2.5)

in accordance with this we can introduce an exponential
operator of the rotation angle 4,

where
exp(ic) =

/~2 + y2' (2.i2)

~ = (mb) (2.6) and an operator of the angular momentum,

Hence a two-dimensional harmonic oscillator can be un-
derstood as two uncoupled one-dimensional oscillators
distinguished by the indices z, y. We can consider the
number of energy quanta for each oscillator,

A A f A Af An =a a, ny
——aay, (2.7)

and, intending to consider appropriate canonically con-
jugate phases, we arrive at the phase problem. It is true
that there exist physically interesting unphysical resolu-
tions of the identity (unnormalizable, not belonging to a
Hilbert space) [8]

A A A A
Zv1 = xpy —yp& ~ (2.is)

There exists a Hermitian operator of the rotation angle

ks = argy exp(i4), (2.14)

r = gz'+y2

and the following resolution of the identity holds:

(2.15)

whose spectrum fills up the interval [8, 8 + 2vr). The ap-
propriate radius reads

8+2m
i=

2
lp. )(p. l

3 iy„dp.,
1i = — ic, M 3 lp„)(p,ldp„, (2.16)

8+2~
i= — i., el~„)(v2' g

(2.8) where lp„)is the state with definite radial component p„
of the momentum. For the state lp„)it holds that

according to the states lp ), lay) with determined phases

y, yy, respectively,

lp )= ) exp(in &p )ln ),

lp, ) = exp(imp„) lr) dr,
0

(2.17)

where the state lr) is the position at some radial distance
and it is valid that

rr =rr (2.is)

lay) = ) exp(inypy) lny).
ny ——0

Here the basic single-mode states ln ), ln„),

n nz nz n p ny ny ny ny

(2 9)

(2.10)

As r ) 0, the spectrum of the operator r" is bounded &om
below and we have here the problem of radial momentum,
i.e., an analog to the phase problem. Fortunately, this
problem is not so acute because the operators p„,p2,
etc. , which are "local in the r representation" (they are
expressed as di8'erential operators), are well defined; for

example, it holds that p2 = p2, and in general

correspond to the oscillator energies E = Ru(n + 2),E„=hu(ny + 2), and 8 is the minimum value of the
measured phase. The appropriate basic two-mode states
are denoted by ln, n„).However, these resolutions are
not orthogonal, not even in a generalized sense, i.e., in
the sense of the Dirac b orthogonality. Several authors
have proved that such resolutions of the identity provide
the ideal phase concept, i.e., they de6ne phase operators
according to the rule [10,4]

8+2m

M((p ) = — M(y )l(p )((p l
g) i„„d(p,

Nevertheless, we will use the formula

pr = ps A —pv S) (2.20)

where

.h
P~A = P~XT + Pygr + Z —T

2

OO

M(p„)= — M(p„)1@M, lp„)(p„ldp„. (2.19)

(2.11)
p s =r 'xp +r 'ypy -i—r '.

2
(2.21)

8+2m

M(&y) = M(&y)i*,y* l&y)4'yl d&y
An appropriate exponential radial momentum opera-

tor u„=exp(ip„) is not unitary and it holds that

where M(y) can be cos&p, sing, exp(imp), etc.
Under certain initial conditions it is convenient to re-

gard the two-dimensional oscillator as a plane rotator and
n-lr) = (r —1)lr —1) for r ) 1

0) f rr oe [0, 1), (2.22)
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where 0& means the zero ket, in other words, its action
is not local.

The operators 4g, M, r", p„obey the following com-
mutation rules:

[C», M, ] = ih[i —~0)(0~ 8 i„
„

], [r, P„]= igj,
= hzp = hi(M, ) i.

(M, )= zp„—yp = +rp,
a /1,

((&M.)')= —
I

-*'+—p'
I

2ur i, b m j
hx2 hp2

~b u)m
(2.32)

(2.23)

[4s, r] = 0, [4s,p ] = 0, [M„r]= 0, [M„p„]= 0.

