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Hopf bifurcation of the class-B multimode laser
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We analyze the Risken-Nummendal —Graham-Haken instability occurring in a homogeneously

broadened two-level unidirectional ring laser modeled by the Maxwell-Bloch equations. We investigate

the class-B limit of these equations, and obtain analytically the bifurcation equation for all time-periodic
traveling-wave solutions. Class-8 lasers are characterized by slowly decaying oscillatory transients due

to the small ration of population to cavity lifetimes; these include a number of practically important
lasers such as CO2, solid-state, and semiconductor lasers. We then explore the bifurcation equation and

note unusual properties for the direction of bifurcation. Of particlar interest is the condition for a super-

critical Hopf bifurcation that contrasts to the known subcritical bifurcation of the single-mode laser. In

addition, we examine the small-wave-number limit for the Hopf bifurcation.

PACS number(s): 42.50.—p, 42.55.—f, 42.60.Mi

I. INTRODUCTION

We consider the case of a homogeneously broadened
two-level unidirectional ring laser. When the laser is
pumped to high inversion levels and when the cavity-
mode spacing is sufficiently small, sideband modes be-
come excited and their nonlinear interaction results in
pulsations that travel around the ring geometry. This has
been called the "Risken-Nummendal —Graham-Haken
(RNGH)" instability after Risken and Nummendal [1,2]
and Graham and Haken [3], who simultaneously derived
the conditions for which deviations from the continuous-
wave (cw} output become unstable. The former also car-
ried out a numerical investigation of the self-pulsing phe-
nomena, discussed transient effects, and determined the
phase velocity of the pulsations. The instability has also
been referred to as the "Rabi instability" [4], because the

temporal frequency of the unstable sidebands is approxi-
mately the Rabi frequency.

Haken and Ohno [5,6] obtained an equation for the
critical bifurcating mode, and found for the first time a

periodic solution coexisting with the stable steady state.
They discuss their result by interpreting the bifurcation
equation as the negative derivative of a potential. From
this they determine conditions for supercritical or sub-

critical Hopf bifurcations. However, because of the com-
plexity of the coefficients appearing in their bifurcation
equation, they do not determine the critical dependence
on the wave number of the traveling wave, which we will

show below.

Using a combination of analytical and numerical tech-
niques, Fu [7] has specifically analyzed the traveling-wave
solution in the case when the ratio of population to polar-
ization lifetimes is small. He derives a bifurcation equa-
tion and an expression for the phase velocity, and
discusses conditions for a supercritical or subcritical bi-
furcation, which are simpler than those described in Refs.
[5,6].

In this paper, we reexamine the RNGH in the class-8
limit. We derive the bifurcation equation and determine
the direction of bifurcation analytically. We find that the
bifurcation is supercritical (subcritical} for all wave num-
bers greater than (less than) that characterizing the
minimum of the neutral stability curve. Supercritical bi-
furcation suggests that stable small-amplitude solutions
can be observed. This contrasts with the known subcriti-
cal bifurcation of the single-mode laser modeled by the
laser-Lorenz equations [8,9]. We also examine the first
bifurcating traveling wave in the singular limit of small
wave number. In this limit, the multimode- laser equa-
tions reduce to the well-known laser-Lorenz equations.

This paper is organized as follows: In Sec. II, the mul-
timode laser equations are reformulated as a weakly per-
turbed conservative system. Section III summarizes the
results of the linear stability analysis. Section IV derives
the leading approximation of the bifurcation equation
and examines the small-amplitude limit. This is contin-
ued in Sec. V, where the vertical bifurcation occurring
near the minimum of the neutral stability curve is
resolved by a higher order analysis. In Sec. VI we study
the limit of small wave number. Finally, Sec. VII sum-
marizes the results.
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II. FORMULATION

Risken and Nummendal [1] have normalized the
Maxwell-Bloch equations so that the uniform steady-state
solution (cw solution) is unity. Their equations are in
terms of the real amplitudes of the electric 6eld E, the po-
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larization field P, and the population inversion D (sub-
scripts indicate partial derivatives):

x, = —y ——[x+Io(1+y)z],
E'

E,+cE„+scE=aP,
P, +yjP=yiEB

D, +yiD =yi(A, +1 A—EP),

E(r +L, t) =E(r, t), P(r +L, t) =P(r, t),
D(r+L, t)=D(r, t) .

