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Lasing without inversion with a fluctuating pump: Gain dependence on pump noise and frequency
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Recently it was reported that replacing an incoherent pumping mechanism by a spectrally colored
(partially coherent) pump can lead to significant gain enhancement in lasing without inversion schemes
[Phys. Rev. A 48, R4055 (1993)]. We extend that study further by considering the effects of the noise pa-
rameters (strength and bandwidth) of the pump on the gain in two types of three-level atomic energy-
level schemes—the ladder and the A models. The calculations presented in this paper show a way to
continuously “tune” the bandwidth of the pump and make a direct comparison between the gain ob-
tained for coherent, incoherent, and partially coherent pumping. We find that for a given set of atom-
field parameters, the gain for coherent pumping is larger than for incoherent pumping, and that max-
imum gain is obtained for a partially coherent pump. Increasing the strength of the noise also leads to
an increase in the gain. The frequency of the colored pump plays a critical role in determining the max-

imum gain that can be obtained.

PACS number(s): 42.50.Md, 42.65.Vh

L. INTRODUCTION

Several lasing without inversion (LWI) schemes have
been reported in the literature in the past few years
[1-6]. Inversionless gain in two-level atoms has been in-
vestigated [7,8] and much attention has been focused on
three-level atomic schemes, which include the ladder, A,
and the ¥V models [9-11]. While several of the schemes
for LWI originally proposed had no inversion in the bare
atomic states, there was hidden population inversion in
the dressed atomic states. Imamoglu, Field, and Harris
[10] reported a three-level A model which showed lasing
without population inversion in any basis set and this
gain was analyzed by Agarwal [10] and shown to be aris-
ing from coherence between the dressed states. The effect
of various atom-field parameters on the gain and other
properties of these systems have also been thoroughly in-
vestigated. More recently, a four-level LWI scheme with
a single coherent pump has also been reported [12] and
some workers have reported on the quantum properties
of LWI 'systems. These lasers possess mnarrower
linewidths due to reduced spontaneous emission and the
radiation exhibits other interesting quantum statistical
properties such as squeezing and sub-Poissonian statistics
[12-14]. One reason for such intense study of LWI
schemes is the possibility of obtaining enhanced refrac-
tive indices with minimal absorption, as pointed out by
Scully and co-workers [15]. Lasers based on LWI
schemes also offer the tempting possibility of generating
radiation in regions of the spectrum where conventional
lasers are difficult to operate. While several of these LWI
schemes have relied on an incoherent pumping mecha-
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nism to place the population in the upper state of the
relevant lasing transition, recently Agarwal, Vemuri, and
Mossberg reported that the use of a partially coherent
pump for the population pumping process can lead to a
significant enhancement in gain [16]. (We will refer to a
pump with linewidth much broader than the transition
width as an incoherent pump and one with linewidth
comparable to the transition width as colored or partially
coherent.) The motivation for replacing an incoherent
pump by a partially coherent pump arises from experi-
mental considerations where it is often more convenient
to use a laser to transfer population to the upper lasing
levels. Since lasers typically have linewidths comparable
to or less than the linewidths of the atomic transitions of
interest in LWI studies, it is of interest to investigate the
effects of such a pump on the gain in LWI systems. The
study in [16] was done on a three-level ladder scheme,
relevant to the '3¥Ba atom, and showed that using a par-
tially coherent pump instead of an incoherent pump, one
can realize gain increase by a factor of 2 to 3, for a given
set of atom-field parameters.

Replacing an incoherent (broadband) pump by a par-
tially coherent (colored) pump introduces some addition-
al complexities into the density-matrix equations of the
atom-field system. For incoherent pumping one can use
traditional techniques developed in the context of treat-
ing Markovian processes and thus use the decorrelation
approximation to decorrelate the atom and field parame-
ters. In this case one is in the rate equation regime where
only the strength of the noise enters into the problem and
the gain can be calculated analytically, at least in princi-
ple (the complexity of the equations for three-level sys-
tems may still make numerical calculations necessary).
For purely coherent pumps the gain can again be calcu-
lated analytically. The problem becomes severe when one
has to deal with partially coherent pumps, since the

747 ©1994 The American Physical Society



748 GAUTAM VEMURI AND DONALD M. WOOD 50

decorrelation approximation is no longer valid. One has
to explicitly incorporate the strength and the bandwidth
of the noise in the calculations and we have found that
Monte Carlo techniques are especially useful in this con-
text [17]. An additional aspect of introducing the colored
pump is that one has to account for its frequency and
determine the optimum frequency at which the colored
pump is most effective. For incoherent pumps, the fre-
quency of the pump is irrelevant since the spectrum of
the pump is much wider than the transition width of in-
terest and one cannot meaningfully talk of the pump be-
ing on resonance or being detuned from the transition.