We will rewrite the Hamiltonian (2.1) in the form

The selected coherent state ~a (0), u„(0))is not an eigen-

state of the component of the momentum operator M, .
Further, the rotation angle 4 and the phases y, p„fulfill
the relations

H = H@(„+H„,
with the Hamiltonian of the radial oscillator

H„= p„+—r"
1 -2 1 -2

2m" 2b

and the Hamiltonian of the plane rotator

( -, n'-l
&e(. =

2mr' i,
' 4

Let us note that the angular-momentum operator

M, = ih(a at —ata„).

(2.24)

(2.25)

(2.26)

(2.27)

4—= C(t) = kurt, (p = (p, (t) = urt, —

7rp„—:y„(t)= +——urt.
2

(2.33)

All these quantities are related to the complex ampli-
tudes ct (t), ct„(t).If we choose the lower sign, it holds
that 4 = y for all times and it means that at least
in the quasiclassical limit the phase rp (the phase of
the harmonic oscillator) presents itself as a rotation an-

gle. Besides p„=p —2, in general, y„=p
Under these assumptions the rotation angle operators
M(4) = M(@s) represent a feasible phase concept for

the ideal phase operators M(y ).

Let us suppose the physical system to be in the coher-
ent state ~n (0), a„(0))at time t = 0, where

III. MECHANICAL MOTION
AND OPTICAL POLARIZATIONS

(
*(o) —~ I

1 (
(o) —~ i

y+i

z=r, y=0, p =0,

py = +p(p»)
b m

(2.28)

(2.29)

We will study the model of "a ball on a plate" (see
Fig. 1) in greater detail because two one-dimensional os-

cillators are, without doubt, related also to two z, y po-
larization states of light and to appropriate z, y modes in
quantum optics.

Let us note that the relation (2.33) with the lower sign
describes the ball rotating in a clockwise direction and
that the upper sign stands for a counterclockwise rota-
tion. For analogy we consider a monochromatic plane
wave of &equency ~ traveling in the z direction. Accord-
ing to [11] it holds that the components of the electric
vector

The relation (2.29) represents the condition for a circular
motion, whereas for b ~~2z g m ~2p we obtain an ellip-
tic motion with the dominating part of the linear motion
in the direction of the x or y axis. Under the assump-
tions (2.29) the system stays in the coherent state for all
times, obeying the relations

ZA

a (t) = ct (0) exp( —iurt),

n„(t)= a„(0)exp( —iurt),

(2.30)

and according to the classical representation it moves
along a circle in a plane. Then we have

and

1 2
a (0) = ~rp, a„(0)= 6 ~rp

2h 2h
(2.31)

FIG. 1. Counterclockwise motion of a ball in the (z, y)
plane.
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E ~, —— (ia —iat),
l ' 26pV

(3.1)

Ev = (xov —xs ) )2«V
where ep is the permeability of vacuum, cu, which is the
wave &equency, may be held for the oscillator &equency
cu, V is the cavity vob~me, and the electromagnetic oper-
ators a, a~ may easily be identified with the mechanical
operators a, o„from (2.3).

On substituting the mechanical quantities and opera-
tors Rom (2.3) into (3.1), we obtain

1E p
EpmV

1E = — p.tJli=o VCpm

(3.2)

a+ ——
1

(a +ia„), (3.3)

where the operators a, as are given in (2.3). As usual
the appropriate coherent states la, a+) are defined as
eigenstates with the property

u-la- n+) = n-ln-, n+) a+la- n+) = a+la- n+)

(3.4)

Although the correspondence (3.2) is complicated for an
elliptically pol~ized hght, for the c~cular motion the
direction of the (z, y) rotation is the same as that of

(p, p&) or (—p, —p„)rotation.
%e introduce the operators

FIG. 2. The electric field of the right circularly polarized
plane wave propagating in the direction of the z axis and
restricted to this axis with the indication of a rotation.