(2)

(3)

y, +ay
&
=(1+y)z,

51+a—z
21

z, = d(x —z) —y,e5 ' (1+y)

(4) where the parameters d, 5, and IO are defined by

(12)

(13)

Do —1
Dcw

(5)

where D,„denotes the steady-state uniform value of the
population inversion and Do is the pump rate.

We now rescale (1)—(4) into a form that is more suit-
able for our asymptotic analysis of the class-B limit. This
corresponds to the limit a~0, where e is given by

1/2

In these equations L is the length of the laser cavity, t is
time, and r is space measured in the direction of light
propagation. yll, yj, and a are the decay constants for
the population inversion, polarization, and cavity, respec-
tively, and c is the speed of light in the host material. A, is
the bifurcation parameter and measures the strength of
the pumping. It is defined as

d=, 5=+2IO, ID=A, .
K

(14)

a is defined as the wave number whose value is restricted
by the periodic boundary conditions. The variable g is a
nondimensional space variable that without loss of gen-
erality we allow to vary between 0 and 2m. Thus we have
2m periodic boundary conditions of the form

x (/+2m, s) =x(g,s),
y((+2m, s ) =y (g, s ),
z(g+2n, s) =z(g', s) .

(15)

These conditions imply that the wave number a takes
only discrete values; from the relation
g=(e5aLa}lc =2nn we have

«1. (6) a= n (n =0,+1,+2, . . . ) .27Tc

eK L (16)

This is a singular limit since the problem loses one equa-
tion if a=0. If e is too small, numerical solutions are
difficult because the equations are stiff and thus require
long computational times, while regular perturbation
methods fail because they cannot describe the relaxation
oscillations that appear for even small amplitudes.
Using singular perturbation techniques we may eliminate

these difficulties by introducing new variables defined by

E =1+y,
1/2

D =1+@
2

' 1/2

(7)

P—= 1+6'
E 2

z 7

1 1 ct= —s, r=
~a/2A,

'
e~V'2A, a

(10}

The new dependent variables are deviations from the cw
solution. Note that the deviations for D and P/E are
small but the deviation in the intensity is —1. Conse-
quently, the laser is highly sensitive to variations in the
population inversion and the polarization. The rescaling
allows us to treat all the dependent variables as O(1)
quantities and is instrumental in the success of our
analysis. These new variables are motivated by the a~0
limit of the linear stability results of [1] (see Carr [10]).

After inserting (7)—(10) into (1)—(4), we obtain a weakly
perturbed conservative system of equations similar to
those studied by Erneux, Baer, and Mandel [11]:

The multimode laser equations given by (11)—(15) are
now in a form that is convenient for the e small asymp-
totic limit.

III. LINEAR STABILITY ANALYSIS

In this section, we briefiy redo the linear stability
analysis of Risken and Nummendal [1], but in terms of
the new variables x, y, and z and using a perturbation ex-
pansion valid for small e. This analysis will then
motivate the nonlinear analysis given in Sec. IV.

Equations (11)—(13) are linearized and we seek a solu-
tion of the form

x(g, s) u

y(gs}pe(((+as)
z(g, s) w

(17)

The variables u, v, and w, as well as the growth rate 0. are
expanded as power series in e.

From the 0 (1) problem we find that

11+—cro+iao. 0+ 1=0 . (18)

Equation (18) provides a relationship between o.
o and a.

An analysis of this equation indicates that the only solu-
tion satisfies Re(pro) =0.

