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We introduce a theoretical framework to describe the interaction of an electromagnetic radiation field

and a molecular system, such as a single molecule or a molecular crystal. By knowing in advance which

electronic transitions are in resonance with the frequencies of the incident radiation, we propose a pro-
cedure to reduce the full problem to a description in terms of an effective Hamiltonian that fully takes
into account the vibrational (nuclear) degrees of freedom, but that explicitly involves only those electron-
ic states that meet the resonance condition. The influence of the rest of the electronic states appears as
the polarizability of the system. We keep only those terms that give rise to Raman scattering but the
scheme allows for a systematic inclusion of higher-order multiphoton processes. The resulting effective
Hamiltonian is used to study the interaction of ultrashort laser pulses with a single molecule and with a
molecular crystal. As applications, we study the interaction of a single ultrashort nonresonant pulse,
and a train of such pulses, with a single molecule; we show that via Raman scattering the pulse impul-

sively transfers momentum to the molecule leaving it in a vibrational coherent state. We also study the
interaction of two crossed laser pulses with a molecular crystal and show that a diffraction grating of lat-
tice vibrations is impulsively created.

PACS number(s): 42.65.Re, 33.80.—b, 33.20.Fb, 33.90.+h

I. INTRODUCTION

Since the advent of laser pulses whose duration is
shorter than a typical molecular vibrational period [1],
the potentiality of preparing specific molecular states and
studying their evolution in real time has sparked an enor-
mous amount of experimental [2—6] and theoretical
work [7,8, 12-17]. A typical experiment in this ultrafast,
time-resolved spectroscopy is of the pump-probe type:
one or several laser pulses are used to prepare a particu-
lar molecular or crystal state, which is afterwards probed
either by another laser pulse or by a continuous-wave
laser. Here, our main interest is in the state prepared by
the pump pulses. In this regard interesting physical situ-
ations can develop depending on difFerent experimental
conditions. For instance, the "carrier" or central fre-
quencies of the pump pulses may or may not be in reso-
nance with electronic transitions [2,3,5]; or the pump
pulses may consist of time-delayed sequences of phase-
locked pulses [6]; and/or the pulses may be specially
shaped so as to produce a specific molecular excitation.
The latter technique has become a reality due to the de-

velopment of very recent techniques on pulse shaping
[18]. One important aspect of this type of radiation-
matter interaction is the "impulsive" excitation, through
Raman scattering, of coherent lattice or molecular vibra-
tions due to the passage of even a single ultrashort light
pulse. Yan, Gamble, and Nelson [7] named this process
impulsive stimulated scattering (ISS) and gave the first
theoretical treatment of it, fully classical and based in the
work of Shen and Bloembergen [19];here, as an applica-
tion of the theory developed, we show how this process

obtains with a nonresonant pulse. Certainly motivated
by the diFerent possibilities, further theoretical work has
been pursued by several others authors [8—10,13—17].
This article is also an efFort to add to the understanding
of these optical processes.

Most of the quantum-theoretical treatments of non-
linear optical processes in molecular systems, from the
classical works by Hellwarth [20] and Shen [21] to the re-
cent ones by Yan and Mukamel [8], Walsh and Loring
[13,14], and Pollard and co-workers [16] among others,
have been based in calculating the polarization of the sys-
tem relying on time-dependent perturbation theory. Typ-
ically, the system is assumed to have an electronic dipole
operator p, that linearly couples to the time-dependent
(external) electric field E(t) of the incident laser radia-
tion. Then, the polarization of the system is calculated as
the expectation value of the dipole operator in the molec-
ular state at a given time, via a wave function or density
matrix, and the diiferent contributions to the susceptibili-
ty are found by expanding such an expectation value in
powers of the external field; e.g., to third order in E one
finds y' '. This scheme is based on having weak fields. It
is of interest to note, however, that the classical treat-
ment of Raman scattering introduced by Shen and
Bloembergen [19], and used by Nelson and co-workers
[2,7,22], is not fully perturbative since in principle one
could solve the fully coupled equations of motion for the
fields and the Raman mode. Also, there has recently
been interest in dealing with strong fields of shaped pulses
by Tannor and co-workers [15],who perform exact calcu-
lations of the evolution of molecular models of two elec-
tronic states.

1050-2947/94/50(1)/763(16)/$06. 00 50 763 1994 The American Physical Society



VICTOR ROMERO-ROCHIN AND JEFFREY A. CINA 50

The purpose of this article is to present a theoretical
framework to deal with the interaction of radiation with
a molecular system, such that nonlinear effects such as
Raman are described in a noncompletely perturbative
fashion. Starting with, in principle, a complete formula-
tion of the problem, the result of the appropriate approxi-
mation is an effective Hamiltonian for the system that ex-
plicitly includes only those electronic states connected by
the resonant frequencies of the incident radiation, as mell
as the complete manifold of nuclear or vibrational states
of the molecular system. The other electronic states are
not neglected but their effect is taken into account by the
polarizability of the resonating electronic states. The idea
is to use the effective Hamiltonian to solve for the dynam-
ics of the system in an exact manner without further ap-
proximations as far as the radiation-matter interaction is
concerned. Besides being thus able to tackle nonlinear
effects more appropriately, one gains a better understand-
ing of the process. For instance, as a consequence of lim-
iting ourselves to absorption emission and Raman pro-
cesses but including the effect of all the electronic states,
one finds that one cannot consider arbitrarily strong
fields; otherwise, multiphoton processes must be includ-
ed. This physically expected property has, as a further
and important consequence, the fact that effectively re-
ducing the problem to two electronic levels results in a
description not correct at arbitrary short-time scales.
This is a theoretical improvement over, and points to the
limitations of models that start from the outset with two
electronic levels only [8,12,15]. Moreover, the present
theory indicates how higher-order multiphoton processes
can systematically be included.

%e also point out that since our interest here is the
state of the system prepared by the incident radiation,
and since the latter is supposed to be laser-type radiation,
we shall be dealing with classical fields. This is not a lim-
itation of our theory, were we interested in dealing with
the scattered or "probe" radiation, we should then in-
clude the field as a quantal dynamical variable. Walsh
and Loring [14] have shown that within the perturbative
scheme, differences arise in the scattered signal depend-
ing on whether the Geld is considered classical or quantal.
Also, as a consequence of dealing exclusively with classi-
cal fields, the Raman scattering is always meant to be
stimulated.

The resulting theory shares certain similarities with the
treatments proposed by Yan and Mukamel [12] and by
Tannor and co-workers [15]. In a sense, the present
scheme is also a generalization of the perturbation theory
proposed by Langhoff, Epstein, and Karplus [23]. Since
we want to deal with the resonating electronic states and,
at the same time, not lose the presence of the rest of the
electronic manifold, the theory is formulated in terms of
projection operators in Hilbert space; it is of interest to
mention that Seke [24] has recently proposed a theory
based on a similar projection formalism, though dealing
with other optical problems, namely the corrections to
atomic spectra due to electromagnetic interactions.

The theory is particularly well suited to deal with the
interaction of short pulses with molecular systems both in
the cases of resonance and off resonance of the central

II. EFFECTIVE HAMII. TONIAN WITH RAMAN TERMS

Although the following derivation can be made very
general, we shall specialize to a molecule interacting with
a laser pulse in the dipole approximation. Let H(t) be
the time-dependent Hamiltonian

H(t) =H~+ V(t), (2. 1)

where H~ is the molecular Hamiltonian. For the type of
internal mo1ecular motion in which we are interested
here, we shall assume the Born-Oppenheimer approxima-
tion to hold for all times. In this approximation the elec-
tronic states are given by ~n (R) ), so that

( n (R)~H~ ~
n (R) ) = T~+ 6„(R)—=H„, (2.2)

where T& is the nuclear kinetic energy and 6„(R)are the
electronic potential-energy surfaces. R denotes the nu-
clear coordinates. In writing Eq. (2.2) we have assumed,

frequency of the pulses with electronic transitions. The
treatment also allows for a clear description of one of the
main aspects of ISS, that is, that the laser pulses are
shorter than the vibrational molecular periods.