In this paper we conduct a systematic study of the
effect of the noise parameters of the fluctuating pump on
the gain in LWI schemes. We focus attention on two
types of three-level atoms, the ladder and the A systems.
The noise parameters that enter into our discussion are
the strength of the noise and the bandwidth of the noise.
We also show that the frequency of the colored pump is
an important factor in determining the maximum gain
that can be obtained.

II. LANGEVIN EQUATIONS FOR LWI SYSTEMS

Ladder systems

The three-level ladder system that we consider has
been described in [16] and we briefly summarize the main
points here. The energy-level scheme is shown in Fig.
1(a), where a strong, coherent, monochromatic pump at
frequency o, couples states |2) and |3). The upper tran-
sition |1)«>|2) is coupled by the colored pump of fre-
quency v and a weak probe at frequency w; probes the
gain on the upper transition. The levels |1) and [2) de-
cay to the next-lower-lying levels and have radiative

Colored
Pump

i3>

(b)

FIG. 1. (a) Atomic-energy-level diagram for the ladder sys-
tem. The thick arrow represents the colored pump on the lasing
transition. (b) Semiclassical dressed states corresponding to the
bare states of (a).

widths of 2y, and 2y,. The |1)<>|3) transition is forbid-
den. This energy-level scheme is relevant to the '*Ba
atom, where the levels |1), |2), and [3) can be identified
with the 6s6d 'D,, 6s6p 'P,, and 6s2S, states, respec-
tively. It is fairly straightforward to write the Hamiltoni-
an for this atom-field system [16] and after transforming
to rotating frames at appropriate frequencies, the result-
ing equations for the time evolution of the density-matrix
elements are

Pu="2vpy Tig(t)py —ig*(tlpyy 2.1a)
p=—(y;Tv, il py,
+ig () py—p1)—iG 3 pys » (2.1b)
p13=—(y Fidy+iAp;3tig (1)pr—iGypyy
2.1¢)
P2 =27 1P~ 2V P2~ ig8 (py
+ig*(t)p1,+iG,p3,—iG5py3 s (2.1d)
p23= (Y2 Hi8y)pytig*(t)p13+iG,(p33—pr)
(2.1e)
P33 =2Y 2P0 —iGp3TiGIpys 2.1

In these equations A;=w;,—w,; is the detuning of the
probe from the upper transition, A,=w,;—, is the de-
tuning of the strong pump on the lower transition (w,,
and w,; are the transition frequencies between levels
[1)<>]2) and |2)<>|3), respectively), and

g(=G,+G (e ",
where
d]z'el d23'€2 dlZ'Ec(t)
Gl= , 2: R . t)=———
#i #i #i

(2.2)

In Eq. (2.2) €, €,, and €, are the electric fields associated
with the probe, strong pump, and the fluctuating field, re-
spectively, and d 5 are the transition matrix elements be-
tween the states |a@) and |B). The colored pump enters
the density-matrix equations (2.1) through the g (¢) term.
It is obvious that the density-matrix equations are
Langevin equations with multiplicative noise. The
colored pump is taken to be a Gaussian-Markovian ran-
dom process that obeys chaotic modulation and so has
zero mean [{e.(¢)) =0]) and an autocorrelation function
of the form

(GX(t)G,(t +7))=DTexp(—T|7|) . (2.3)

Equation (2.3) implies that the random process has a vari-
ance of DI, where D is the strength of the noise and I is
the bandwidth of the noise (this kind of exponentially
correlated noise process is also referred to as an
Ornstein-Uhlenbeck process). Physically, the product
DT describes the intensity of the colored pump. The
colored pump as defined here has a Lorentzian spectral
profile with a full width at half maximum of 2I". The in-
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coherent pump limit can be obtained by letting I'—
for which Eq. (2.3) reduces to

(GX()G.(t +7))=2D8(7) . 2.4)

The gain G on the upper lasing transition is given by [16]

(P12>‘}’1

=—1I
G m G,

) (2.5)

where p,, is the ensemble average of the steady-state
value of p,, (averaged over the fluctuations of the colored
pump). In [16] it is shown that the optimum frequency of
the colored pump v can be determined by diagonalizing
the Hamiltonian for this system in the presence of the
strong pump on the lower transition. This gives rise to
two new semiclassical dressed states |2) and |3), which
are linear combinations of the states |[2) and |3) and are
shown in Fig. 1(b). The colored pump is chosen to be res-
onant with the |T)<|3) transition and hence is given by
(setting energy of |3) equal to zero)

A2 172
4

4,

V=CO12+A2+ 2

+G2 (2.6)

With the colored-pump frequency set in this manner, the
probe is now tuned across the |1)«<>|2) transition. Since
most of the population is expected to be in level [3) (the
most ground-state-like), when the probe frequency is
close to the |1)«>|2) transition, it is amplified due to a
stimulated Raman process.