1
, n+)= p sin(~t) la, a+),

epmV

1
Ev.=.la- n+)= p cos(ut) la, n+),

epmV

(3.7)

1
a (t) la, a+)= ~rpexp( —isn't)ln — a+)

2h
' '

(38)

which describes a clockwise rotation of the electric vector.
According to the serious comments [12,].3] there are two
conventions and this rotation corresponds to the right
circular polarization by the textbook (traditional) con-
vention and to the left circular polarization by the engi-
neering (natural) convention.

Similar reasoning exists for the use of the subscript
plus. Here n (0) = 0, n~(0) = ~~rp so that

and it holds that la, a~)—:la, a„)for (3.3). By the We obtain that
formulas

1 1
(a~+ 'aw)~ n+ = (a~ —&ay)i

2 2
(3.5)

1
, n+) = p sin(u t) ln, a+),

epmV

(3.9)
1E„, , ln, n+) = — p cos(~t) la, n+),

epmV
we obtain from (2.31) that a (0) = 0, a+(0) = i ~pp
for the upper sign in (2.31) and that n (0) = i ~op,
a+(0) = 0 for the lower sign in (2.31). So, in the me-
chanical model, the complex amplitude n+(t) [a (t)] is
related to the counterclockwise (clockwise) rotation.

To investigate the meaning of the subscript minus for
the electric vector, let us consider the coherent state
la, n+), where a (0) = ~~rp, n+(0) = 0, so that

1
a (t)la, a+)= ~rpexp( —iwt) la, n+),

25
(3.6)

a„(t)la, n+) = — ~rp exp( —i~t) ln, n+).
2h

With respect to (3.2)

which represents the counterclockwise direction. It cor-
responds to the left circular polarization by the text-
book (traditional) convention and to the right circular
polarization by the engineering (natural) convention. See
Fig. 2, where the vector Geld for the right circularly po-
larized light according to the engineering convention [12]
is plotted. In this figure the electric field restricted to the
z axis can be considered rotating without displacement
as well as gliding without rotation. The tip of this elec-
tric Geld vector with components E „E„,exerts
the same rotation as the ball in Fig. 1.

IV. ANGLE AND ANGULAR MOMENTUM

In terms of the annihilation and creation operators a,
a~, at, at we can rewrite the exponential rotation angle
operator (2.12) as
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ReG + iaeG„
exp i4

g(Rea )2+ (Rea„)2
(4 1)

Substituting the operators a, a+ according to {3.3),

where the "&action"

(a +a' )"= (a +a ) ) (a +at)~)'2
&

'-+ +)
1„„„1a = (a + a+), a„= (—ia + ia+), (4.2)

=(-+ +)' ('-+ +) ''. (4.12)

and introducing the complex amplitude operator

n = —(a +a+),
1

2
(4.3)

Because a+ = 0, we use the second possibility in (4.12),
antinormally ordered in minus mode operators and nor-
mally ordered in plus mode operators. This suggests the
formal expansion

we obtain

where

exp(i@) = (4.4)

(4.5)

((a'+a )"'(a +a') "=) ). I

'
II ', Ia+

(m) ),mr) +

.-'-m ~l. t(-1-m')
XG G+ G

(4.13)

As in (2.7) we introduce the number operators As G+ 0, we retain the term with m = m' = 0 and
observe that

~f
7l =G G, A+ =G+G+, (4.6) (at +a ) r (a++a ) r -a'a (4.14)

and we note that their two-mode eigenstates In, n+) =
In ) In+) have the property

n In, n+) = n In, n+),

n+In, n+)= n+In, n+).
(4.7)

In Sec. III we have shown that the upper sign in (2.31)
leads to the counterclockwise rotation of the ball and the
lower sign corresponds to the clockwise rotation of this
particle. Let us assume more generally that the massive
particle is in the state

Con6ning ourselves to the minus mode, we obtain that

where

I'(a+ v)

r() (4.16)

This proves the identity with the Paul exponential phase
operator [15]

(n ~a'ix ' ~n' ) = 6„~i„v(n +I) )n' + I)

(4.15)

n a do, |30++0, (4.8) g(&) - -' -t(—-')
(4.17)

where O~(o; ) is interpreted as the quasidistribution re-
lated to the normal ordering of the reduced operators G

a [14]. Since the plus mode is in the vacuum state, it
holds approximately that G+ 0, i.e., the operator G+
behaves approximately like the operator 0.