From the O(e) problem we determine the condition
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4 2
Oo oo 1

2IO+ 3IO+ 1+ID

—1+Oo 1+— 0, . (19)
1

Introducing o o=i co into (18) and (19), we find

20

16-

14:-
0

12:-

10-

8-

I l

i

i

l 1

I
'll I

6=5

(a)

11+—co +aco —1=0, (20}
6-

-2

co co 1

2 2Io 3Io+ 1+Io

1+co 1+— o i . (21}
1

20.
18-

16.

6 = 1/3

Equation (20) is the linear dispersion relation between
co and a. Inserting cr, =oz+ioi into (21), we see that
or=0, and the condition for neutral stability (o'+ =0)
leads to an expression for co:

3d d Io 8
N (22)

4 4 Io

We have verified that (22) is identical to the result ob-
tained by Risken and Nummendal [1]with y~0 [consid-
er Eq. (3.9) in [1) with yi~0 and A, =I&, and substitute
P =}

~~

=2Iordi' we then obtain (22) to first approxima-
tion].

Using co as a parameter, we can determine the neutral
stability curve Io=Iu(a). The neutral stability curve
separates the values of Io corresponding to a stable basic
solution from the values of Io for which the steady state
is unstable. This curve is shown in Fig. 1 for difFerent
values of d. The minimum of the curve is given by

(1—3d)ID=I =8, co=co =+&3d/4, a =a
m

(23)

The critical value of Io above which the uniform steady
state is unstable corresponds to ID=min[ID(a)], where
a =a (n) n =(0, 1,2, . . . ) admits discrete values given by
(15).

Since Io must remain positive we see from (21) that
co E(d/2, d), and then from (20) that

14-

12 .
-

10-

8-

FIG. 1. Neutral stability curve, where Io is the bifurcation
parameter and a is the wave number for (a) d =5 and (b) d = 3.
Note that in (b) the minimum wave number is zero, indicating
no spatial variation. As d ~ 00 the minimum of the curve and
the width both scale as O(d' '). Further, the curves do not ex-
tend to all a; a is bound to the region [(d/2)'~ (1—1/d), d'~ ].

a wave traveling in the positive direction, and it is
sufficient to discuss only one of the curves. I is indepen-
dent of the parameter d, but the minimum wave number
is 0 (d'/ ) as d ~ oo. From Fig. 1, we see that for d =

—,
'

the minimum wave number is identically zero; in this
case, the original system reduces to a set of ordinary
difFerential equations. For d (—„the minimum of the
solid neutral stability curve moves to the left-hand plane,
indicating that the waves switch direction.

The d ~ oo limit of the Maxwell-Bloch equations
(1)—(4) is interesting because it may reduce the three-
variable system to two rate equations. However, this lim-
it is not obvious because a ~ oo as d ~ oo, and is anoth-
er source of singularity distinct from e~O.

g 1/2
aE 1 y

cS'
d

(24)
IV. NONLINEAR ANALYSIS

This is in contrast to most other systems in which the
neutral stability curve exists for all values of the wave
number. Here the unstable wave numbers are confined
within a fixed band for all values of Io. As d~00 the
bandwidth of the neutral stability curve is 0 (d '~ ).

For d & —„the minimum wave number a is positive,
while co is negative (solid lines in Fig. 1). The dashed
curve is for co &0, a (0, and is the neutral stability
curve for the complex-conjugate solution. Both represent

We now assume that the first instability of the uniform
solution corresponds to a simple eigenvalue, i.e., there is
a unique n such that a (n) becomes unstable at Io(a(n) }.
Double eigenvalues are possible for exceptional values of
d but are not considered in the present analysis.