In this paper we fix the colored-pump frequency as
given by Eq. (2.6) and scan the probe across the |1)<«>|2)
transition. The gain G as defined by Eq. (2.5) is then
studied as a function of A,.

A systems

In this section we discuss the theoretical basis for our
calculations dealing with the A model. The energy-level
scheme is shown in Fig. 2(a). A strong, monochromatic,
coherent pump at frequency w, couples states |1) and
|2) and the colored pump at frequency v couples the las-
ing transition |1)<«>|3). A weak probe at frequency o, is
then scanned across the |1)<>|3) transition. The radia-
tive decay rate of |1)<«>|3) is taken to be 2y, and of
[1)«<>|2) as 2y,. The Hamiltonian for this system in the
appropriately rotating frames is given by

H_

F A13)(3]+4,2)(2|

+[g(0)|1)(3|+G,[1)(2|+ H.c.], 2.7

where A;=w;— w03, A,=w,— 0, (wyg is the transition
frequency between states |a) and |8)), and
—itv—ay)

(=G, +G (e
The parameters G;, G,, and G () are defined in a
manner similar to that of Eq. (2.2) for the ladder system.

The resulting density-matrix equations are given by
(treating G| and G, as real)

12>

[3>

(a)

Colored
Pump

13> = |_3>

(b)

FIG. 2. (a) Atomic-energy-level diagram for the A system.
The thick arrow is the colored pump on the lasing transition.
(b) Semiclassical dressed states corresponding to the bare states
of (a).

pu=—Q2y+27,)p; —ig (t)py,

+ig*(Dp13+iG,(pra—pay) » (2.8a)
Pr2=—(v1+72)p—ig(t)ps,

tidop TGy (p1—p2n) (2.8b)
P =2y7p111iG(py—p12) » (2.8¢)
P33 =2v1p1—ig*(tlpy +ig(t)py, , (2.8d)
p13=—(71Ht72)p13—iG,py

+idp3tig(t)py—ps3) (2.8¢)
P3=—i(A,—A)py3—iG,py3tig(t)py - (2.8)

Once again we have Langevin equations with multiplica-
tive noise, where the colored pump G.(¢) has zero mean
and an autocorrelation function given by Eq. (2.3). The
gain on the lasing transition is now given by

<P13>7’1

G=I
m G,

) (2.9)

where {p,;) is the ensemble average of the steady-state
value of the density-matrix element p,; averaged over the
field fluctuations.

Following a procedure similar to the ladder systems,
we diagonalize the Hamiltonian in the presence of G, to
get the semiclassical dressed states |1) and |2) which are
linear combinations of the bare states |1) and |2). The
eigenvalues of the Hamiltonian in the presence of the
strong pump at w, are given by

172
A
4

A, ,
=+ +G2 (2.10)
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These new states are shown in Fig. 2(b). Following an ar-
gument similar to that for ladder systems [16], one can
choose the colored-pump frequency as

A 172
e

2 (2.11)

V=a)13+

A3
T+G%

and the probe frequency as

A, (a3,
2 | T4

172

W~ O3 (2.12)

It has been shown by Imamoglu, Field, and Harris [10]
that for appropriate atom and field parameters, the A sys-
tem can exhibit inversionless gain when the fields G, and
G, are on-resonance with their respective transitions.
Thus, we restrict our discussion to the case when
A,=A,=0 for which the colored-pump frequency v given
by Eq. (2.11) becomes

v=w;3;+G, . (2.13)

Since the frequency of the colored pump appears in the
form G_(t)e 7O i the density-matrix equations, we
can set the oscillating term associated with G.(1), i.e.,
(v—w,), as being equal to G, (for A;=0). This choice
corresponds to setting the colored-pump frequency in a
manner identical to the ladder system. However, to un-
derstand the role of v in the LWI process and its effect on
the gain, we will vary v for the A system and study the
gain.