Let us note that the angular momentum operator

More generally, other Paul's exponential operators read

(4.18)

The role of the antinormal ordering is revealed by the
mapping theorem for the reduced state p = +(OIpIO)+
and Paul's exponential operators,

M, = —h(n —n+). (4 9) (4.19)

Under the given assumption on G+ it holds that M, =
hn . Quite analo—gously to the couple of oscillators a~,

G„,also for the oscillator G, which is complementary to
the oscillator G+, the resolution of identity reads

C'A(~-) = p' '(a- ')~a—- (4.20)

vrhere the quasidistribution related to the antinormal or-
dering of the reduced operators G, Gt,

From the definition (2.12) it follows that

(4 1o)
We will show below that under the assumption {4.8),

the reduced operator

exp(iO) = fa +a,'l '"
I a +a+)

(4.»)
+(OIexp(iC)) IO)+ = E~'l. (4.21)

The connection to quantum optics with its detection
schemes can be understood by conceding that the two-
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dimensional harmonic oscillator will have quantum optics
features and its de6nition will use not quantum mechan-
ical but quantum optical notions.

The relation (4.3) defines an analog to the operator
6 ag + al in the Shapiro-Wagner model of the hetero-
dyne detection [4]. The components Rea, Ima commute
and their measurement provides the distribution

@'meae(a) = &@ep(a—)!n =ni (4.24)

Cg(a) = —p'! l(a, at )! (4.25)

where the Wigner function related to the symmetric or-
dering of the reduced operators a, at reads

Cp, ,(a) = 24~(2a). (4.22)
These properties are apart &om a scale factor in accor-
dance with [16].

For a pure state and assuming instead of (4.8) that

p= 4p/' ck cx ck d ck

(3) 4p/' A+ 0!+ A+ d ck+)

we obtain

(4.23)

V. REPRESENTATION
OF EXPONENTIAL PHASE OPERATOR

IN NUMBER-STATE BASIS

The following expansion according to the basis
in, ni) holds:

exp(ik@) = ) ) ): ). (n—n+lexp(ikc')ln'- n+)ln —n+)(n'— n+I.
n =0 +=0~- 0m+

(5 1)

We will express the coefficients in (5.1) explicitly. The
matrix elements of the operator exp(iko) in the basis
iM„r)read

n !(M„ri n, +n) = b M
( )( 1)"+ +', (Ar)" "+

(M» riexp(ikcp) iM,', r') = b M M „6(r—r') (5 2)
xL" "+(A r )A~2rexp( —2A r ),

The coefficients of the transition from the basis iM„r)
to the basis in, n+) can be determined as follows:

8+2m

(M„rin,n+) = (M, iC)(4, rin, n+) d4, (5.3)

where

-& . (55)

where A and the Laguerre polynomials L~(z) are defined
in (A4) and (A12), respectively. For n ( n+ the coefB-
cients are obtained from those in (5.5) by interchanging
A and A+ )

(M„rin,n+) (n ( n+) = (M„rin+,n ) (n & n+).
.M. i

(M, i4) = exp
~

i '4 ~, —
2~

(5.4) (5.6)

and (4, rin, n+) is given in (A15). As a result we obtain
The matrix elements of the operator exp(ik@) in the

basis in, ni) can be determined as follows:

(n, nr iexp(ile@))n', n'r) = $ ) f f (n —,ne)M„r)(M r)exp(i lee) (M,', r„')(M,', r')n', n'r) drdr'
MM

(5.7)

They do not depend on the mechanical quantities m, b and read, for n ) n+, n' ) n'+, n+ ) n+ and for n ( n+,
n' &n', n ) n',

n' !n' !(n, n+iexp(ik4)in', n+) = 6»„„(„„)(—1)"+

I

X
(—1)&I'(—', + j+1)I'(-,"+n —n++ j+1)

j!(n+ —j)!(j+n' —n+)!I'(2 —n+ +j+ 1)
' (5.8)
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~here M+ ——max(0, n+ —2) for k an even number and M = 0 for k an odd number. On letting n+ ——0, we arrive at
formula (4.15) again, and we prove the relation (4.21).

