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Method of integral equations and an extinction theorem for two-dimensional problems
in nonlinear optics
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An approach using the generalized method of integral equations by substitution of the variables in the
integral equation is applied to two- and quasi-two-dimensional systems. As a result, the connection be-

tween the integral and Maxwell equations as well as an extinction theorem for this case are established.
The technique developed may be applied to any composite medium with a colurnnlike mesostructure.

By use of the elementary cylinder radiator ("mesoscopic atom") concept we reduce the problem of
finding the optical properties of such media to the calculation of the susceptibility of a dense two-

dimensional gas. The calculated optical anisotropy depends dramatically not only on the concentration
but also on the form of the inclusions (mesostructure). Our calculations of the dielectric permittivity
tensor for a two-dimensional composite medium with wire mesostructure show excellent agreement with

the experimental measurements of the long-wavelength dielectric constants for two orthogonal polariza-
tions in a photonic crystal made of dielectric rods [W. M. Robertson et al. , J. Opt. Soc. Am. 8 10, 322
(1993)].

PACS number(s): 42.65.—k, 03.50.—z, 41.20.Jb, 78.20.—e

I. INTRODUCTION

First we qualify the term two-dimensional (2D) system.
Often this term is used for the so-called monolayer or
very thin film with thickness negligibly small compared
to the wavelength. Here we apply this term to another
limiting case of optically very thick homogeneous films
consisting of long threads (wires) oriented perpendicular-
ly to the film's surface. As is known, in certain cases 2D
systems have critically different properties in comparison
with three-dimensional media. Therefore, it seems chal-
lenging to establish an extinction theorem and the rela-
tion between macro- and microcharacteristics of the
medium starting from the fundamental principles of op-
tics.

From a practical point of view one may cite at least
three interesting physical 2D systems. First we mention
Langmuir-Blodgett (LB) films and those self-assembled
from long oriented molecules [1]. When the film thick-
ness is larger than the wavelength and its physical
characteristics do not depend on the z coordinate perpen-
dicular to the surface (or when propagation of light has a
waveguided character), then such a structure may be con-
sidered as two dimensional. The second example of
quasi-two-dimensional structures is composite media,
where one fraction is distributed inside the other in the
form of parallel or quasiparallel columns. It is generally
accepted that such a situation occurs, for example, in
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porous silicon —a new promising microelectronic materi-
al formed by electrochemical etching of crystalline Si. Its
structure consists of undulating columns of crystalline Si
with large diameters in comparison to interatomic dis-
tances. In the case of small porosity the structure is
better described by vacuum columns in bulk crystalline Si
[2]. The third example is related to a lattice composed of
dielectric "atoms" [photonic band-gap (PBG) structure]
[3]. Two-dimensional PBG structures consisting of ar-
rays of dielectric rods in air have been proposed and stud-
ied [4]. In this case correct consideration of the local-
field effects seems to be essential.

To solve the above-mentioned problems we applied
here the method of integral equations (MIEs) [5], which
allows a consecutive description of the process of light
propagation in a medium with discrete structure. This
method reveals a connection between linear and non-
linear micro- and macrocharacteristics of the optical
media with an arbitrary structure when not only dipole
but electric quadrupole and magnetic dipole moments of
the elementary radiators are taken into account [6]. In
the optical region the contribution of the last two mecha-
nisms to the linear susceptibility is, as a rule, small in
comparison with the dipole contribution, but they may be
essential for nonlinear effects.

In Sec. II we put forward the basis idea for applying
the MIEs to a calculation of the optical characteristics of
composite media. It is a concept of a "mesoscopic radia-
tor" in which, instead of a straightforward solution of the
Maxwell equations for an inhornogeneous composite
medium, we consider spherical or cylindrical inclusions
of one medium in the other as the elementary radiators
[7]. Due to the fact that dielectric cylinders (spheres) in

an external homogeneous field behave like ideal two-
(three-) dimensional dipoles, the MIEs may be applied to
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this situation. Such an approach corresponds to the no-
tion of mesoscopic quantities averaged over the intera-
tomic, but not over the intercylinder (sphere), distances
[8]. We note that in reality the considered problems are
not quite two dimensional since, although all the physical
quantities are implied to be independent of the z coordi-
nate oriented along the cylinders' axes, we will be in-
terested in the determination of the electromagnetic field
and z component of the electric, magnetic, and quadrupo-
lar moments as well.