In Sec. II we present the formalism and derivation of
the effective Hamiltonian, including Raman interactions,
of a single molecule interacting with the radiation field.
It is assumed that the incident radiation is in resonance
with an electronic transition. As we shall see there is no
loss of generality in considering a single molecule and a
single electronic resonance. As an application of the
theory, in Sec. III we deal in more detail with the case of
a single molecule in interaction with an ultrashort pulse
off resonance with any electronic transition. %e show
that by virtue of Raman scattering, the pulse indeed "in-
stantaneously" transfers a certain amount of momentum
to the molecule, leaving it in a coherent state [22]. We
also show how to consider a train of such short pulses.
Specializing to a harmonic surface potential, we explicitly
show that a nonresonant pulse leaves the molecule in a
vibrational quasiclassical state, i.e., a minimum uncer-
tainty wave packet, as opposed to, say, merely a superpo-
sition of the n =0 and n =1 vibrational states. More-
over, the quasiclassical coherent nature of the state gen-
erated by nonresonant impulsive excitation makes possi-
ble a simple and illuminating analytical derivation of
selectivity of vibrational excitation by a train of pulses;
this has been rationalized by classical analogy [2] and
demonstrated numerically [12].

Section IV is devoted to a molecular crystal in interac-
tion with short off-resonance pulses; adapting the results
of Sec. II, we find the corresponding effective Hamiltoni-
an and show that two incident crossed pulses generate,
impulsively, a coherent "diffraction grating" of crystal vi-
brations in a direction transversal to the direction of the
incident pulses; we stress that the phonon wave-vector
selection (matching condition), as well as the conditions
for impulsive excitation, follow as straightforward conse-
quences of the use of the effective Hamiltonian. %e con-
clude the article with comments mainly regarding the in-
corporation of dephasing and relaxation effects.
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in particular, that there are no geometrical phase effects
[25]. The interaction term V( r) has the form

V(t) = —p.E(t), (2.3)

with p the electronic dipole operator, off diagonal in the
representation used, i e., &n(R)iV(t)in(R)&=0. The
laser field E(t) is here treated as classical and it is a given
function of time.

We consider the following physical situation. The mol-
ecule is initially at t = to in its ground electronic state and
it may be in an arbitrary nuclear state. A laser pulse hits
the molecule at time t =t; that is, the "center" of the
pulse passes through the molecule at t~. And we want to
describe the state of the molecule for times t ) t Let .0
be the central, or carrier frequency of the pulse, and let
~L be the time duration of it. We shall consider two
cases. First, there is in resonance, when 0=io, with ro,
being the 0-0 excitation frequency between the ground
and, say, the first excited electronic state; in this case,
there is an appreciable population transfer from the elec-
tronic ground to the first excited state. We will also can-
sider the off-resonance situation, which occurs when the
electronic population transfer is negligible. We could be
more precise and refer to in resonance when the carrier
frequency equals the frequency at the Franck-Condon
transition, since this could be much larger than coo 0.
With co„being a typical frequency of the active Raman
modes, the frequency scales of the problem are as follows:

co, Q &&zL & co„. (2.4)

In Fig. 1 these relations are illustrated. Note that in the
electronic time scales the pulse is very long.

Although our interest here is in laser pulses, it is im-
portant to note that for the development of the theory in
this section, it is not necessary that the field be a pulse.
Namely, since we want to deal with Raman scattering we
would only need to consider two monochromatic fields
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FIG. 1. Schematic potential energy surfaces of the ground
and 5rst excited electronic states of a molecule. ~,~ is the reso-
nant electronic energy, co, is a typical nuclear vibrational fre-
quency, Q is the central or "carrier" frequency of the laser
pulse, and ~L

' is the spectral width of the pulse. (a) The pulse is
in resonance with the electronic transition u~ =Q&&~L & co„.
(b) The pulse is off resonance with the electronic transition
~„&Q»~,-'& m„.

with frequencies Q& and Q2 such that Q, —Qz=co„with
r0, the frequency of the Raman active vibrational mode.
(And of course, one of the fields in electronic resonance
should also be considered. ) If the pulse is short enough
so that ~L ')co„, then there will be stimulated Raman
scattering with a single pulse, since many combinations
of two components Q, and Q2, such that Q, —Q~=~„,
are present within the pulse. This novel aspect due to the
shortness of the pulse and some of its consequences will
be discussed in the following sections.

As in any of these problems, we start with the time-
dependent Schrodinger equation, in the interaction repre-
sentation,

(2.5)

where

iy, (t) & =e '
II/(r) &

and

(i /A)H~ t (i lh)iHM—t

(2.6)

(2.7)

Equation (2.5) must be solved given the initial state
i1(il(to) &. Since our interest now is the radiation-matter
interaction Hamiltonian, we can deal with a wave-
function formalism instead of a density-matrix approach.
The latter is certainly necessary in order to correctly ac-
count for dephasing and relaxation effects. We defer to
Sec. V for further comments on how to include these
effects.

The idea now is to obtain an effective Hamiltonian that
involves only the electronic ground and first excited
states ig(R) & and ie(R) & and that includes the possibili-
ties of absorption emission and Raman interactions. The
resonance aspect is a one-photon process while the Ra-
man excitation is a two-photon process. The contribu-
tion of the former to the effective Hamiltonian should be
proportional to the transition dipole moment
&e(R)ipig(R)&, while the contribution of the latter
should be proportional to the polarizability of the mole-
cule. But the polarizability operator depends on the rest
of the electronic states different from ig(R) & and ie(R) &

[20], and therefore, the rest of the excited states should
Inake its presence through the polarizability of the mole-
cule. Thus, instead of simply disregarding those excited
electronic states, one can project them out in an appropri-
ate manner so as to not lose the effects of their presence.
This is done with the following projection operators:

P—= Ig &&gl+le&&el,

6=—1 —P= y /n&&nf,
nag, e

(2.8)

(2.9)

where the dependence of the electronic states on the nu-
clear coordinate R is implicit. Acting with these opera-
tors on Eq. (2.5), one obtains

iR—Pig, (t) & =PV, (t)Pi/, (t) )+PV,(t)ail', (t) &

8
at

(2.10)
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and

lA —Q~IP, (t) &=QV, (t)P~li, (t) &+QV, (t)Q~$, (t) & .
a
at

(2. 1 1)

and

P~g, (r, ) &=e ' '~g &~p, & (2.12)

(2.13)

Hence, solving the Schrodinger equation [Eq. (2.5)] is
equivalent to solving the coupled equations (2.10) and
(2.11) for P~gl(t) & and Q~gl(t) &, with initial conditions

where ~Pg & is the initial nuclear vibrational state.
The formal solution of Eq. (2.11), with initial condition

Eq. (2.13), is

Q~gl(t) &
= ——' f drexpT ——' f dr'QVI(r')Q QVI(r)P~&1(r) &,

0
(2. 14)

where expT( ) stands for the time-ordered exponential. Substitution of this solution into Eq. (2.10) yields a closed equa-
tion for the projected part

i% P~g—l(t) & =PVI(t)P~&1(t) &
— PVI(t)Q —f dr expT ——f dr'QVI(r')Q QVI(r)P g(r) & .

