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Emission spectra of a A-type quantum-beat three-level atom
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The emission spectra of a A-type quantum-beat three-level atomic system in a cavity is investigated.

Our results suggest that the atom cannot interact with a single-mode squeezed vacuum. A variety of
field inputs exhibit nonclassical e8'ects, including the vacuum Rabi splitting and quantum beats, only for
low field intensities. In the case of a coherent field input, sidebands appear whose widths are governed

by the input field statistics. Off-resonant spectra exhibit transitions from predominantly spontaneous to

predominantly stimulated emission.

PACS number(s): 42.50.Dv

I. INTRODUCTION

In recent years, much interest has been focused on
quantum dynamics of nonlinear systems. In this respect
the nonlinear efects of a cavity-bound atom have re-
ceived considerable attention. The radiation-matter in-
teraction does influence the characteristics of the light
emitted from it. Several studies [1—6] of the emission
spectrum of the cavity-bound atom have led to the
discovery of nonclassical phenomena, including vacuum
Rabi splitting [1].

The A-type three-level system leading to a quantum-
beat laser has novel properties [7]: it can lase without in-
version, invert without lasing, and under certain physical
conditions it can be reduced to a standard Jaynes-
Cummings model [8]. The quantum-beat technique can
be extended to systems with several closely spaced transi-
tions. The time-varying signal becomes more complicat-
ed, but if the level spacings are larger than or equal
to the damping coefficients of the levels [i.e.,
(Ez —E, )~(y, +y2}], the spectrum can be obtained
readily from the Fourier transform of the time-varying
signal. The system is prepared in a coherent superposi-
tion of these states. The technique is most useful for
finding small level splitting, so that the signal can be ac-
curately measured using a conventional transient detec-
tion system. Both the time-varying signal and its Fourier
spectrum can be directly displayed on the oscilloscope
[9].

With this information in mind, we formulate the sys-
tem of a single A-type three-level atom interacting with a
single-mode electromagnetic field in an ideal (zero-loss}
cavity in Sec. II. The spectrum of the emitted radiation,
examined by a realistic spectrometer of bandwidth I,
which is inside the cavity, is calculated in Sec. III fol-
lowed by discussions in Sec. IV. Finally, a brief con-
clusion is presented in Sec. V.

II. THE MODEL
WrrH FIELD AND ATOM STATES

The system under consideration is a A-configuration
three-level atom (one upper and two lower levels) in-
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FIG. 1. Schematic diagram of a A-type quantum-beat three-

level atomic system. The transitions 13& to Il) and 13) to 12&

are dipole allowed.

teracting with a single mode field, as shown in Fig. 1. In-
itially, the atom is pumped into a coherent superposition
of two lower states. In the so-called rotating-wave ap-
proximation the Hamiltonian can be given as

3

H=co(ata+ —,')+ g co, +Ij&&jl
j=1

+~[al3&(&11+&21)+a'(ll &+ 12&)&31] .

Here a and at are the annihilation and creation operators
of the cavity field, co and co are the cavity field and the
jth state atomic frequencies, respectively, A. is atom-field
coupling constant, and for simplicity we use %=1. We
also assume that transitions from 13& to 12& and 13& to
11& are allowed and all other intermediate transitions are
forbidden.

In order to simplify the system, we first define the fol-
lowing ket-bra operators

1050-2947/94/50(1)/741(6)/$06. 00 50 741 1994 The American Physical Society



742 M. M. ASHRAF

By means of Eqs. (la}—(1c), the Hamiltonian of Eq. (1)
can be recast in the form

H =HO+HI +H'+H",
where

Ho=co(a a+ —,')+ coP„H t= v2(S a+a S),
H'=-,'~0(l1) —12) )(&21—

& ll),

H"= ,'&(I2-) &21 —Il ) & ll ) .