Forn &n+, n' &n+, n &n' and forn &n+, n' &n+, n+ &n' itholdsthat

(n, n+ ~exp(ik4')~n', n+) = bg ! l( —1)
In on+0

n en+a

In

X
(—1)~I'(—

2 + j + 1)I'(—
2

—n + n+ + j+ 1)
j!(n' —j)!(j—n' +n' )!I'(——" —n + j+1) (5.9)

where M = max(0, n + 2) for k an even number and M = 0 for k an odd number.
For n & n+, n' & n'+, n+ & n'+, we use formula (5.8) according to the rule

(n, n+~exp(ik4)~n', n+) = (n', n+~exp( —ik4)~n, n+). (5.10)

In the case n & n+, n' & n'+, n & n', formula (5.9) and the rule (5.10) are used. For n & n+, n' & n'+,
n+ & n, when formula (5.9) is not indicated, we use formula (5.8) according to the rule (5.10). Similarly, in the case
n & n+, n' & n'+, n & n'+, formula (5.9) and the rule (5.10) are used.

To get a quasiclassical picture of this quantum physical system, it is important to analyze asymptotically the
matrix elements (5.7), as the angular momentum M, tends to —oo (+oo) with the energy hewn+ (fuun ) moderate.
Performing the analysis of the coefficients in (5.8) for n and n tending to infinity, we obtain

lim lim (n, n+~exp(ik4)~n', n+) = (—1)"+ ) (-1)'I'(j+
n -+oo~' ~oo

-' + - j!n+-j!r(-"-j=M+ 2

= b'„„lim lirn+' + ~ -+oon' ~oo

k + 1) b„„lim lim bi,
„

n+ + j+ ]) +' + n ~oo~' ~~

(5.11)

for n+ & n+ The sim. ilar limiting procedure for the coefficients (5.9) with n+ and n+ tending to infinity yields

lim lim (n-, n+lexp(ik4')ln'-, n+) = (-1)"- ) (-1)'I'(-
2

~+~oo ~t ' + - j!(n -j!r --"
+ j=M ' ' 2

=8„„lim liin bi,
„n+moo n' -+oo+

+ j+1) b„„lim lim bi, , „+ j —n + ]) " '"- a+-+~~+~~ ' + +

(5.12)

for n
Using the property (5.10), we find that the results

(5.11) and (5.12) have a general validity for n~ & ni+,

lim lim (n, n+~exp(ik4)~n', n+)

= b„,„ lim lim br,„„,(5.13)+' + n ~oo~' ~oo

exp(i4) = (n & n+)exp(i&p ) + (n & n+)exp( —i@+),

(5.15)

where the symbols in parentheses are operators diagonal
in the minus plus number-state basis and enjoying the
property

and for n & n',

lim lim (n, n+ ~exp(ik4) ~n', n+)
~+ ~oo n+-+oo

(n & n+) in, n+) =
)

I-. -&-.,)I--,-.I-(ll"-"'I ""- "
otherwise,

(5.16)

=b„„lim lim bi,„„.(5.14)
n+~oo n' ~oo+

The two limiting procedures performed can be inter-
preted as an approximate equality for the exponential
operator of the rotation angle on the assumption of (a)
strong signal mode and weak idler mode of light fields or
symmetrically of (b) weak signal mode and strong idler
mode of radiation. For k = 1 it holds that

and the Susskind-Glogower operators

exp(imp~) = (n~ + 1) ~ a~. (5.17)

The operator sum on the right-hand side of (5.15) enables
us to consider any quantum superposition (Schrodinger
cat) of the assumptions (a) and (b). Motivated by the
approximate equality (5.15), we define the ideal phase
operator for the signal mode



50 ROTATION ANGLE, PHASES OF OSCILLATORS WITH. . . 825

exp(i4 +) = (n & n+)exp(iy )

+(n & n+)exp( —iy+).