0
(2.15)

Thus, the solution of the original Schrodinger equation,
Eq. (2.5), is equivalent to solving Eq. (2.15) for P~gl(t) &

subject to the initial condition Eq. (2.12). Q~pl(t)& is
found afterwards from Eq. (2.14). So far, everything is
exact and we have simply rewritten the Schrodinger
equation in a form amenable for our approximations. We
note that Eqs. (2.14) and (2.15) are valid for any type of
external time-dependent potential V (t) and for projection
operators different from those given by Eqs. (2.8) and
(2.9), i.e., one can project onto more electronic states de-
pending on the type of external interaction. We also re-
call that a great deal of the usefulness of this projection-
operator scheme [26] rests on the initial condition for
Q~gl(to) &, Eq. (2.13). This condition allows us to end up
with an equation, albeit integrodifferential, for P~gl(t) &

only.
Again, we want to describe that a single pulse is cap-

able of producing electronic transitions and nuclear exci-
tation through Raman scattering. As other authors have
done [12,15], effects of this type can be included by com-
pletely neglecting the second term in the right-hand side
(rhs) of Eq. (2.15) and solving the problem exactly
(without relying on a perturbation-theory scheme). Mul-
tiphoton transitions, such as Raman, are still present due
to the presence of the nuclear vibrational states of the
ground and first excited electronic states. However, as al-
ready mentioned, this description is incomplete since Ra-
man scattering depends on the molecular polarizability,
which in turn is dependent on the whole manifold of elec-
tronic states [20]. Thus, although our procedure also
consists in reducing the description to a two-electronic-
state problem, we will keep, at the same time, the contri-
bution of the other excited electronic states to multipho-
ton processes. This relies on appropriately neglecting
real, but no virtual, population transfer to the Q mani-
fold. Our analysis, therefore, focuses on Q~ pl(t) & and in
the second term of the rhs of Eq. (2.15). We shall be
satisfied with including terms giving rise to the polariza-
bility tensor of the molecule, so as to properly handle Ra-

man scattering.
Thus, we want to obtain from Eq. (2.15) an effective

Hamiltonian for the P manifold, including one- and two-
photon processes. First, we note that the second term in
the rhs of Eq. (2.15) is an infinite series of time-ordered
terms such as

PVI(t)QV—I(ri)Q QVI(r„2)QVI(r)P, (2.16)

that is, involving matrix elements of the dipole operator n

times, from the P manifold to the Q manifold, again to
the Q manifold, and so on, and finally back to the P man-
ifold. Since each factor of the dipole operator is multi-
plied by E(t), each factor represents a one-photon pro-
cess, the whole term representing a n-photon process.
Since, by assumption, the initial population is only in the
P manifold and the resonance condition is only satisfied
between states within the P manifold, we are calling vir
tual the transitions to and within the Q manifold. The
leading-order term is a two-photon process, i.e., quadra-
tic in the field E(t), and it is responsible for Raman
scattering. Therefore, if the external field is not too
strong (see below) and one wishes to consider up to Ra-
man scattering only, this can be achieved by approximat-
ing the exponentials in Eqs. (2.14) and (2.15) by unity:

expT ——f dr'QVJ(r')Q =1, (2.17)

so that the only remaining term is

PVI(t)QVI(r)P .— (2.18)

This term represents first a (virtual) transition from the P
to the Q manifold, and then a second (virtual) transition
back to the P manifold. Below we will give the condition
for the actual transition rate from the P to the Q mani-
fold to be negligible.

Next, we realize that even with the above approxima-
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tion we still face a nonunitary time evolution with
"memory, "namely, the P state in the second term of Eq.
(2.15) is evaluated at the integration time variable r T. he
validity of both the unitary evolution and the "memory-
less, "or Markovian, approximations that we need to per-
form are mathematically based on the same quantity be-

ing small; their physical motivation, though, is different
and we introduce them separately.

I.et us first approximate

Plti, (r) & =PI1i,(r) &, (2.19}

and substitute into Eq. (2.15), together with approxima-
tion Eq. (2.17):

IA Pl/1(r—) & =PV~(r)PI/, (r) &

—i[A —(E —E )le]j~Xe (2.21)

drPVI(t)QVI(~)PI/(t) & .
0

(2.20)

The validity of this approximation is based on separation
of time scales. Namely, it is necessary that the time scale
of the evolution of the state PI/I(t) & obtained after per-
forming the approximation (2.19) be (much) longer than
the time scale of the integrand in Eq. (2.20). This approx-
imation is very similar to that one used in derivations of
relaxation equations, such as Brownian motion type
[27,28], in which the environment evolves in a much
shorter scale than that of the system under observation.
The penalty that one pays is that the equation thus ob-
tained does not correctly describe the evolution of the
state at time scales of the order or shorter than the time
scale of the integrand. As we shall see, it is in this short
time scale that the "virtual" transitions occur. We can
estimate the time scales involved as follows. Let us
neglect for the moment the nuclear vibrational degrees of
freedom (these evolve in a much longer time scale) and
suppose that we have only electronic energy levels E„.
Also, since (by assumption) the pulse is not short in the
electronic time scale we can consider a "monochromatic"
laser with frequency 0 and amplitude Eo. Then, the first
term in the rhs of Eq. (2.20) is approximately given by
p,,s Eo, where p,,s=(elplg &. Now, the main contribu-
tion of the e-e component of the second term in Eq. (2.20)
is given by

—f dr g p,„p„,:EOEoe
nee, g

We note first that there exists a term in the sum, say n',
which has the slowest oscillation frequency of the in-

tegrand, namely the smallest resonance off set
Q E—„E—, )/A; all the other terms in the sum oscillate
at higher frequencies. Evidently, the other components
g-g and e-g of the second term in Eq. (2.20) also oscillate
faster than the n ' term in Eq. (2.21}and we do not have
to worry about them now. Performing the integral in Eq.
(2.21) for the n' term yields the largest contribution of
Eq. (2.21) (assuming there is not much difference among
the different dipole moment matrix elements} to the evo-
lution of the state PI/I(t} &, which is

P ~P :EoEo

l(E„.—z, ) —ml
(2.22)

Therefore, for the separation of time scales approxima-
tion to be valid, the smallest frequency of the integrand in

Eq. (2.20) must be (much) greater than the (typical) fre-

quency of the time evolution of the state

l(E E, )/& —nl » Peg Eo
(2.23)

where we have assumed with no loss of generality that ei-
ther lp,sl ) lp, +I or that the first term in Eq. (2.20) dom-

inates. The important conclusion from Eq. (2.23} is that
the smallest resonance off set from the P to the Q mani-
fold must be greater than all the electronic "Rabi fre-
quencies" p „Eo/R in order for the separation of time
scales to be valid. In this sense we are restricted to
"weak fields. "An obvious but important remark is that if
it happens that one of the frequency components of the
pulse is such that the above condition, Eq. (2.23), is not
well satisfied, then one must reformulate the problem in-
cluding the electronic state ~n'(R) & in the projected P
manifold. This also tells us that we cannot prescribe a
general theory to deal with arbitrarily short pulses since
there will always be frequency components of the field in
resonance with more and more electronic states. The
shortness of the actual pulses is in the nuclear vibrational
time scales, as seen in Fig. l.

We now show that the above condition Eq. (2.23) also
renders a Hermitian evolution. This is because, due to
the nonresonance condition with the Q manifold, there is
negligible population there. To see that this is the case
we calculate the population in the 6 manifold with the
two-photon approximation Eq. (2.17) already taken into
account,

&@,{r)I68Iy,(r)&= ', f 'dr f dr'(gl(w)IPVI(~)av, (r')Pl@,(~')&

2 f d~ f dr'[{QI(r) IPVI(r)avl(w')PI gl(r') &+ (@l(~')IPVI(r')6 V~(~)PI)I(r) & ], (2.24}

where the second line follows from a rearrangement of the time variables. To be consistent with the separation of time
scales approximation we substitute the state at the earliest time w' by the state at the time r in the second line of Eq.
(2.24), thus obtaining
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& gt(t)laltttr(t) & =
2 f «&@I(r)l f '«'PV, (r)6V, (r')P+PV, (r')OV(r}P lyt(r) &

fi '0 '0

IJI P :Eo&o
(& 1 .