To analyze 0 (1) solutions bifurcating from a simple ei-
genvalue, we consider the limit e~O of the fully non-
linear system, (11)—(15). Specifically, we seek a solution
of the form
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x(gqs&E) xp(gqs )+maxi(g&$ )+

y(g', s;e) ~yp(g, s)+ay, (g,s)+

z(g, s;e)=zo(g, s)+ez, (g,s)+. . .
(25)

p, +~p=0

(1+1/d)yo +ayo& =(1+yp )xp,

xp g+2n, s}=xp(g,s), y p((+2tr, s }=yo(g, s),

and

(26)

(27)

(28)

xi +yi = xp(1+Io)+Ipxpy (29)

11+—y, +ay, &
—x,

s
(xoy, +ypxi)+ —(1+y )y

d 2d 1+yp

We substitute (25) into (11)—(15) and equate to zero the
coefficients of each power of e. Th 1

ables za es zp and z& can be eliminated from the resulting equa-
pro ems or txp, yp) andtions leading to the following probl f

X]yPp e

Snd that for each value of CXO, there is a periodic orbit
surrounding the center (xp,yp)=(0, 0) and bounded
below by the line y = —1. Nea thear t e center, the orbits
correspond to small-amplitude periodic solutions and are
characterized by low values of C. Near the line yp = —1,
the periodic orbits correspond to relaxation oscillations
and are characterized by large values of C, see Fi . 2.
For exam le, we note ro

see ig. 2.

the maxim
te rom our phase-plane analysis th t

aximum value of xo occurs at yp =0. From (35 we
then see that the maximum value of x i

the d nami
merical results of Risken and Num d 1 1,mmen a ', we see that
t e ynamics of the conservative system model the
sating behavior very well.

o e epu-

We would like to know how the amplitude of the
periodic solution xM (or equivalently C} and the frequen-

cy vary as a function of the bifurcation parameter, Ip.
This is accomplished by using the fact that the period is
equal to 2m and analyzing the higher-order problem. In-
troducing (32) and (33) into the O(e) problem, we obtain

rox, +y, = ——xo(1+Ip )+Ioxpy — y
I

o o"oyo d yo,

11+—co+a j —x
d 1 1

1 1+ yp xpyp

xi /+217, $)—xi(g, s), yi(/+2%, $)=yi($, $) .

(30)

(31)

=(xoy, +yox, )+—(1+y )
5
d d 1+

We are interested in determining periodic traveling-
wave solutions of these equations. S 'fi ll,

~ ~ ~ ~

peci ca y, we seek 2m.

periodic solutions in the characteristic variable

1+—
yp

—
—,'xpyo (37)

Z =g+ros, (32)
(a)

where ro is the Hopf bifurcation frequency to be deter-
mined. Introducing (32) into (26)-(28) changes t e ar-

ifferential equations (dot denotes differentiatio
'

h

p ~. The leading-order problem beconms
in wit

3

coxp+gp =0,
[(1+1/d)co+a]yp =(1+yo )xo,

xo(Z+2m)=xo(Z), yo(Z+2m)=yo(Z) .

(33)

(34)

-2

(b)

1 2

This new s stem fystem of equations is conservative and admits
~ ~

a one-parameter family of periodic solutions with the 6rst
integral given by

C =yp —ln~ 1+yo(+ —,'Pxp, (35)

where C is the
P is de5ned as

e constant of integration and the fB
'

e coe cient

1

0

time

11+—m+a
d

(36)

I

By studying this system in th he p ase plane (xo,yo), we

FIG. 2. x is the o u
the O(1) . (33.

p p ation inversion andy is the int 't f
Eq. ). {a)Phase-space plot, y vs x for P=1. Th

'n ensi y o

bits are bound below ——. e ternbelow by the invariant line y = —1. (b) The tem-
poral evolution of x (dashed) and (solid)y so i, showing relaxation
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x, (Z+2~)=x, (Z), y, (Z+2~)=y, (Z) . (38)

Since the homogeneous problem admits a periodic
solution, namely, (x, ,yi )=(xpz Jppz) the right-hand

h h

side must satisfy a solvability condition. This requires
the solution to the homogeneous adjoint problem given
by

solve the problems that result from setting the coefficient
of each power of u to zero. From solvability conditions
we can determine co out to 0 (a ).