In Sec. III we apply the earlier [6,7] developed method
of substitution of the variables in the integral equation,
which in this case corresponds to the passage from the lo-
cal (mesoscopic) field to the macroscopic one. This
method proved to be effective for two-dimensional prob-
lems as well. We show the connection between the in-
tegral and Maxwell equations approaches and deduce an
extinction theorem. The local-field problem for isotropic
and anisotropic two-dimensional media is discussed.

These general results are applied in Sec. IV for two-
dimensional composite media and self-assembled films.
Finally, in Sec. V we summarize our results.

II. A CONCEPTION OF "T%0-DIMENSIONAL"
ELEMENTARY RADIATORS

(ELECTRIC DIPOLE, ELECI'RIC QUADRUPOLE,
AND MAGNETIC DIPOLE)

AND THE FIELDS FROM THESE RADIATORS

By use of the Green's-function method for the wave
equation in a vacuum we may write the Fourier trans-
forms at frequency co of the electric E and magnetic H
field components of the two-dimensional dipole d, quad-
rupole 9; and magnetic dipole w densities in the form
analogous to the three-dimensional case [6]:

E&(r)=V X V Xd(r')G(kR),

Hq = ik V Xd(r'—)G (kR ),
E,(r)= —VXVXV 2(r')G(kR),

H, =ikV XV f(r')G(kR),

E (r)=ikVXw(r')G(kR),

H„=V X V Xw(r')G (kR ),

(la)

(lb)

(2a)

(2b)

(3a)

(3b)

where R=r —r' and k =co/c. Here two-dimensional (in
the xy plane) vectors r and r' correspond to the coordi-
nates of the observation point and of the radiator, respec-
tively. G(kR)=niH&" (kR) is the Green's function of
the scalar wave equation [9] and Hz ' is the Hankel func-
tion of the first kind, zeroth order. The gradient symbol
V indicates differentiation over r. A centered dot indi-
cates the contraction of two tensors over the pair of in-
dices.

As in the three-dimensional case [6], it follows from (2}
that we always can add to tensor 2 a unit tensor multi-
plied by an arbitrary scalar function without changing
the fields. This means we can choose a tensor s such that
TV=0. Then from (2) and (3) it follows that s is a sym-
metric tensor, since the antisymmetric part can be re-

E„=i~k'H,'"d, ,

H = —in.k HI"8 nd, ,

H„=—~k'H', "[n Xd], ,

H(1)
—kHs'" [2n(n n 2)—n 2]

(4a)

(4b)

(4c)

(4d)

+in k HI" [n 2—n(n n4) ],
E„=i~k'HI" (ne), ,

(5a)

(5b)

H( ) a'"
H, = nk 2— —kHc' ' nX(n 2)+ink & s

a'"
1H = nk'2—

SZ g
kH&" [n—X(n 2)], ,

(5c)

(5d)

E„=ink H'"8» nw, ,

E,=nk H', "[nXw], ,

(6a)

(6b)

H(1)
1

Her=ink [2n(n w) —w]+ink Hz'}[w —n(n w)],
(6c)

H, =ink'H,"'w, , (6d)

where n=—R/R and s, =(s„„s,). Here n stands for a
two-dimensional vector with components n„,n In the.
contraction operation of the unit vector n with tensor f
this vector is considered at first as a three-dimensional
vector with component n, =0 and then, after this con-
traction, the z component of the three-dimensional vector
obtained is omitted. The operator & indicates the Pauli

y matrix

0 —i
i 0

and 8'," is the first-order Hankel function of the first
kind. Since zx, zy, and zz components of the quadrupole
tensor do not enter into the expressions for fields then
without any limitation of generality we may set s =0,
and then not only T6'=0 but the equality s +s =0 is
satisfied as well.