(E E—, ) +tri 0 (2.25)

That is, (at least) to the same order of approximation as the separation of time scales approximation, the population of
the 6 manifold is negligible. But, very importantly, this does not imply that the second term on the rhs of Eq. (2.20),

i lfi f dr'PVt(r)OVt(r')P,
t0

is also negligible altogether, but only its anti-Hermitian part. The Hermitian part remains and renders the evolution of
Plgt(t) ) unitary. In other words, the statement of unitary evolution in the P manifold is the same as no population in
the 6 manifold; i.e., probability is conserved within the P manifold.

Therefore, we finally arrive at the effective Schrodinger equation of our problem:

i' Plgt—(t)) =PVt(t)Plgt(t)) — f dr[PVt(t)CVt(r)P PVt(r—)QVt(t)P]lg(t)) .
Bt 2A '0

(2.26)

This equation is to be solved subject to the initial condi-
tion given by Eq. (2.12). To summarize, we have reduced
our problem to a two-level electronic system, i.e., only in-
volving lg(R) ) and le(R) ), and whose evolution is given
by an effective, Hermitian, time-dependent Hamiltonian.
The first term in the rhs of Eq. (2.26) accounts for absorp-
tion emission (one-photon process) between the two elec-
tronic states and the second term is the Raman interac-
tion (two-photon process). The latter consists of the po-
larizability operator as we show below but, of course, the
first term contributes to two-photon processes as well.

Although one could have anticipated the form of the
effective Hamiltonian, Eq. (2.26), it is important to point
out the relevance of its derivation. First, it shows the in-
terplay between the strength of the fields and the optical
processes considered, on the one hand, and the time
scales within which the description is correct [namely,
the description is not correct at time scales of the in-

tegrand in the second term of Eq. (2.26)]. And second, it
indicates how higher-order multiphoton processes, due to
resonances and/or stronger fields, can be systematically
included. In these regards, we mention that Yan and

H, tt(t) =H~' y,
' 'E(t)— dr E—(t).a' '(t —r).E(r),

0

(2.27)

where

H"'=lg &H, &gl+lH, &&el,

p
"'=

lg &y„&eI+ le &p„&g I,
and the (tensor) polarizability operator a' '(r) is given by

(2.28)

(2.29}

Mukamel [12] have arrived to an efFective Hamiltonian
such as Eq. (2.26) (i.e., quadratic in the external fields)
with a density-matrix formalism, but restricting from the
outset to a two-level electronic system, Tannor and co-
workers [15] also start from a two-level electronic system
without polarizability. From the present theory one can
see that if the system actually has more than two elec-
tronic states, care must be taken regarding the strength
of the external fields.

Undoing the interaction representation, the efFective
Hamiltonian in the manifold le(R}) and lg(R)) has the
following form:

(I/rt)H~(t t) —(i/A)H~(t —t) (i/ti)H&(t —~) (i/t()H)t(t —t)~—
2' (2.30)

and, for instance, its matrix element in the ground elec-
tronic state a'~' = & g la' 'lg ) is

noting that the Raman term in Eq. (2.27) has the form
—E(t) PM(t) with

ag (t r}= g [pg„p„(t r) pg„(t r)lt„g],gg 2g gn ttg g1t Ng
t

PM(t) =f dr a' '(t —r) E(r),
0

(2.32)

(2.31)
(I /A)0~I —(i I4)0~I

where ((t „(t):—&m le pe ln ). It should be
clear that a' ' is an operator in both the electronic P
manifold and the nuclear Hilbert spaces.

We have identified a' ' as the polarizability operator by

the molecular polarization vector (operator). It is in-
teresting to note that the form obtained for this polariza-
tion vector as a causal convolution of the external field
with the polarizability is what one would expect from
classical electrodynamics [29].
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III. OFF-RESONANCE ISS
WITH A SINGLE MOLECULE

In this section we analyze the effect of an abrupt pulse
whose central frequency is (for simplicity} below the 0-0
ground-first excited electronic transition [see Fig. 1(b)].
Since we are assuming that the duration of the pulse is
shorter than the ground vibrational period, this means
that within the spectral width of the pulse there are many
pairs of frequencies whose differences match the vibra-
tional frequencies. Thus, stimulated Raman scattering
occurs within a single pulse. We shall show that the
effect of the Seld is to "impulsively" transfer certain
amounts of momentum to the Raman active modes of the
molecule (the vibrational degrees of freedom in our exam-

ple}.
We use the general results of Sec. II but consider that

none of frequencies of the pulse are in resonance with any
of the allowed electronic transitions. Namely, we require
that the smallest resonance offset (from the ground elec-
tronic state) satisfies

l(E, Eg )/fi —col ))—p'eg 'Eo
(3.1)

where co is any frequency within the spectral width of the
pulse centered at Q. If Q «(E, E)IA th—en an adiabat-
ic approximation may be implemented [30] (see Appendix
A).

Due to condition (3.1), we, therefore, expect that the
population will remain in the ground electronic state and
the appropriate projection operator in this case only in-
volves the ground electronic state, i.e., 8=lg &&gl. The
resulting effective Hamiltonian, cf. Eq. (2.26), for the
ground electronic becomes

H,tt(t) =Hg —J dr E(t) a(t —v) E(r), (3.2)
0

where Hg=T~+8 (note that there is no absorption-
emission term). The polarizability has the form

a(t r)= . &gl—[p(t —~) p]lg & .1

2iA
(3.4)

In the rest of this section we will restrict ourselves to
external fields E(t} corresponding to a Gaussian trans-
form limited pulse,

g [PgnPng(t &) Pgn(t —&)P—ng] . —
nAg

This expression is essentially a~, Eq. (2.31), with the
diff'erence that the summation now includes all the excit-
ed electronic states. The polarizability can also be writ-
ten in the more compact form

x
Ek E( f—iQ—

1

Ek E+A—'Qk„m
(3.7)

where H„ l m„& =E lm„& are the eigenstates of the nu-
n

clear Hamiltonians in the excited electronic states. In
deriving Eq. (3.6) it is assumed that to is a time far in the
past so that E(to)=0 Equatio. ns (3.6) and (3.7}, with Q
set equal to zero in the denominators of the latter, were
obtained by Cina and Romero-Rochin [30] via the adia-
batic theorem and time-independent perturbation theory.

In general, ao is a complicated nonlinear function
(operator) of R. In order to keep the treatment as simple
as possible, besides not being a bad approximation, we
implement the well-known Placzek approximation by ex-
panding the polarizability to first order in R around the
equilibrium configuration R of the nuclei (in the ground
electronic state). Taking R—:0, one gets

ao
ao=ao+ Rk

k 0
(3.g)

where Rk denote the components of the nuclei coordi-
nates (not necessarily in three dimensions). The zeroth-
order term ao will give rise to Rayleigh-type scattering
and will be dropped in what follows.

For simplicity, we assume a one-dimensional nuclear
problem so that

ap
ap= R:—a'R,

M (3.9)

thereby defining the differential polarizability a'. The
Raman term is now written as

with r„a typical vibration period. We have been also ta-

citly assuming that Q»~„'. That is, the central fre-
quency is much larger than the vibrational frequencies,
but still smaller than any electronic transition; the rela-
tionships among the various frequencies are illustrated in
Fig. 1(b).