Having determined the frequency, we substitute into
the bifurcation equation (43) to obtain

1 — 1 +—co
1

O

—&ox, =P(1+yp )y, ,

cop' = x' pxpg'

and its solution is

x~ —xp

The solvability condition can be written as

(39)

(40)

Ip =IH+Q IHri)p
2

'-: cop (45)4 4 3d

3d 11+ 1+—

where I& is defined as the Hopf bifurcation point and is
given by

(46}

1+I 1 ——
p

p 217/Cil+ IP 1——— x dZ
d ' d p d coo is

=0, (41)

where the following equalities have been used to simplify
the result (see the Appendix):

x(p0 Z =0,

f y dZ=Pf x dZ.
(42)

0 0

Since the integral is always positive, its coefficient must
be equal to zero. This leads to an elegant expression for
I0.

1a+ 1+—co
d

1
(a +co) —a — 1 ——co

This equation represents the amplitude or bifurcation
equation.
It was first determined by Fu [7]. He found this expres-

sion by determining numerically the second relation in
(42). The bifurcation equation relates the frequency co to
the bifurcation parameter Ip. Together with the 2m.

periodicity condition, which provides a relation between
co and the amplitude of the periodic solution, we may
determine how the amplitude changes with I0. In gen-
eral, this 2m periodicity condition cannot be found
analytically.

However, in the limit of small amplitude we can deter-
mine an analytical approximation for the amplitude
dependence of the frequency. We can then determine the
bifurcation parameter as a function of the amplitude by
substituting into (43}. We now summarize the results.

We start by determining a small-amplitude periodic
solution of the O(1) solution by using the Poincare-
Lindstedt method [12],where we define the small parain-
eter a as

11+—co +ace —1 =0 .
d

(47)

The deviation Ip =IH is quadratic in a, so that depending
on the value of boa, the bifurcation may be supercritical or
subcritical. We find that the quantity [1—(1+1/d)cop] is
negative. Thus, when a )a (a &a ), then cop&3d/4
(cop & 3d/4), and the bifurcation is supercritical (subcriti-
cal). Stability (instability) of the supercritical (subcritical)
bifurcation is found from the original equations, (1)—(4}.
If the most unstable wave number lies at the minimum of
the neutral stability curve, a =a-, then co2=3d/4 and
the coefficient of the a term in the bifurcation equation
is zero. This is referred to as a vertical bifurcation and is
a new singularity in the problem. Because this vertical
bifurcation is located exactly at the minimum of the neu-
tral stability curve, and thus corresponds to the most un-
stable wave number, it is important to resolve this singu-
larity. This is accomplished by a higher-order analysis
described in Sec. V.

V. RESOLUTION OF THE VERTICAL
BIFURCATION

a(g)=a +g a2 (a2=+1), (48)

as a measure of the detuning of the wave number from
the minimum. We again employ the small-amplitude
Poincare-Lindstedt method by expanding x0, y0, and co in
a series in g:

xp(Z'g) gxpi(Z)+g xp2(Z)+

yp(Z;g)=gyp, (Z)+g ypz(Z)+ . (49)

Our purpose is to determine the bifurcation diagram at
and near a =a . To this end, we define a new small pa-
rameter g « 1

Q = x0 dZ «1 (44) 67(7J) =COp+g CO~+ {50)

xp p0 and co are expanded as power series in a. We then After substituting (48) and (49) into (33), we find that
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xo=ri(ae' +c.c. )+O(ri ),
yo=ri( —icooae' +c.c. )+O(ri ) . (51}

0.15

(a)

An analysis of the higher-order problems fully determines
the frequency correction

coo=co =+V 3d/4,
dco 2 3d

(7+3d} (7+3d}

(52)

(53}

0.05

8.0005 8.001

Note that ~2 depends on the amplitude a and the wave
number a2.