From this

(5.18)

Considering the resolution of identity in the form

8+2~
1N,.. Iv))((v'ldv»

g

where the phase states

(5.28)

(n, n+Iexp(i4 +)In', n+) = bg„„(„„)
min(n, n+ ),min(n', n+ )

(5.19)

Iy)) = ) exp(imp)lm)),
tn=0

(5.29)

Thus we have obtained another definition for the uni-

tary exponential phase operator exp(i4 +) first consid-
ered by Ban and expressed by him in terms of the relative
number states (In, m)), —oo & n & oo, m & 0} [3,17].
The relative number states are connected with the num-

ber states In, n+),

In, m)) = e(n) In = m+ n, np ——m)

with In, m)) = In)) Im)), we may define the operator

8+2~
M(rp) = — M(y)11m s, + Ip))((@Id'. (5.30)

The eigenstates of the operator exp(i&p) have been deter-
mined in [18].

The concept of the operator (n & n+) and of its
eigenstates Ig ) is intuitively clear,

+e(-1- )I -= .= — ) (52o) (n- & n+)I&-) = I&-) (5.31)

where

1 forn&0
0 forn&0. (5.21)

8-IM(@-+)I@-)= 8-IM(v-)I@-) (5.32)

which enables us to restrict the operators M(4' +) to the
operators M(y ) in the expectations,

Rewriting the relation (5.19) in Ban's basis, we easily
obtain the more general relation

((n, mlexp(ik@ +)In', m')) = bs „„b(5.22)

The asymptotic analysis of the ideal phase operator
presents no problem and employs the relative number
states. From the relation (5.22) it follows that

lim lim ((n, mlexp(ik4' ~) ln', m'))

This is a generalization of the result stated by Ban [19].
Similarly, (n & n+) denotes the operator whose eigen-
states

Ig+),
(n- & n+)14+) = IW+) (5.33)

allow us to restrict the operators M(4 +) to the opera-
tors M(—y+) in the quantum averages

(4+1M(@-+)14+) = (@+1M(-~+)I@+) (5 34)

On the assumption (4;8), the reduced operator [19]
= b lim lim bs,„„,(5.23)

n-+oo n'-+oo ~ (Olexp(i@ +)10)+ —exp(ip ). (5.35)

lim lim ((n, mlexp(ik4 +) In', m'))

= b lim lim bs,„„.(5.24)A~ —oo ~'~ —oo

The operator exp(ik4 +) has the property

which can be derived &om the relations

[n+, exp(+iy+)] = ~exp(kiy+). (5.26)

[N, exp(ik4 +)] = —kexp(ik@ +), N = n —n+,

(5.25)

VI. THE IDEAL PHASE CONCEPT
AS AN APPROXIMATION

OF THE ROTATION ANGLE

The approximate equality (5.15) should be analyzed
and we will provide a numerical analysis of some closely
related expressions in the following. The properties of the
relations (5.15) are expressed using a suitable averaging
instead of computing selected matrix elements.

We will consider a special case of the partial phase
states [20], which share the property of near number
states

Analogously, in the quantum mechanics of a massive par-
ticle the operator exp(ik4) obeys the commutation rela-
tion

lt- .-)- = (In-) + uln-+1))
2

(6.1)

[exp(ik@), M, ] = —hkexp(ik4). (5.27)

~1K+

It- .-)+ = (In+) + uln+ + 1))
2
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here In+) ( In+ + 1)) denotes the lower (upper) number
state possible and u is a complex unity. It holds that
u = exp(iP), where P is the preferred phase. We assume
that the physical system is in the state

I@) = lt-, i t-+,-) = lt-, i)- It-. ,-)+ (6 2)

Here the preferred phase in the minus mode is p = 0,
whereas p+ in the plus mode varies.