With the above assumptions, currently experimentally
available, the Raman term can be shown to reduce to (see
Appendix A)

7Et at —w Ew =EtEt:ao, (3.6)
f0

where ao is the polarizability at frequency Q whose (nu-

clear) matrix elements are given by

&mglaol1g &=-,' g g &mglpg. lk. &&k. lp.gl1g &

nAg k„

2~2~i
E(t) =Eoe ' cosQt, (3.5) —,'E(t)E(t): 'aR= V(t)R, — (3.10)

where Ep is the electric-field amplitude including its po-
larization, vL is the duration of the pulse, 0 is the central
frequency of the pulse, and the pulse reaches its max-
imum amplitude at the time t~. In frequency space the
pulse is a sum of two Gaussians centered at +0 and
width ~L '. A short, or abrupt, pulse means that ~L &&~„

and the problem for the nuclei thus reduces to solving the
following time-dependent Schrodinger equation

lA' —ly, (t) & =[H,(k)—v(t)u]ly, (t) &,
8

(3.11)

where
ling

(t) & is a vibrational wave function of the nuclei
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in the ground electronic state. We have written P to re-
mind ourselves of its operator character.

Formal solution of Eq. (3.11) is

(—i/S)H (t —
ttt) (i/S)pt(tA

"'gry t —e e
—( / ) ( ~ —

tN I) —(t/A)H (t2 —tl ) (I /fi)PI Ag N N —1 g 2 1

t
—(i/A')H t ('/ )J (i/S)H t

ly (t)&=e
' 'e " e

' '"ly (t )&,

(3.12)

(I'/X)H ~ —(i/~)H ~
where P(r)=e ' Re ' . We now need to
specify the Hamiltonian of the ground electronic state
and calculate the propagation of the state. Note that Eq.
(3 ~ 12} should also be valid for arbitrary shaped light
pulses as long as they are suSciently short.

To illustrate different aspects of Eq. (3.12) we discuss
two cases. First, we consider the case of an infinitely
short, or abrupt, pulse for an arbitrary ground electronic
surface. And second, we specialize to a harmonic sur-
face; several aspects, including the scattering of a second
delayed probe pulse shall be analyzed.

a. Infinitely short pulses: arbitrary potential energy
surface. Referring to the Gaussian pulse given by Eq.
(3~ 5), one mathematically obtains an infinitely short pulse
by taking the limit rt ~0, with i.t lEol constant. This
limit, of course, is meant in the time scale of the nuclear
vibrations; it is still long in the time scales of the electron-
ic transitions. Neglecting a term proportional to
cos(2Qt },since it does not effectively drive the transition,
we obtain a 5-function pulse,

(3.17)

where the pulses arrive at t „t2, ~ ~ ~, t~, and we have al-
lowed for different momentum transfer for each pulse.
Of course, one can amplify or diminish the amplitude
motion of the nuclear vibrations depending on the ratio
between the delay time of successive pulses and the
molecular vibrational period. A train of pulses appropri-
ately timed may also be used to selectively amplify or
filter among several Raman active modes since those not
in phase will not be amplified, besides being naturally re-
laxing [12]. Such effects can be seen more easily in a har-
monic surface, as we now discuss.

b Harm. onic potential energy-surface. The above re-
sults are valid for any one-dimensional energy surface po-
tential. We can gain further understanding by consider-
ing a harmonic potential, i.e., we assume

H =ficus(ata+ —,') . (3.18)

In order to apply Eq. (3.12) we need the position operator
P ( t), which is simply given by

V(t)=4&iri-~E()E() a'5(t —t. ),
such that

(3.1 3)

R(t)=
2M ')o

1/2

(ae '+a e '), (3.19)

exp v 7 7
ft tp

=exp
&err~

E()E() a'P(t ).

and substitution of this equation into Eq. (3.12) can be
straightforwardly shown to yield [32]

e exp —I dr V(w)P(r) e
to

That is, the interaction term becomes a momentum-
transfer operator (or momentum translation} with magni-
tude where

—(1/2)IP(t)~ iP (t)a iP(t)a ' 0 (3.20)

p =—,'&irrL E()E().a', (3.15)
1/2

P(t)= I dr V(r)e
2%Ifco() tp

(3.21)

and the time evolution of the state, Eq. (3.12), becoines

(3.16}

Equations (3.16) shows that from t() to the arrival of the
pulse t the system evolves under its Hamiltonian H . At
t = t the field transfers a momentum p with magnitude
given by Eq. (3.15) and for t & tp the system again evolves
under its own dynamics. Since we have assumed a weak
field one does not expect to obtain a large amplitude
motion, due to the momentum transferred [22,31]. In
principle, however, one can obtain larger amplitudes by
simply hitting the molecule with a train of pulses [18],
i.e., ultrashort pulses separated by time intervals longer
than the duration of each pulse. The result follows
straightforwardly and is given by

With this result several aspects of ISS can be easily
seen. First, we show that after the passage of a short
pulse (or pulses) the system is left in a coherent state. For
a harmonic potential this is best exemplified, since for an
initial state with population only in its ground vibrational
state the coherent state for later times corresponds to the
so-called quasiclassical state. That is, let ltltg(to) & = lOg &,

with l0 & the ground vibrational state. Then, with Eq.
(3.20) we obtain

' o" 'o'e —()/2)l(s(t)l'(e~P*(t) l0 & )

(3.22)

That the above is a minimum uncertainty wave packet
can be seen by writing it in its position representation,
(t (& t)=&&I&,(t)&,
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' 1/4
Mp —(i/2)cd(t —t0) —(1/2h, )[R —R0(t)] +(i/fi)P0(t)[R —R0(t)]+(i/fi)S0(t)

P, (R, t) = 0 0 e (3.23)

where h, =(A/Mcop)' is the width of the wave packet.
R p(t) and Pp(t) are the position and momentum expecta-
tion values, i.e., the values at the center of the wave pack-
et:

R (t)=(Q (t)~R~&, (t)&

Rp(t) =Rzsin(copt+P),

where the total amplitude Rz is given by

R z Rp +Rp +2Re Rp coscopt~

(3.31)

(3.32)

7 'T sincop t T
MNp &p

(3 24)
and the phase p is

R~ slncoptg)
tang=

R +R,coscoptD
(3.33)and

Pp(t)=($ (t)~P~P (t))=f d~V(~)coscop(t —~) .
0 Equations (3.32) and (3.33) show that depending on the

ratio of the vibrational period to the delay time the am-
plitude of the vibrations can be amplified or diminished,
e.g., for in phase, coptD =2nm, maximum amplification is
achieved. Clearly, if there are several Raman active
modes present, the above discussion shows how selectivi-
ty of a particular mode can be achieved; this is due to the
quasiclassical coherent nature of the state generated by
the nonresonant excitation.

Thus, the impulsive aspect of the interaction and the
coherence of the resulting state is fully demonstrated and,
indeed, the analogy of a "child in a swing" is quite ap-
propriate [22]; however, it is worth pointing out a
shortcoming of this analogy. When pushing a swing, the
momentum transfer is at the turning point (where poten-
tial energy is maximum), while the momentum transfer
by successive ultrashort light pulses occurs at the point of
maximum kinetic energy, where it is most effective in fur-
ther increasing the energy. We recall once more that al-
though the minimum uncertainty wave packet, Eq. (3.23),
is a coherent state with occupancy probability difFerent
from zero in all vibrational states, in an actual realization
the occupancy will be mainly in the first few states (con-
sistent with a weak-field approximation). But as we have
shown, a train of pulses timed in phase with the oscilla-
tion can, in principle, increase the vibration amplitude.
Although this has been known for a while [2], technical
problems have prevented the realization of trains of
pulses that could transfer enough momentum to the mol-
ecule so as to produce a large vibration amplitude. Vari-
ous schemes have been proposed to rectify this situation,
based mainly on resonant pulse shaping [33] and on the
use of sequences of appropriately phase-locked pulses
[31]. The present theory can handle both cases.