These results are then supplied to the bifurcation equa-
tion (43). In particular, we consider d & —,', a &0, and

coo= —(3d/4)'~, so that we are examining the positive
neutral stability curve in Fig. 1. We obtain

I0 —8
2 2=m, ~a~ +mzaz~a~ +m3az, (54)

(ri 72)

where the coeScients m „m2, and m 3 are all positive and
given by

0.15

0.05

(b)

8.005

lo

8.01

(3d —1}d
4(7+3d)

2

2&3d (3d —1)d
(7+3d)2

48d

(7+3d)2
(55)

FIG. 3. (a) Subcritical Hopf bifurcation occurring when

a (a . There is a jump up to periodic solutions at the bifurca-
tion point and a jump down to the basic state at the saddle-node

point characterizing hysteresis. Solutions are unstable along the
dashed curves and stable along the solid curves. (b) Supercriti-
cal Hopf bifurcation occurring when a & a . Small-amplitude
periodic solutions exist as soon as the pump intensity reaches
the Hopf bifurcation point.

The left-hand side indicates that we are considering small
deviations from the minimum of the neutral stability
curve where I =8. The right-hand side indicates that
for positive deviations in the wave number, a2 &0, the bi-
furcation is supercritical and stable. At the minimum,
a2=0, the bifurcation is also supercritical and stable.
For deviations in the wave number below the minimum,
a2 (0, the limit point of the small-amplitude subcritical
bifurcation is found. This determines a hysteresis loop in
which the basic state will jump up to large-amplitude
solutions at the bifurcation point and jump down to the
basic state at the limit point. Note that for d =

—,
' the re-

sult is again vertical, indicating another singular limit.
This limit is the subject of Sec. VI. Figure 3 illustrates
this discussion.

In summary, we have found a branch of stable periodic
solutions that emerge from a Hopf bifurcation point
(o & a },and a branch of stable periodic of solutions that
emerge from a limit point (a &a ). This branch may
overlap a stable steady state. All these branches are of
small amplitude and have been obtained by a local
analysis near a =a . These bifurcation diagrams con-
trast with the strictly subcritical Hopf bifurcation ob-
tained in the case of the laser-Lorenz equation (i.e.,
a =0).

We have also determined the phase velocity of the re-
sulting traveling wave. In terms of the original unscaled
space and time variables r and t, it is given by
v= —(co/a )c, where c is the velocity of light in the host
material. Our asymptotic result is in agreement with that

of Fu's [7] when the latter is analyzed close to the second
threshold. Details are given in [10].

VI. SMALL WAVE NUMBER

In this section we examine the limit of small (a~0)
wave number by examining limits d ~—,. We call this the
laser-I. orenz equation limit.

As d ~—,', we found in Sec. V that the bifurcation equa-
tion was singular; both m, and m2 in (54) approach zero
in this limit. We also note from the linear stability
analysis that for d =

—,
' the minimum wave number is zero,

a (d =
—,
' ) =0, see Fig. 1. Note that when a =0, the spa-

tial derivative no longer appears in the original equations,
(12), and the system is equivalent to the laser-Lorenz
equations [8,9]. We now summarize the results of our
analysis.

In contrast to Sec. V, which was a local analysis abouta, we propose to analyze the local region near a =0.
We then scale d such that the minimum of neutral stabili-
ty curve is within this region. That is, the deviation of d
from —,

' defines the new small parameter and determines
a~. We reanalyze (26)—(31) using the Poincare-Lindstedt
method where x, y, co, a, and d are expanded in the new
small parameter.

We find that there is no qualitative change in the
behavior of the system; the bifurcation is supercritical
(subcritical) for positive (negative) values of a —a . The
range of wave numbers a E (O, a ) for which the bifurca-
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tion is subcritical approaches zero as d —+ —,'. If d =
—,', the

bifurcation is vertical at a =0 but supercritical if a &0.
Note that the bifurcation of the laser-Lorenz equations is
known to be subcritical [13,14]. Moreover, the O(1)
amplitude of the period solution is changing if
~Ip

—
8~ =0(e ). This result requires a higher-order

analysis up to the O(e } problem [15]. In the present
analysis, we have only explored the 0 (e) so that, if a =0,
the bifurcation remains vertical at this order of the per-
turbation analysis. It is this particular feature of the
laser-Lorenz equations that explains why we have a
change of the direction of bifurcation localized at a =a

0.15-

0.05-

8 8.0005

'0

8.001

VII. DISCUSSION

We have performed a detailed analysis of the Hopf bi-
furcation occurring at the laser's second threshold. The
success of this analysis was due to simplifications that re-
sulted by taking advantage of the limit y~~/~ && l. In this
limit the multimode laser equations are reformulated as a
weakly perturbed conservative system. The leading-order
problem remains nonlinear but is now much easier to
solve because the polarization can be eliminated and the
resulting two-variable system is conservative. Frequency
dispersion is studied in the conservative system, while the
bifurcation properties are taken into account by a solva-
bility condition determined at the 0 (e) problem.