Just like in the three-dimensional case we have now the
separation of contributions from various terms into vari-
ous zones. For example, in Eq. (4a} for dipole radiation
the first term describes near-distant (static) and the inter-

moved by means of renormalization of the magnetic mo-
ment.

Performing the difFerentiation in (1) and assuming that
8/Bz =0 for all physical quantities, we arrive at formulas
for the fields where contributions from the different radi-
ation zones are separated:

~(&)
Ez =i m k [2n(n. d) —d]+i n k Hz" [d—n(n. d) ],
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mediate zones whereas the second term describes the
wave (radiation) zone. It is noteworthy that the z com-
ponent of the electric field does not have a static term. It
is connected with the obvious fact that the static field is
perpendicular to the axis z of a charge thread. This as-
sertion is also true for other z components, namely, the
quadrupole's electric field and the magnetic dipole's mag-
netic field. Finally, in the case of a composite medium,
densities d, s, and w are replaced by integrals over the
cylinder's cross section.

E'(r') =E;(r)+E (r')

+f (VXVXPG —VXVXV QG
o'

+ikV XMG)d r',
H'(r')=H;(r)+H (r')

+J ( ik—V XPG+ikV XV QG
0

+ikV X V X MG)d r',

(9a)

(9b)

III. THE LOCAL-FIELD PROBLEM
AND AN EXTINCTION THEOREM
UNDER PROPAGATION OF LIGHT

IN TWO-DIMENSIONAL OPTICAL MEDIA

A, »a ))b, (8)

Equations (4)—(6) allow us to calculate the electric and
magnetic fields acting on the radiator at point r due to all
other radiators and the incident wave. By introducing
the "Lorentz cavity" —in our case it is a cylinder 0. of ra-
dius a with axis parallel to the z axis —and choosing the
parameters a and b in the following manner:

where P, M, and Q are the electric dipole, magnetic di-
pole, and quadrupole volume densities, respectively; E;
and H; are the strengths of the electric and magnetic
fields of the incident wave, o. is the Lorentz cylinders'
surface, and X is the boundary of the medium.

Here E and H are the contributions from the radia-
tors inside the Lorentz cavity. It is necessary to em-
phasize that, while calculating the terms E and H, we
cannot pass from summation to integration because for
the radiators disposed not far from the observation point
r, discreteness of the medium is important. At the same
time, the changes of P, Q, and M inside the Lorentz cavi-
ty may be considered to be small due to condition (8).
Then expressions for E and H take the form [compare
them with formulas (7) and (8) of Ref. [6] for the three-
dimensional case]

where 6 is the characteri. stic distance between the radia-
tors (cylinders) and A, is the wavelength; for radiators in-
side the Lorentz cavity we may pass from a summation to
the integration by analogy with the three-dimensional
case. As a result, we come to the following integral equa-
tion for the eleetrie field E' and the magnetic field H' act-
ing on the elementary radiator:

E (r)=j I'+ —g:Q+ik5 jM M+5y&. (VP)+P&.'(VQ),

(10a)

H (r) =jM+ik(M:Q ikb j—~ P+b j,:( VM) . (lob)

With allowance of Eqs. (4)—(8) for tensors jand g, we ob-
tain the following expressions:

2(n(J ),(n)) ), —(1—5„)5„
( j)„=2b2g

jWI Rl.
(1 la)

2(n, ), (ni ),(ni, ) —(1—5„)5, (n&, ),

j@1 lj
(1 lb)

2(ni, ), (nil ), (nl, )~
—(1—5„)5,~(n,, ),(g)„=8b' g

j&I RI
(1 lc)

jllj t lj p lj q sz sq lj t jl)p
(gi )„~q

= 8b-
j%1 Rl ~

(11d)

(1 le)

2(~), (ni, ),(ni, ), —(e)„5,(4).~,
=2b' X

j&l Ri'j
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Here nt =R& /R& and Rt ——rt —r . The indices s, t,p
number the Cartesian components, 5„ is the Kronecker
symbol, and e is the antisymmetric unit third-rank ten-
sor. In Eqs. (11e}and (1lf) summation over the index q is
implied. The radius vectors ri and r. determine the posi-
tion of the Lorentz cavity's center and location of the ra-
diator in the xy plane [components (r& ), and (rj ), are al-

ways considered to be zero]. Note that, as in the three-
dimensional case, Eqs. (10}and (11) hold true with an ac-
curacy better than the electrostatic field approximation,
being correct up to terms of first order in the parameter
kR inclusive.