In the relation exp(i@) = exp(i4 +) we go over to the
operators cos4 and cos4 +. The characteristics under
study are the expectations

(cos 4) = (t„i, t„„IcosOlt„ i,t„„)
2Th+

4
((~- ~+Iexp(~c')I~- + 1 n+) + lul'(~- ri++ 1lexp(~c')l~-+ 1 ri++ 1)

+Re u[(n, n+ + 1
l
exp(~4) l~, ~+) + (ri + 1, ni+ + 1 l~xp(~O) Iran- + 1, ri+)]), (6.3)

where the matrix elements on the right-hand side are
determined by formulas (5.8), (5.9), and the quantum
average

(cos4 +) = (t„,i, t„+,„Icos@+It„ i, t„+„), (6.4)

which is of the same form but with the matrix elements
given in (5.19).

In Figs. 3—12 we see the dependence of (cosC +) on
the lower possible photon numbers in the minus and plus
modes and the similarities and differences between this
characteristic and its analog (cost). For n+ » n it
holds that the state (6.2) exhibits the property (5.33) or
(cos4 +) = (cosy+) and in the chosen state of the field

(cosy+) =
2 cosp+. Both the general and the specific

properties are obvious from Figs. 3—7, where the preferred
phase ip+ ——m, 4, ~, 4, 0, respectively. In Figs. 8—12

appropriate to the preferred phase g&+ ——n, s4, x2, 4, 0,
respectively, a similar behavior can be observed for
(cosC) —(cosy+) =

2 cos rp+. When n+ (( n, the state
(6.2) has the property (5.31) or (cosC +) = (cosy ),
and in the state under study (cosy ) =

2 cos&p

This is obvious &om Figs. 3—7, where the preferred
phase p+ changes but the preferred phase p remains
constant. In Figs. 8—12 we observe (cost) 2 with
small differences due to the changes in the plus mode. If
the photon numbers are approximately equal, n n+,
(cosC ~) has a jump discontinuity. A particular efFect
is observed in (cost), the value of which is greater than
expected. If n = n+, the situation corresponds to that
of the squared Wigner function [16]. The increased value
of (cost) can be seen in Figs. 11 and 12, &om which
an intuitive conclusion can be drawn that although the

{) ~

{)
{) ~

{) )
0 g
{) )

--{) .)
-Q

Oq
0 =„

c5'O

+o
+OO

O

O
&o

FIG. 3. Expectation values of the Ban operator cos4 + in
the two-mode partial phase states with the preferred phases

g = 0, g+ ——m and the lower possible photon numbers n
6+ e FIG. 4. Same as Fig. 3, but with p = 0, P+ ——

4 .
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jg
(3 =

()

(3
7(j

(3
I

(3,

preferred angle related to the operator 48 remains un-
changed, the dispersion of this angle decreases for n
and n+ approaching each other to the squared Wigner
function level.

In addition to the foregoing special case in (6.2), lQ) =
lt„ i, t„i), we will treat the special case

(6.5)

Whereas the Susskind-Glogower operator provides the re-
sult (cos&p ) =

2 for each lower possible photon number
n, the feasible phase operator yields the values plotted
in Fig. 13 and (cos4) converges monotonously to one half
as n tends to infinity.

VII. CONCLUSION

FIG. 11. Same as Fig. 8, but with p = 0, P+ ———.

FIG. 12. Same as Fig. 8, but with p = 0, p+ ——G.

We have involved the quantum mechanical approach to
investigate the feasible phase concept in quantum optics
and to compare it with the ideal ones. Under suitable ini-
tial conditions the quantum theory of a two-dimensional
harmonic oscillator exhibits circular motions of a
Gaussian wave packet. The study of a change of the ba-
sis for the position vectors and the conjugate change for
the momenta, motivated by an analogy with linear and
circular polarizations in the theory of the plane electro-
magnetic wave, provides all necessary characteristics of
the rotation angle as a feasible phase concept. In addition
to the linear motion components, circular motion compo-
nents are considered and distinguished according to the
clockwise and counterclockwise directions. The identity
between the rotation angle and the measured phase in the
detection schemes providing simultaneously measurable
quantities is emphasized. For sufficiently strong signal
mode the feasible phase concept approximates the ideal
phase in this mode. The Paul phase concept is proven to
be a projection of the feasible phase concept rather than
that of the ideal phase concept. The ideal phase con-
cepts in the separate modes (quantum mechanically the
separate degrees of freedom) are unified to yield not only
the Ban ideal phase proposal but also a generalization of
his recent results related to the projections on separate
modes. The foregoing comparisons have been illustrated
using partial phase states and the cosine phase operator.
For sufBciently strong signal mode the feasible phase con-
cept approximates the ideal phase in this mode.
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APPENDIX: TRANSITION MATRIX FROM
THE BASIS iz, y) TO THE BASIS in, n+).