The results given by Eqs. (3.28)—(3.33) have been ob-
tained by Yan, Gamble, and Nelson [7] in their treatment
using classical mechanics. Their spectroscopic results,
such as the spectral changes of the scattered pulse (e.g.,
being blueshifted if in phase with the vibration and red-
shifted if out of phase) also follow from the present
analysis. For this, we assume the probe pulse is "weak"
and, therefore, one can use it as the "source" field in the
wave equation for the scattered field E„the polarization
P of the medium; i.e., we should solve

(3.25)

(3.27)

and, therefore, from Eq. (3.24) we find that for t ( ti, —
the vibration amplitude Rp=0, and for t+tD&~t its
value is given by

—
cu07~/4 .Rp(t)= T LEEpp:a' e ' sincop(t +tD )

4Mcop

From this equation we find that the condition for the
pulse to be impulsive is

too'4 (1 (3.29)7

that is, the vibrational period must be shorter than the
duration of the pulse or, equivalently, the spectral band
of the pulse must be broader than the vibrational frequen-
cy. This is the expected condition to have stimulated Ra-
man scattering within a single pulse [7].

Now consider that a second pulse impinges on the mol-
ecule at time t =0. Let the amplitude of this pulse be E .
Since the delay time tD is much greater than the duration
of the pulses, the first and second pulses do not overlap
and we find from Eq. (3.24) that for t & 0 the amplitude of
the vibrations is simply the sum of the two amplitudes
produced by the pulses,

(3.30)Rp(t) =R sincopt+R, sincop(t + tz ),
where the amplitude R, can be read off Eq. (3.28} and R~
is given by an analogous expression by changing Ep by
E~. Equation (3.30) can be written in the more con-
venient form

The phase Sp(t) in Eq (3.2.3) is the classical action of the
parameters Rp(t) and Pp(t) =MR p(t), i.e.,

Sp(t) = f dr( ,'MR() ———,'MtopR p ) . (3.26)
t0

Equations (3.23)-(3.26) are valid for any short pulse.
Suppose now that the pulse has the Gaussian form as in

Eq. (3.5) and suppose that its passage occurs at t = tD—
with tz && —tp and t~ ))~L . Hence, we have

—(7.+tD) /PLV(r }=—,
' EpEp.a'e
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n' a' 4~ a'
VX[VXE,(r, t)]— E,(r, t)= P(r, t),

c Bt c Bt

(3.34)

with P the polarization of the medium

P(t)=$ I dr((t, (t)~n(t —r)~(t, (t) &.E, (~)
0

=X@'.E,(t)R, (t) . (3.35)

IV. OFF-RESONANCE ISS
IN A MOLECULAR CRYSTAL

In this section we formulate the theory for a molecular
crystal interacting with short laser pulses off resonance
with the electronic transitions. As an example of this
treatment, we shall show that the simultaneous passage
of two crossed short laser pulses creates in the system, via
stimulated Raman scattering, a coherent standing wave
of lattice vibrations (optical phonons), i.e., the so-called
phonon diffraction grating [2]. The model for the molec-
ular crystal is a linearly coupled exciton-phonon system
[34]. This system represents a crystal of molecules with
two electronic states (excitons) in linear coupling with the
lattice phonon modes. This model has been extensively
used to study transport properties in molecular crystals
and in the present context has also been studied by Walsh
and Loring [14]using perturbation theory.

The Hamiltonian of the crystal is

In the above equations, N is the number of molecules per
unit of volume in the sample, n the index of refraction of
the medium, and c the velocity of light. In order to ac-
count for the special dependence of the fields, one makes
the transformation t~[t (n —jc)z] in the time depen-
dence of the incident fields, cf. Eq. (3.5), assuming z is the
direction of propagation of the fields. For the details of
the consequences of Eqs. (3.34) and (3.35), see Ref. [7].
The last point we want to emphasize here is that by vir-
tue of Eq. (3.24) for Ro(t), where we find its dependence
quadratic on the field Eo, and Eq. (3.35) for P(t), we can
see that the optical process is of the type y' ' and the cor-
responding susceptibility can be read off Eq. (3.35).

excitonic hopping among different sites, necessary for a
correct description of transport properties but not so for
the present purposes. Moreover, the limitation to a
molecular crystal with two-level molecules only does not
prevent us from capturing the essential aspects of the po-
larizability, especially for the off-resonance condition
here discussed; this is because the system actually has
many (infinite in principle) electronic states, two in each
site. This will become clearer below.

The radiation-matter interaction potential, in the
electronic-dipole and quasiclassical approximations, is
given by

V(t) = —g p„E(R„,t), (4.3)

where p„ is the electronic-dipole operator of the molecule
at site n,

p„=p,(a„+a„), (4.4)

where ~s„& are electronic states with s„=0and s„=1 for
the exciton at site n in its ground and excited states, re-
spectively.

~
m

q & are the occupation number states for
phonons of wave vector q, with m =0, 1,2, . . . .

With the use of the following unitary operator,

U =exp — —g y"(b b)a„a„—1

q q l! n (4.6}

it is well known [34] that the system Hamiltonian H, is

diagonalized as

H, =UH, U

=A'g co a "a„+Pig coqbqbq

with p the transition dipole moment of each molecule.
Note that the (classical) electric field E(R„,t ) in Eq. (4.3)

not only depends on time but is also evaluated at each
molecular site n.

The crystal states, which we shall denote as ~%&, are
sums of products of the type

(4.5)

H, =H, +H I, +H, pg

=R g cg, a„a„+Pig toqbqbq
where

n n'4
q n n' n n' ~

In, n, q

(4 7)

+ —g co~q(b q+bq )a„a„,q q q I! I! (4. 1) Ne —N g COq/gq/

q

(4.8)

where the operators a„create an excitation of the mo1e-
cule at site n, while b create a phonon of wave vector q.
Rcu, is the electronic excitation energy of a single mole-
cule and mq is the frequency of the normal mode of wave
vector q. The electron-phonon coupling coefficient is
given by g", and due to translational symmetry it obeys

The operator U, Eq. (4.6), also transforms the dipole
operator, which is then expressed in terms of "dressed"
excitons,

p„=Up„U

1=p a„exp — g y"(b —bt )q

n n+ q n (4.2}

where R„ is the vector position of site n in the crystal. In
writing Eq. (4. 1}we have not considered the possibility of

(4.9)+a„exp g y"(b b t)—1
'q q q
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The crystal state is accordingly transformed as

I4 &
= Ule&.

The physical problem is that initially at to, the crystal
is in a state with all of the molecules in their electronic
ground states and, in general, the phonons are in an arbi-
trary state, i.e.,

J dr[t Vr(t(QVr(r)'P

—PVt(r)6VI(t)P)Pl@I(t) ), (4.13)

le(t, ) &
= Io&N Iq,„(t,) &, (4.1(}) where

where IO) =g„ls„=0). At a later time a laser pulse, or
several laser pulses, hit the crystal. The pulses are such
that none of their frequency components are in resonance
with the electronic transitions (0, . Therefore, after the
passage of the pulses the crystal remains with the exci-
tons unexcited, but the phonon modes will be coherently
excited due to stimulated Raman scattering; our purpose
is to describe this state.

Therefore, the appropriate projection operators for this
case are

(i /i()H, t - ( i /S—)H, t
(4.14)

and the tildes refer to the operators unitarily transformed
by U.

Since all the molecules remain in their ground states
[not that there is no absorption-emission term PVt(t)P in
Eq. (4.13}]the problem reduces to an interaction between
the lattice phonons and the radiation field. This can be
made explicit by multiplying on the left of Eq. (4.13) by
(Ol; by undoing the interaction representation at the
same time, we obtain

P= IO&(OI, (4.11}
t'A' —I%„(t)& =H, (t)le,„(t)),

t
(4.15)

and @=1 —P projects onto all crystal states such that
there is at least one excited molecule. It is straightfor-
ward to verify that, cf. Eq. (4.6),

where, very importantly, the state l+~h(t) ) is the actual
phonon state without the transformation U. This is be-
cause the molecules remain in their ground electronic
states; namely, the crystal state at all times t is

UPU =P . (4.12)
I%(t) &

= IO) 8 I%,„(t)),
and, therefore,

(4.16}

We now follow the procedure and approximations
presented in Sec. II and arrive at the corresponding
effective Schrodinger equation, in the interaction picture,

I+(t) &
= Ul+(t) &

= I+(t) & .