In the general case the components of the tensors P
and g are of the order of unity. For a medium of ran-
domly distributed radiators in the xy plane we have (see
Appendix A}

E=E'+p P+ —rt:Q+ikpM. M+bp:(Vp)

+g, E(VQ)+ —
PM, :(VM),

H=H'+p. M+ikrtM:Q ik—pM P.+bp, :(VM)

+ keM2 (V.VQ)- kpM1 (VP),

where P and rt are free parameters, which we choose in

such a manner that fields E and H, together with the in-

tegral equations (9), satisfy also the following wave equa-
tions:

rM 0 0& 0M (12)
VXVXE—k E=4nggk P —V Q+ —VXM

(14}
Vanishing of tensors P and g under random distribution
of the radiators removes the obstacle of divergence at the
upper limit of the summation in Eq. (11}.

To calculate the macroscopic parameters we perform,
according to [6,7], a substitution of the variables in the
integral equation. As was shown earlier, this substitution
corresponds to the passage from local (in our case mesos-
copic) fields E', H' to the macroscopic fields E,H by the
formulas

V XV XH kH=—4ng k M+ —VXV Q ——VXPM k

where gE and g~ are free parameters.

Using the results of Appendix B we may, just as in Ref.
[6], transform integral equations (9) to the following
form:

1 — E=(y +P 4' +4m—) P+ —(rt+g):Q+ikb(/M+PM } M+b(y", +P, ):(Vp)
gE

+(f)+rt)+e)) —4m54) (VQ)+ —(pM)
—4'))+47TE):(VM)

+E;+VXVX I E —G +GnzV' E +G Q nz+ —[MXnz] drz,
4~k2

(isa)

1 — H=(p+p 4+4m) M—+ik((M+rtM e2):Q ——ikb(yM+pM) P+b(y, +j3,):(VM)
ga

+k(e -e +4~5):(vvg)-k(p -q' +4~6):(vp)

+H, +VXVX f 2
H —G +GnzV' H ——(nz QXV'G+GnzXV' Q+GPXnz) dr',

z 4~k v v

(15b)

where tensors 4 and 8 are due to terms arising after fac-
toring the operator V X V X from the integrand. The
differentiation operation over r and the operation of in-
tegration over r' do not commute because the lower limit
of integration depends on r. Here 54 is a symmetric
fourth-rank unit tensor

If we choose the values of the free parameters in the
following way:

g~ =gled =I, g= 4m+ qi p, —q= f,—p, = —y",—,
'

p = —p, q, =4~5,—e„—g, , q =e,—g

( 54 )iJkl 5 I5ik, 5 .'( VQ )=V .Q
and 55 is a unit tensor of fifth rank

(85},jkI =e,j. 5k, , 85!(VVQ)=VXV.Q .

(16)

(17)

p, = —4~~+q„, q, =e„—4~5, ,

then it is evident that all the extra-integral terms in (15),
except E; and H;, vanish. As a consequence Eqs. (15)
take the form
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E, +VXVX, E —G +Gn, V' E
4~k 2 Bv Bv

leads to not so cumbersome formulas. Consideration of
vector invariance suggests the following natural linear
dependence of Q from E':

+6 Q.nx+ —MXnx drx=O,
k Q' '= a(».(VE'),

k
(27)

(19a)

H, +VXVXI, H —6 +Gn, V' E
z 4~k~ Bv Bv

——([nzQXV'6]+6[nxXV' Q]

where a& is the fourth-rank tensor symmetric over the
first and last pairs of indices.