As stated earlier, the presence of a colored pump in
these calculations makes it necessary for us to resort to
numerical calculations. We use Monte Carlo methods for
obtaining the gain in this work. The use of these Monte
Carlo methods in the study of laser-atom interactions has
been described in detail in other publications [17] and we
will give only a brief discussion of it in Sec. III.

III. PROCEDURE FOR NUMERICAL SOLUTION
OF DENSITY-MATRIX EQUATIONS

The first step in the numerical solution of the density-
matrix equations given by Egs. (2.1) and (2.8) is to pro-
duce the colored noise G.(t) which has zero mean and
satisfies the autocorrelation function of Eq. (2.3). To do
this, we initially obtain the Gaussian, §-correlated (white)
noise g,, with zero mean, which provides the source term
for the colored noise. g, can be obtained from the Box-
Mueller algorithm [18] and is given by

g, =V —2D At In(a)e®*™ 3.1

where a and b are uniformly random numbers between O
and 1 and At is the integration time step used in the nu-
merical integration of Egs. (2.1) and (2.8). The colored
noise is obtained from the solution of the equation

dG (1)
dt
in which g, is the Gaussian white noise of Eq. (3.1). We

have shown in a previous publication [17] that the in-
tegration of (3.2) gives

=—-I'G.(t)+TIg, , 3.2)

G.(t +AH)=G (t)e T +h(2), 3.3)

where h is Gaussian and depends on g,,. / has zero mean
and a second moment given by

<|h(t,At)|2>=Dr[1—e-2“'] ) (3.4)

To generate the colored noise G, (t), we first produce k
from the formula

h=V —DTI[1—e 2TIn(a)e?™® , (3.5)

where a and b are again random numbers uniformly dis-
tribution on the unit interval. The exponentially corre-
lated noise is then obtained from Eq. (3.3).

The Langevin equations [Egs. (2.1) or (2.8)] were solved
numerically using the colored noise generated above. A
Euler method was used for the integration with a typical
time step At of 10>, The accuracy of the numerical re-
sults was checked by trying smaller time steps and also
using a fourth-order Runge-Kutta method and noting
that the results were identical to those obtained with the
time step of 107°. The Euler method was chosen over
the Runge-Kutta method due to the faster speed of the
former. The integration was carried out for 100 units of
dimensionless time and the steady-state values of the
relevant density matrix element (p;, or p,3) were stored.
The integration procedure was carried out for 500 to
1000 iterations typically, with each iteration having a
completely different set of random numbers. This en-
sured that the numerical results were not affected by
small number statistics. The final result was an average
of the steady-state values of p;, (or p,;) over all the itera-
tions. The uncertainty in our results is better than
3-4 % for the small-T" values (I" < 10) and about 15% for
the large-I" values (I'=50). The values of D and " can
be input easily into the algorithm for generating the
colored noise. For I >y, the algorithm generates an in-
coherent pump and for I' <<y, it generates a coherent
pump. Thus, by varying the values of I relative to v,
one can continuously “tune” the bandwidth of the pump.

It is worth noting some of the constraints imposed by
the numerical algorithm for generating colored noise de-
scribed here. To simulate monochromatic pumps would
require that " be zero. A zero value for I is, however,
not possible in our algorithm since h, as given by Eq.
(3.5), becomes zero. In our calculations we have restrict-
ed ourselves to values of I of 0.1y, or higher and believe
that such small values of I" can be taken as a fair repre-
sentation of monochromatic pumps. Small values of T’
also make the time taken for the numerical computations
longer, since one has to integrate for a greater number of
points for a given value of At. This is necessary to ensure
that the system of equations evolves over a sufficient
number of correlation times. Similarly, making I" very
large to study the incoherent pump limit requires that
one reduce the time step (for the numerical integration to
work accurately, At << all other time scales in the prob-
lem and so At <<T"7!) and hence again integrate for more
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number of points. We have thus restricted ourselves to
values of ' <100y ,.