The effective Hamiltonian in Eq. (4.15}is given by

(4.17)

H, tt(t)=H „fdr—gg g [ E(R„,t) E(R'„,~):(Olp„IN)(Nlp„(t —r}IO)
tt tt' NAO

—E(R„,r)E(R'„,t):(Olp„(t —r)IN &(Nlp„, lo&],

where IN ) denote all excitonic states with at least one excited electronic state; and
—(i/S)H t (i/S)H, t

p„ t =e *p„e

(4.18)

(4.19)

We now evaluate the second term in Eq. (4.18) to explicitly find the polarizability of the crystal. First, it is straight-
forward to find that

(Ol p„ IN ) =p(OI a„ I 1„)exp g yq(b q
—bqf )

1
q q q

1=y5) Nexp ~ gyq(b btq) (4.20)

where I 1„)= ls, =0) Is2=0) ls„= 1 ) is the state with only the molecule at site n being excited; the second line
follows from the orthonormality of the states. Moreover, it can also be easily verified that

(i/A)H t. . . iso t (i/fi)H ht 4.21)

811d

(i/s)H
tl ) I )

(i/s)H ht (4.22)

Use of Eqs. (4.20}—(4.22} in Eq. (4.18) yields the effective Hamiltonian for the phonon part of the crystal in interac-



774 VICTOR ROMERO-ROCHIN AND JEI'1'KEY A. CINA

tion with the radiation field:

H,(r(t}=H&&— I Q E(R„,t)E(R„,r) e ' exp —ggq(b q
b—q) e

n
q

Xexp (4.23)

= I+ X &q(b -q —
bq )

1

q
(4.24)

We consider Gaussian laser pulses of the type
'2

r
E,(r, t ) =Eiexp — t—, 2'

I'r
, +Pi

C
(4.25)

Within the approximations of weak fields, separation of
time scales and unitary evolution in the P manifold dis-
cussed in Sec. II, the above Hamiltonian is quite general
for the crystal model that we are using and correctly
takes into account the two-photon type of interactions.
The precise form of the field is also arbitrary.

In order to illustrate predictions of the theory and to
make comparisons with other works, we now implement
the one-phonon, or Placzek, approximation and special-
ize to laser pulses. Note that in the polarizability, the
second term of Eq. (4.23), there appear all types of possi-
ble phonon excitations; namely, given appropriate fields,
it is possible to generate I, 2, 3, or any number of phonon
excitations. For simplicity, we shall limit ourselves to
Raman processes in which only one phonon is created or
annihilated. This corresponds to the picture in which a
photon of frequency Q) interacts with the Raman active
mode of frequency mq, and as a result a phonon of fre-

quency co~ is created (annihilated) accompanied by a scat-
tered photon of frequency 0&+coq. We will see below
that this situation corresponds precisely to the Placzek
approximation. Thus, we approximate

exp + gyq(b q
bst)—1

q

I

where the subindex I differentiates among the difFerent
pulses present in a given situation. Ei includes the mag-
nitude and polarization of the field, the vector ki denotes
the direction of propagation of the pulse, c' is the speed of
light in the medium, QI the central or carrier frequency,
and P& is an arbitrary phase.

With the one-phonon approximation, Eq. (4.24}, and
for pulses all with their carrier frequencies equal to 0, in
Appendix 8 we show that the efFective Hamiltonian
reduces to

H, (f(t) =Hp), +Ha (t),
where the Raman Hamiltonian Ha(t) is given by

(4.26)

H„= —g g cog"a, :E(R„,t)E(R„,t )(b ~+bq ),1

2(ri N

(4.27)

where a, is an electronic polarizability tensor given by

1 1

(co, —0} (co, +0} (4.28)

In obtaining this expression we have assumed that (a) the
off-resonance condition is obeyed by all the frequency
components of the laser pulses, (b) to is a time far in the
past such that E(to) =0, (c} the (optical) phonon frequen-
cies coq « ~Q —r0, (, and (d) we have dropped terms giving
rise to Reyleigh-type scattering (see Appendix B}. From
Eq. (4.27) we see that indeed the one-phonon approxima-
tion is equivalent to the Placzek approximation: the po-
larizability is linear in the normal-mode coordinate

Q -b q+bq.
Having found the effective Hamiltonian, the time evo-

lution of the state of the crystal is given by

~e,„(r))=e (i/s)H bt — i t (i/s)H ), ~ —(i/'s)H ), ~ (i /A)H& ~) io

0

(4.29}

To illustrate predictions of this theory, we now show how two noncollinear short laser pulses impulsively create a
coherent diffraction grating in the crystal [2]. For this, let the external field be given by

E(r, t ) =E,(r, t )+E2(r, t ), (4.30)

where E, and Ez propagate along difFerent directions k) and kz. Considering only the cross term E){R„,t)E2{R„,t)
and assuming that both fields have the same polarization and amplitude Eo, the integrated term in Eq. (4.29) becomes
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r ~ (ill}H h~ —(s/A}H „~dre '" HE(~)e~tp

I

a, :EpE0 —f dr f d(o f d0)'++0)gqs(p))e(p)')e'" "'exp i k, ,
—k2 —,+q R„

2~v N '0
n q

c c

(4.31)

where

—(s)—0) Hi /2 (m+0—) ri/2
e(0) =—'e L +e

2
(4.32)

First, we note that by performing the sum over n we get
P

1 g g
+exp i k, ,

—k2 —,+q R„c' c'
T

=~N5 k(, —k2 —,+q (4.33}

that is, phonons wi11 be excited if their wave vector q
obeys the matching condition,

(4.34)

Since the values of co and co' are within the spectral width
of the pulses, it is clear that many phonons will be excited
within a certain band around the "central" wave vector
given by

*q,=*(k,—k, )—,—=k, —k, ,
0
c

(4.35)

which will have the strongest intensity. Now, since both
wave vectors (+, for each selected pair} will be equally
excited, it is then clear that a standing wave will ensue in
the crystal that, in turn, will create a (temporary}
diffraction grating from which a delayed pulse can be
scattered.

Note also that for short pulses and thin samples, we
can extend the limits of the time integration to ka&.
Hence, integration over r yields factors 5(0)—0)'+0)q)
that indicate that, in addition to phonon wave-vector
matching, frequency matching must also be satisfied. For
optical phonons this does not present a problem since the
corresponding dispersion relations are usua11y very Bat.

For definiteness and simplicity in the calculation, let us
assume a single optical-phonon branch with frequency
coq cop for all values of q, and keep only the wave vector
qp in Eq. (4.31}. All the integrals can now be performed
and we obtain

i E &m~N — ~2EP~/4—
ae 0 0 4

p)ErLe

X l(Xq,b-q, +Xq,b —q, )+(X-q,bq, +X'-q,bq, )1 .

(4.36)

%'e note from this equation, again as in Sec. III, that the
condition for impulsive Raman excitation is that the
duration of the pulses be smaller than the vibrational

I

period, i.e., cozrL &1. The expression (4.36) enters into
the evolution of the crystal state, cf. Eqs. (4.29) and
(4.31), in the same way as in the case of a single molecule
with a harmonic ground electronic potential-energy sur-
face [see Eqs. (3.18} et seq.]. Therefore, without repeat-
ing the mathematical details here, we can see that by vir-
tue of Eq. (4.36) all the phonon states with wave vector
difFerent from +qo will be left unaffected while those
satisfying the wave-vector matching condition will re-
ceive an instantaneous momentum transfer and a
coherent standing wave with wave vector qp will be pro-
duced. In particular, if initially those phonon states are
not excited, after the passage of the pulses they will be
left in a bona /de coherent or quasiclassical state. Since,
in fact, a whole band of phonons is excited, however nar-
row, in the course of time there will be an effect of loss of
coherence in the diffraction grating thus produced, in ad-
dition to loss of coherence due to anharmonic couplings
and relaxation effects.