(3)

Here coo=co3 —(co, ——,'5), 5=co&—co, , and co, (j =1,2, 3)
is the atomic level frequency. Since we have assumed lev-
els I 1 ) and I2) to be almost degenerate, it is reasonable
to consider that the populations in I 1 ) and I2) are ap-
proximately equal. Hence H" can be neglected in com-
parison with the other terms in Eq. (3).

Notice that [H', S]= [H', S ]= [H', S, ]=0. Thus we
are able to apply the unitary transformation

Q =exp(iK't) to the state function f and get

t)/~Qg=g', i =Hg',

where

H =QHQ +iQQ

=co(a a+ —,')+coP, +v'2A(a S+Sta) .

This is a simplified form of the Hamiltonian of Eq. (1)
and describes a A-type three-level system with the two
lower levels almost degenerate and equally populated. It
should be noted here that the S operators are quite
different from the conventional Pauli operators. In fact
we can rewrite Eqs. (la) —(lc) in matrix representation as

0 1 1
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1
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0 0 0
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1
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z 2
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by means of the vectors

0 0 1

1 0 0

In order to obtain the time evolution of the system, we

can split the Hamiltonian into two parts, H=N+C,
where

N =co(a a+ —,')+coP, ,

C = b,S,+v'2A, (a S +aS },
(7a)

(7b)

Using the matrix representation of the S operators one
obtains

with A=coo —co. It can be proved easily that both N and

C are constants of the motion, i.e.,
[H, N) = [H, C]= [C,N] =0. It then follows that the time

evolution operator is

U(t p) e iHt e iNte——ict—
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(10)

I

In the next section we shall use the above formalism to
calculate the emission spectrum of the system.

III. EMiSSION SPECTRUM
OF A QUANTUM-BEAT THREE-LEVEL SYSTEM

The physical spectrum $(v) of radiation emitted by a
cavity-bound atom is given by the expression [10]

T TS(v)=2I f dt, f dtzexp[ —(I —iv)(T t,)—
—(I + iv)( T t~)]—

X & 4~F IS ( ) } ( P }I g ~F )

Q28'= +2k, a~a
4

1/2 where T is the interaction time (fixed at 20/A, for the
present case) and I is the bandwidth of the filter. Ig&F )
is the initial state of the system. If the atom is in the top
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state
i
3 & and the field is in the superposition of the num-

ber states, i.e.,

i1(„,&=g c„i3;n &, (12)

then one can easily find

1

S(t)i3;n &=U (t, O)S(0)U(t, O) 0 in &,
0

(13)

where

i nt+— 1
~ int

20 20
I

1/2

where S(0) and U(t) are given in Eqs. (6) and (9), respec-
tively. Now it is quite straightforward to calculate the
two-time correlation function

&y„,is'(t, )s(t, )+y„,&

' gp„„f„'(t,)f„(t,)f„,(t, —t, ), (14)

A. Initial field in pure number states

Let us first discuss the emission spectra for pure num-

ber states, which are the in & basis states shown in Fig. 2.
Because of the four sign combinations in Eqs. (16)—(19),
one expects to see four peaks. In general they occur at
v —co=+(Q+Q') and v —co=+(Q—Q'). However, in
the vacuum state in =0& for 6=0, the resonance case,
we obtain only two peaks, symmetrically located around
v —co=k&2A, , which is just the vacuum Rabi splitting
[1]. For any other initial number state in &, n%0, the
spectrum shows either three or four peaks. For n »1
and for a finite resolution spectrometer the central two
peaks start coalescing and the outer ones recede away
from each other, leading to a three-peak structure. In
this way, for large photon numbers one obtains the basic
shape of the semiclassical three-peak spectrum of the res-
onance fluorescence [11].