The direction of the bifurcation is shown to depend
upon the wave number of the bifurcating mode. If the
wave number is greater than (less than) that at the
minimum of the neutral stability curve, a, then there is
a supercritical bifurcation (subcritical bifurcation}. The
former is in contrast to the laser-Lorenz equations of the
single-mode laser in which the Hopf bifurcation is known
to be always subcritical. The bifurcation is singular at
the minimum of the neutral stability curve requiring a
higher-order perturbation analysis to fully determine the
bifurcation equation. A local analysis about the
minimum of the neutral stability curve resolves the verti-
cal bifurcation and determines the limit point of the sub-
critical bifurcation.

In the singular limit d~ —,'(a ~0), the multimode
equations become the laser-Lorenz equations. The bifur-
cation analysis shows that there is no qualitative change
in the bifurcation properties about the minimum wave
number, but that the bifurcation again becomes increas-
ingly vertical as d gets closer to —,'. This singularity can-
not be resolved with the O(e) truncation of the original
system.

We mention that the limit d ~ ao(a ~ oo ) is also
singular. This limit is commonly used to obtain the
laser-rate equations from the Maxwell-Bloch equations.
While the laser-rate equations have only damped oscilla-
tions, careful analysis indicates that the Hopf bifurcation
persists in this limit. Our results will be presented else-
where.

We wish to add that a numerical analysis of (33) and
(34) is found to substantiate the asymptotic results. For a
fixed amplitude, a shooting method is used to determine

FIG. 4. Comparison of the numerical result vs analytical re-
sult for the subcritical Hopf bifurcation. The solid disks
represent the numerical data while the analytical result is shown
by the solid curve.
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APPENDIX: INTEGRALS OF THE 0 ( e)
PROBLEM

Here we evaluate the integrals obtained when comput-
ing the solvability condition of Sec. IV. The functions x0
and y0 satisfy the equations

COX0+y0 =0,
CO .—

yp =(1+yp)xp,

{A1)

(A2)

xp(Z+2~}=xp(Z), yp(Z+2m)=yp(Z) .

Consider the following integral:
P

I) =J xpypdZ
0

(A3)

(A4)

Using (Al), we show that this integral is zero. Indeed,
solving for dZ, (A4) can be rewritten as

the frequency such that when (33) is stepped forward in
time, the period is 2m. The computed frequency is used
in Eq. (43) to determine the bifurcation parameter Ip. By
scanning through values of the amplitude, we can thus
find the corresponding values of the bifurcation parame-
ter. A comparison of the numerical versus the analytical
results is shown in Fig. 4. The numerical analysis was
continued to 0 (1) values of the amplitude and there was
no qualitative change from that predicted by the asymp-
totic analysis.
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I, = —co x odxo =0 .2 (A5) Consider the following integral:

Consider the following integral:

P
I2 — x Z.

p

Using the fact that I, =0, we write I2 =I&+I&
P 2 PIp= x Z= xp 1+p'p Z

p p

(A6)

(A7)

COI,= f—x,dy, .
p

(AS}

Using (A2), we again solve for dZ and substitute into (A7)
to find

13=f y+~Z .

Using (A 1) we obtain
P

I3 = N ppdxp
p

Upon integrating by parts the result is

P
' PI,= —co 0— xodyo =to xodyo .

p p

We conclude that
P 2 P

1)=pI~ or f yodZ=pf xyz .
p p

(A9)

(Alo)

(A 1 1)

(A12)
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