V. COMMENTS

In this article we have presented a simple theoretical
framework to study impulsive stimulated scattering from
molecular systems. These results should have immediate
application in molecular systems in gas, liquid, and solid
phases. The main result is the derivation of an effective,
Hermitian Hamiltonian for the radiation-matter interac-
tion that accounts for absorption-emission interaction
among the possible electronic resonances, as well as Ra-
man interactions with the vibrational or nuclear degrees
of freedom. It is important to stress several aspects: (a)
One must know in advance whether there are electronic
resonances or not in order to define the manifold of elec-
tronic states in which the effective Hamiltonian acts; (b)
the theory gives a systematic procedure for an effective
inclusion of multiphonon processes; (c) since the time
evolution is approximated as unitary within the manifold
of the electronic states involved in the resonance, the en-
suing dynamics are only correct in time scales longer
than the inverse of the smallest electronic resonance
offset, cf. Eqs. (2.22} and (2.23); this in turn shows that
one cannot consider arbitrarily strong electric fields. It is
within this short time scale that the population is not
conserved within the resonance manifold, and when the
virtual transitions take place.

The theory is well suited to deal with ultrashort light
pulses which, depending on the dynamics to probe, may
be in the picosecond or femtosecond time scale. We have
analyzed in more detail the case in which the light pulse
is off resonance with any electronic transition. With the
physical assumption that the molecule remains during
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the whole interaction process in its ground electronic
state, we have demonstrated the impulsive aspect of the
radiation as well as the coherent excitation of the mole-
cule; the previous results of Nelson and co-workers [2,7]
using classical mechanics are, therefore, completely
recovered. We emphasize that because we use the
effective Hamiltonian we are able to follow the dynamics
without resorting to perturbation theory; of course, the
simplicity of the systems chosen allows for an analytical
calculation. But besides giving a more fundamental foun-
dation to the classical theory, our treatment offers a
greater potentiality. For instance, we can deal with more
realistic potential-energy surfaces and with electronic
transitions; the time evolution would have to be per-
formed numerically, but there are already well developed
techniques to propagate these types of states. Note that
the problem becomes relatively simple the moment that
one linearizes the polarizability operator, i.e., the Placzek
approximation Eq. (3.8); but one could just as well keep
the full expression for the polarizability. As seen in Sec.
IV, the theory can be easily adapted to describe molecu-
lar crystals with Raman active modes in interaction with
short pulses; the frequencies and wave-vector matching
conditions again are consequences of the use of the
effective Hamiltonian in an otherwise exact calculation.
As an application, we have analyzed the typical geometry
of two crossed pulses that generate a diffraction grating

We have kept the treatment as simple as possible and
have not tried to include very important effects such as
loss of coherence and relaxation. These effects can be im-
plemented by switching to a density-matrix formalism
once the effective Hamiltonian has been obtained. Relax-
ation terms can be added in the manner of Redfield [35]
or with any other of its variants [36]. That is, the equa-
tion for the density matrix p(t} is

p(t)= [H,~(t},p{t))+Rp(t),1

where A is a relaxation operator. Of course, one can also
include relaxation in a more phenomenological fashion;

for instance, in our example of a harmonic surface, this
effect can be easily included by multiplying Ro(t), Eq.
(3.28), by e r', with y a damping coefficient. Other
effects, such as inhomogeneous broadening and thermal
effects, can be achieved by considering an assembly of
molecules with a given distribution of frequencies and by
assuming the system to be initially in thermal equilibri-
um. A11 these effects, although essential for the explana-
tion of observable phenomena, are not needed to eluci-
date the main aspects of the radiation-rnatter interaction
with which we are dealing.

Finally, a more complete theory along the lines here in-
troduced that would fully describe the whole spectro-
scopic process should take into account, on the one hand,
the depletion and/or gain of the incident pulses resulting
from the creation and/or annihilation of vibrations in the
medium. In other words, one should take into account
the dynamics of the field and solve the coupled evolu-
tions. On the other hand, the theory should also take
into account that the 6elds are also quantal; for the in-
cident pulses this does not present a problem since lasers
are, in fact, "quasiclassical" radiation states, but for the
scattered pulses this aspect is of particular importance.
Walsh and Loring [14] have shown, at least within per-
turbation theory, that differences may arise depending on
whether the scattered Gelds are considered quantum or
classical.

It is our hope that this treatment mill serve as a com-
plement of the already used theories and that it will add
to the understanding of the spectroscopic phenomena
that can now be achieved, in a more or less routine
fashion, due to the remarkable experimental advances.
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APPENDIX A: DERIVATION OF EQ. (3.6)

We want to evaluate the integral

I(t) —= I dr E(t) a(t —r) E(r),
tO

with E(t) given by Eq. (3.5) and a(t —r) by

(A 1)

i i i, (il ) S~H(t —t) —(i/A)H~(t —t') (il )Hti~(t —t') (ilk)H~(t —t),
2A' „~

(A2)

Using the Fourier decomposition of E(t),

(A3}

Then, taking matrix elements of I (t) between two vibrational states ( ms ~
and

~ lg ) and performing the integral over r in

Eq. (Al), we get
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(m, ll(t)I(g)= E(t)EO:XX+ k pk, f dm(e +e ' " +"' '}
n+gk„

I'(~k I
—~)t i(Nk I

—co)tp
I ctlk I f p n g p tl g

X

INk

+~ lt g

—&(k —co)t —I (cok —ap) t pk m k m

~km+
Jl g

(A4)

where cok ~ =(&k —E~ )/A'.
n g tl g

Now, due to the Gaussian amplitudes in the integrals, co is restricted to values ~co~ Q+rz, and since ail the
incident-field frequency components are off resonance with all the electronic transitions, we can safely evaluate the
denominators at co= A. (In the extreme adiabatic case we can approximate co=0.)

With this approximation the integrals over co can be performed. The term proportional to e '"' yields back E(t),
while the term proportional to e gives E(to); the latter is further approximated as E(to) =0, since to is a time far in
the past.

The final result is

( me ~
I( t ) ) lg ) =E( t )E( t):( mt ~ ao ~ lg ),

which is Eq. (3.6) with ao given as in Eq. (3.7).

(A5)

APPENDIX B: DERIVATION OF EQ. (4.27)

We start from the Raman part of the effective Hamiltonian, Eq. (4.23),

H„(t)=— jt Q E(R„,t )E(R„,r) e ' exp g yq(b q bq ) e-
n

q q q

q q q (B1)

Introducing the one-phonon approximation, Eq. (4.24), we get

Hz(t)= — J QE(R„,t)E(R„,r) @is
p n

)]—H. c. . .

(B2)

The first term gives rise to Rayleigh (elastic) scattering and will be dropped in what follows. Introducing the Fourier
transform of the field into Eq. (82),

E(R„,r)= —I dcoe " s(co),
2)r

where

—(m —n) /2 7L(ra+0) 2&—/2+e

(B3)

(B4)

and performing the integral over r yield terms with denominators (co+co, }and (co+co,+co },similarly to the case in Ap-
pendix A. Assuming for definitude a far from resonance field co, »co»co for all frequencies co within the pulse, we
can approximate in the denominators co=A. With this approximation one can perform back the integral over ~ of the
Fourier decomposition (see Appendix A) and obtain terms proportional to E(R„,t }and E(R„,tz); the latter is negligi-
ble if tz is a time far in the past. This yields Eq. (4.27).
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