FIG. 13. Expectation values of the feasible phase operator
cos4 in the states it~, q) i0)+ with the preferred phase
g = 0 and the lower possible photon numbers n, n+.

It is well known that the transition matrix from the
basis lx) to ln ) and that from ly) to ln„)read [21t
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and

(z]n ) = H„.(Az), exp( —A2x2)
ng 7r

(y]n„)= H„(Ay), exp( —A2y2),9™

(A1)

(A2)

(z, y]n„n„)= H„(Az)H„„(Ay)
A2

X exp[ —A2(z2 + y2)].2"*+"~n !n t vr

(A5)

Using the Rodrigues type formula for the Hermite poly-
nomials, we arrive at

where the Hermite polynomials

[g]
* = ).k,(„2k,(- )'( *)" '",

k=0

n "— for n even2
for n odd,

and

(A3)

(z, yi n, n„)=(—1)" +"

A2
X exp[ —A'(z2 + y')]2" +"~n !nyf m

Bfl~+Tj&

"B(A*)--B(Ay)-. ' P[ "'( '+"')]
(A6)

On respecting the SU(2) group [22], the definition of the
number states, and the property

(A4)

As a consequence of tensorial products, we obtain that

]n. = o, n„=o) = ]n = o, n+ —o),

we rederive the expansion

(A7)

'A 7l +

I —, +) =
/ „,„,„,„,):):(—*)""- "+ 2=0k=0

xln = j —k, nw
——n +n+ —j —k)

A !A+! „,g(g+ k)! ( n+ n+ —j —k)!

(A8)

Hence,

1 A2 1 f B . B
(x, yin, n+) = exp[A'(z' + y )], , i

— + i

x~ — —i
i

exp[ A(x +y)]. (A9)

Substituting

A . B 1(B . B)
n = —(z+ iy), = —

i

——i—
~

2
' Bo. A (Bz By)

and using the Rodrigues type formula for the Laguerre polynomials, we obtain

(A1o)

{x,y]n, n+) = (—1)"+2" +"+ +,'-—(x —iy)+ A n+! A

~7t n ! 2

( A'
(z'+ y')

I
L".- "'[A'(*'+ y')]

) "+

for n ) n+, (All)'

here the Laguerre polynomials read

n

L„(x)= r(n + p + 1)),(A12)
( —,).rU

(z, y[n, n+) = (z, yin+, n ) '.
Using the property of the wave functions

(A13)

(C, r]n, n+) = (x = r cos4, y = r sine']n, n+)

and they are expected from the theory of the signer
function. For n+ ) n it holds that

B(x, y)
B(4, )

' (A14)
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we get the formulas

(—1)"+ n+!
(4, r]n, n~) = +; [Ar exp( —i4)]"- "+

7r n!
xL„"-"+(A r )A~rexp

~

A——r
)

(C, r]n, n+) = (C, r]n+, n )*, n & n+.

A + 7l+)

(A15)

From the above derivation it is obvious that (C, r
~

n, n+)
have the properties

oo 8+2~
(n, n+]C, r) (C, r]n', n' )d@dr

0 8

= (n, n+]n', n', ), (AI6)

) ) (C, r]n, n+)(n, n+]@', r') = (C, r[O', r')
n =0 n+ ——0

(A17)

In terms of the relative number states (5.20), the rep-
resentation of the position states [4, r) is of a simpler
form,

,
(Ar) " exp( —inc)m+ n!

xLI l(A r )A~rexp
l

A2"2
~

(A18)
2
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