IV. RESULTS

We now report our results on dependence of the gain
in LWI systems on colored-pump parameters. The first
results are for the ladder system that has been discussed
in [16]. For the ladder system, we fix the colored-pump
frequency v as given by Eq. (2.6) which corresponds iden-
tically to the situation described in [16]. The units of all
rates in our results are in terms of y,, i.e., we set ¥, equal
to 1 and all other rates in the problem are in units of 7.
We have chosen the '**Ba atom as our prototype system
and so we choose 7, to be 5.4y, (for '**Ba, 2y,=3.7
MHZ and 2y,=20 MHZ). The detuning A, is fixed at
25.1y,, G,=0.2y,, and G,=14.3y,. For the colored-
pump noise parameters, we consider two cases, one where
the product of D and T is 30y? and the other where the
product is 60y? (note that both D and T are in units of
v but vary I'. This implies that the colored-pump in-
tensity is being kept constant while the bandwidth is be-
ing varied. For a given value of D and T, we calculate
the gain given by Eq. (2.5) as a function of A;. The max-
imum value of the gain for each set of values of D and T’
is then plotted as a function of the bandwidth I". The re-
sults are shown in Fig. 3 where the gain is in units of the
weak-field resonant absorptivity when the atom is initial-
ly prepared in the bare state |2). A value of zero for the
bandwidth corresponds to a purely coherent, mono-
chromatic pump, while the larger values of I" tend to-
wards an incoherent pump. We see very clearly from this
figure that the gain for a coherent pump is greater than
the gain obtained with an incoherent pump. A surprising
feature, however, is that the maximum gain is obtained
for a partially coherent pump. This behavior is seen in
both curves of Fig. 3(a), which are for two different
colored-pump intensities, indicating that this may be a
fairly general property of LWI systems. The gain
enhancement that one can obtain by changing from an in-
coherent pump to a partially coherent one is close to a
factor of 4 for DT equal to both 30y? and 60y3. This in-
dicates that there is an optimum bandwidth of the
colored pump where even greater gain enhancement can
be obtained as compared to a coherent or incoherent
pump. These factors of 3 or 4 in gain enhancement, as
reported here and in [16], can become significant in LWI
experiments since the gain levels are usually very small.

Figure 3(b) shows the results when the colored-pump
bandwidth is fixed at I'=y, and the strength of the noise
D is varied. We find a monotonic increase in gain with
increase in D. This result is expected since as we increase
D for a fixed I', we are simply making the colored pump
stronger and hence transferring more population from
one level to another. Constraints on computer time
prevent us from investigating the effect of higher values
of D, but it is reasonable to expect that eventually the
gain will saturate or even decrease with further increase
in D. As the colored pump gets stronger, eventually it
will start to dress the upper transition, thus mixing up
the levels and contributing to decreased gain.
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FIG. 3. (a) Maximum gain versus colored-pump bandwidth
for the ladder system. Curves are for DI'=60y? and
Dr=30y%. D and T are in units of y,. G,=0.2y,,
G,=14.3y,, and A,=25.1y,. v is chosen as determined by Eq.
(2.6). (b) Maximum gain versus strength of noise D for ladder
system. '=y,, G,=0.2y,, G,=14.3y,, and A,=25.1y,. v is
chosen as determined by Eq. (2.6). The open circles represent
gain calculated from Monte Carlo methods (not all calculated
points are shown; curve drawn through all calculated points).
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FIG. 4. Gain versus colored pump bandwidth for the A sys-
tem. All curves are for DT =30y}, G,=0.2y,, G,=50y,, and
A,=A,=0. The curves are for v—w,=50y,, v—w,=30y,, and
Y= = 70')’ 1-
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In. Fig. 4 we show the results of calculations of the A
model. In these results we have fixed the colored-pump
intensity, i.e., the product DT equal to 30y? and varied
the pump bandwidth. This calculation is analogous to
the calculations for the results presented in Fig. 3(a).
Once again, all rates are in units of ¥, and we have taken
G,=0.2y,, G,=50y,, and A;=A,=0. As pointed out
by Harris, Imamoglu, Field, and [10], for a A system to
exhibit inversionless gain, y,>>y;, and so we have
chosen v, equal to 10y,. We first focus on the result for
the case of the colored-pump frequency v=w;; +G, and
hence v—a,=50y, (for A;=0). This choice of v corre-
sponds to picking v as we did for the ladder system.
Clearly, this curve is qualitatively very similar to the
curves in Fig. 3, thus validating the fact that perhaps all
inversionless systems based on incoherent pumping
schemes will exhibit significant gain enhancement on be-
ing replaced by partially coherent pumping mechanisms.
Once again, we find that while the coherent pump pro-
vides greater gain than the incoherent pump, the max-
imum gain is for an intermediate value of the pump band-
width. The maximum gain we get in this situation is a
factor of 2 greater than the gain for the incoherent pump.
We expect that larger gains can be realized in this system
by choosing appropriate values of the atom-field parame-
ters.