For the nonresonant case (5%0), when the initial field
is in the vacuum state the inner two peaks are located at

' 1/2
Q2

+2K,
4

Q=Q(n) =

p« =Cn Cn'

+2k, (n+1) and the outer ones at
' 1/2

+2k, +—
4 2

S(v, T)=g p„„7„(v,T), (16)

with the spectral function

V'„(v, T)=—[iF„+(Q,Q', T)+F„+(—Q, Q', T)i
r

Substituting Eqs. (14) and (15) into Eq. (11) and carrying
out the integration over the interaction time, we get the
following expression for the emission spectrum:

If 6 »A„ the inner peaks occur at v —to= k2A, /6, i.e.,
the vacuum field Rabi splitting becomes much less notice-
able compared to the resonant case. The central two-
peak structure stands out clearly for large initial photon
numbers in the case of A,n »b, . These peaks now occur
at

v —co= kA ( [2(n +1)]' —(2n )'

with

+iF„+(—Q, —Q', T)+F„+(Q,—Q', T)i ],
(17)

' 1/2

B. Initial field in superposition of number states

For the study of nonclassical efFects exhibited, if any,
by the system, we now focus our attention on Fig. 3.
Since the photon-number distribution plays a decisive

F„+(Q,Q', T)= 1+ 20 20'

and

X
e i (co—v+ 0+Q') T —I t—e

r+i(~ v+Q+—Q )
'

1/2

+2k, n

(18)

(19)

In the next section we shall give the results based on Eqs.
(14)—(19).

IV. RESULTS AND DISCUSSIONS

Section IVA gives the results and discussions of the
calculations when the input field is assumed to be in a
pure number state. Results of the case when the field is
in a superposition of number states are discussed in Sec.
IV B.

-40
iE

(v —~)/A

FIG. 2. The number state spectra 7„(v) as a function of
(v—~)/A, , a dimensionless quantity, with interaction time
T =20/A. , resolution of the spectrometer I =0.2A,, and 6=0.
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role in the formation of the spectra, the comparison is
made for the same number of n.

In the case of a squeezed vacuum input [Fig. 3(a)],
p,„,„ is p~~ked a« =0 (p,„+,,„+,=0) and frill~ off
sharply as we move away from this value. The photon-
number variance (bn) is proportional to 2n(n+1) [3],
where n =sinh r and grows with squeezing parameter r.
Referring to Eqs. (16)—(19) (n is replaced by 2n in these
equations only for this case), it is clear that Rabi peaks
dominate the spectrum for small n W. ith the increase in

JL
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-40
(v —~)/A

+ 40
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- 40
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FIG. 3. Emission spectra for (a} a squeezed vacuum input, (b}
a thermal input, and (c) a coherent input with the same parame-
ters as in Fig. 2.

n more and more photon-number-state spectra have to be
included in the sum. The small peaks due to quantum
beats emerge and modify the wings. At larger n, the Rabi
splitting peaks are suppressed by quantum beats and at
n & 10 these effects start reducing and we move towards a
a single-peak spectrum. Here the Rabi peaks survive for
larger n values than they do for thermal input. This is
due to the larger relative weight of the vacuum state in
the squeezed vacuum field distribution. For the thermal
field distribution [Fig. 3(b)] (hn) is proportional to
n(n+1) and decays relatively slowly. That is why the
transition from a double-peak to a single-peak spectrum
starts much earlier. Since both distributions are similar
at large n (even though their slopes are difFerent) and
their behavior is more or less similar, they have no peaks
other than at n =0 and no coherent sidebands emerge for
either the squeezed vacuum or the thermal case.

The situation is quite different for the coherent field in-

put, shown in Fig. 3(c). The photon distribution p„„ is

peaked at n, with a width +n (as opposed to of the order
of n for squeezed vacuum and thermal cases). The spec-
trurn is still dominated by the Rabi peaks for small n

along with modified wings due to quantum beats. %hen
n is increased, the relative weight of the vacuum state di-
minishes rapidly and additional peaks appear on both
sides of the structure. The coherent sidebands start em-

erging. These sidebands are suppressed by quantum
beats and from n ~ 5 they not only move away from the
central peak position but also broaden. Compared with
the previous cases, quantum beats induce a more rapid
transition from a double-peak to a single-peak structure
with increasing n.