We have also investigated the effect of the colored-
pump frequency on the gain one can realize in the A sys-
tems. Figure 4 also displays the gain vs bandwidth re-
sults for v—w,; =30y, and v—w,; =70y, with all other pa-
rameters being the same as for the curve with
v—w,;=50y,. It is clear from these curves that the
choice of v does have an observable impact on the gain in
LWI systems where a colored pump is used. We note
first of all that the maximum gain is observed when
v—w,;=G,=50y,. While one can still see that a partial-
ly coherent pump provides greater gain than an in-
coherent pump or a purely coherent pump when
v—w,#G,, it is clear that the gain discrimination as a
function of the bandwidth is no longer as pronounced.
We find that the gain from a coherent pump can now be-
come comparable to the gain from an incoherent pump,
whereas for v—w,; =50y, the gain from a coherent pump
is always larger than from an incoherent pump. Further-
more, as the value of the colored-pump frequency v is in-
creased, we find that the bandwidth of the pump at which
the maximum gain occurs moves towards smaller values.

As the colored-pump bandwidth gets much larger than
1, one expects that the gain would become independent
of the value of v. We have indeed checked this by calcu-
lating the gain for I'=1000y, and find that the gain is the
same for any value of v and is equal to what one would
get from an incoherent pump (i.e., by replacing the
colored pump in the density-matrix equations by an in-
coherent pumping term).

V. DISCUSSION

In this paper we have studied the impact of the noise
parameters of a fluctuating pump in lasing without inver-

sion systems when an incoherent pumping mechanism is
replaced by a partially coherent pump. A numerical
technique for “tuning” the bandwidth of the pump is
shown which can be used to study other LWI systems
and perhaps help understand the physical mechanisms at
play in these systems.

We have presented results for two types of three-level
atomic-energy-level schemes—the ladder model and the
A model. Our calculations indicate very clearly that
while a coherent pump provides greater gain in LWI sys-
tems than an incoherent pump, maximum gain is realized
for a partially coherent pump. The physical mechanism
of gain enhancement in three-level atoms with colored
pumps has been elucidated in [16] and is based on a
stimulated Stokes process between the semiclassical
dressed states obtained from the interaction of a strong
pump with two of the bare atomic levels. In other words,
the gain in these systems is a consequence of the fact that
a colored pump can transfer population preferentially
among the relevant levels, while an incoherent pump can-
not do this preferential population transfer.

It is difficult to get a physical picture from numerical
calculations as to why a partially coherent pump is more
effective than a coherent pump. We speculate that
perhaps the maximum gain is obtained when the pump
linewidth is comparable to the linewidth of the lasing
transition and the entire spectral density under the pump
field spectrum overlaps the atomic transition line shape.
For an incoherent pump the effective linewidth of the
[1)«<>|3) transition in the A model, for example, is
broadened and becomes 2(y;+v,+D) from well-known
substitution rules. Thus, if the linewidth of the lasing
transition is being broadened in the presence of a partial-
ly coherent pump in some other manner, it is possible
that a pump linewidth larger than I'=y, is required for
optimum overlap of the pump and the transition
linewidths and it is this pump linewidth of I' >y, that
provides the maximum gain. It is clear that a rigorous
elucidation of the mechanism for gain enhancement by
partially coherent pumps is still needed.

The fact that a partially coherent pump is more
effective than either an incoherent or a coherent pump is
significant for experiments on LWI systems where the
signals are usually meager. We have also found that the
frequency of the colored pump is a very important factor
in determining the optimum gain that can be obtained.
Our calculations clearly show the procedure for picking
the frequency v in an experiment. It is obvious that one
has to tune v in a manner determined by Eq. (2.11) for a
A system for maximum efficiency. While we have not re-
ported the results for a ladder system in this context, we
find results similar to the A model and the optimum fre-
quency is determined by Eq. (2.6).

The predictions of this paper can be experimentally
tested via techniques developed by Elliott and co-workers
for controlling the linewidth and line shape of a laser
[19]. These techniques permit precise control and varia-
tion of the laser linewidth through electro-optic and
acousto-optic modulation and can incorporate the small
and large pump linewidth regimes discussed in this work.



In conclusion, replacing an incoherent pump by a partial-
ly coherent pump, coupled with a judicious choice of its
bandwidth and frequency as outlined in this paper, can
produce significant gain enhancement over gain obtained
with an incoherent pump. We anticipate that similar re-
sults will hold true for other LWI systems where an in-
coherent pump is replaced by a partially coherent pump.
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