The width of the central peak is determined only by
the resolution of the detector. This means that even
though the spectra in Fig. 3 look "classical, " they really
are not. The usual Mollow spectrum for an atom in free
space [11] contains precise values for the ratio of the
heights of the peaks which are broadened by the level
lifetime (spontaneous emission). In this case the different
ratios of heights and subnatural linewidths arise from the
suppression of spontaneous emission in all of the other
field modes. This spontaneous emission emerges due to
the vacuum Auctuations. The detector sees only the
filtered version of the single-mode cavity field and is set at
frequency v [10].

For the nonresonant case 5=5K,, shown in Fig. 4, the
spectra of Fig. 3 are modified to a structure containing
asymmetric peaks. At low field intensities, vacuum Auc-

tuations dominate the spectra and the spontaneous emis-
sion peaks are mostly centered at v —co = 5A, ; however, as
n increases, the effect of the vacuum fluctuations de-
creases and the stimulated emission peak at v=co be-
comes dominant. This transition from predominantly
spontaneous to predominantly stimulated emission can be
seen in Figs. 4(a) —4(c). However, in the case of the
squeezed vacuum input [Fig. 4(a)], the spectrum shows
more structure around the fluorescence peak and survives
for larger n, which is missing in the thermal case. In the
case of the coherent input [Fig. 4(c)], the dominating
fiuorescence peak at low n does not disappear for larger
n. It shifts towards higher frequencies and eventually
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turns into a sideband at a distance 2[5 /4+2K, n]'~
away from the cavity frequency co.

V. CONCLUSION

We have analyzed the emission spectra of a A-type
quantum-beat three-level atomic system in a cavity with
the two lower levels almost degenerate and equally popu-
lated and conclude that the nonclassical effects arise from
the suppression of spontaneous emission in all other field
modes. They are dependent on the resolution of the
detector. The spectrum differs from the classical Mollow
spectrum for an atom in free space in terms of its varia-
tion in the ratio of peak heights and subnatural
linewidths. There is a remarkable similarity in the spec-
tra of the squeezed vacuum and those of the thermal in-

puts, as the former is insensitive to the relative phase be-
tween the atomic dipole and the squeezed field, in con-
trast to the results in Refs. [12,13]. Our results suggest
that atom cannot interact with a single-mode squeezed
vacuum. In two-photon transition the photon pair is
emitted and absorbed simultaneously. Interestingly, the
vacuum Rabi splitting is more prominent for the
squeezed vacuum input field than for the thermal input
field with comparable photon numbers. This is due to the
fact that the vacuum state has a larger relative weight in
the makeup of a squeezed vacuum. Eventually, it is
washed out for large field intensities, as can be seen, from
number state spectra of Fig. 2. The coherent sidebands,
however, stand for all n values, but vary their widths
with input field intensities even though they are
suppressed by quantum beats.

A comparison between the on-resonance and off-
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FIG. 4. Emission spectra for (a) a squeezed vacuum input, (b) a thermal input, and (c) a coherent input for 6=5k, with the same
parameters as in Fig. 2.
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resonance excitations reveals that the quantum-beat
efFects and coherent sidebands are more prominent in the
former case. But in the latter case, a transition from
predominantly spontaneous to predominantly stimulated
emission as we move from low n to high n is quite evi-
dent, and the vacuum Rabi splitting is much less trans-
parent. Recently, Field [14] has observed vacuum Rabi
splitting with population-trapping techniques in the same
model. He has stated a condition for lasing without in-
version without any externally injected coherent field.

The model under discussion could also lead to a correlat-
ed emission laser if the transitions are made via two pho-
tons. Detailed investigations are being carried out and
will be presented in a future paper.
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