In the case of an isotropic medium in the xy plane and
taking into account the condition (V E')=0 we may
write tensor a in the following form:

(28)

+6[PXnx]) drz=O, (19b)
where

D =E+4nP 4nVQ'—. ' (20)

Finally, for a nonmagnetic medium, in the linear approxi-
mation when M does not depend on E', we may set

d=aE'+d (21)

where drx is the diff'erential along the boundary line in

the xy plane.
This is an extinction theorem for optical media, which

may be considered to be two dimensional. For media
with a "blurred" (compared to b) boundary, the terms
with Q and 1Q in (19a) and with Q and P in (19b) may be
omitted. The expressions for the fields outside the medi-
um (refiected waves) coincide with the left-hand parts of
Eqs. (19).

After substitution of expressions (18) into (13) and (9)
we come to the conclusion that the quantities E and H
satisfy the system of macroscopic Maxwell equations,
where vector D is given by the relation

a&, =a@,=—a& . (29)

P=Na E'+P

V Q= —Nag E'+VQ

M=NaM H'+M

(a);.=a;5;i, a, =a» =a .

(30)

For aM there are analogous expressions. Finally, the rela-

tions between the macroscopic E,H and local E', H' fields

take the form

In the case considered the electric dipole and magnetic
dipole polarizations have analogous properties. As a re-

sult, we can write the microscopic material equations.
For convenience we do not present the connection formu-
las between d, s, w and E', H', but give identical formulas
for the bulk quantities P, Q, M and N E', NH':

and using Eqs. (13), (14), and (18) obtain the macroscopic
equation

VXVXE—k e.E

=4gk2[f .P"~+f&.(V Q)+ fMV XM f»Na—P], —

(E),»=(E' —2nP+2nV Q)„, E, =g,',

H„=H„' 2@M, +2m — (V Q },—2—nikQ», ,
k y

(31}

where e is the dielectric permittivity tensor

e= 1+4m [1 Na(4m 4+y )—] ' Na, —

f„=[1 Na(4~ 4—+j)] ',—f&=o4 f~.Na.j, , —

fI=e f~.Na. (4ne 0—„)—:e, . —

(22)

(23)

(24)

(25)

H =H' 2aM» 2n —(V Q)—, +2m—ikQ„, .
k Bx

Through the use of (30) we may eliminate from these

expressions the linear parts P, Q, and M . Limiting
ourselves to the case Q;, =0 we obtain

(E')„ E+2m.P —2~(V Q )

1 —2mNa —2~Na Q x,y

P= —g:Q+iky ~ M+by, :(VP) . (26)

In Eq. (25) e is a unit antisymmetric third-rank tensor.
In the case of random distribution of cylinders in the

xy plane the treatment of dipole density P, taking into ac-
count only terms linear in E' and H' in the density Q,

H+ 2~M
1 —2~Na

l
M x,y

In the end we come to the following wave equations for
electric and magnetic fields:
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VXVXE—
ju, ek E=4mk ju, P —p, V.Q

e+ 1 NL e+ 1 NL

+ p XMNJ-
k

(VXVXH —p, ek H},

i a+1=4~k' ~M"' ——V XP~'
k 2

+— VXV Qk 2

(33)

(VXVXE—pe, k E),

=4@k IMP +— V XM
i +1

2

VXVXH —pe k H=4mk e M ——VXP+1 i
z 2

. z

The notations are

1+2m.lVaz +2~N a&
1 —2mNa~ —2n.lVa&
1+2aNaM

p, = I+4nN(aM }, .
1 —2mNaM

e, = 1+4n Na, , (34a)

(34b)

In the case of a&=0 we obtain from (34a) the two-
dimensional analog of the Lorentz-Lorenz formula

E' 1 =2mNa .
@+1 (34c)

Thus, like in the three-dimensional case [6], the micro-
scopic parameters a, a&,aM reduce to two macroscopic
parameters e and p. All quantities that enter into the
wave equations for the macroscopic fields are expressible
in terms of these two parameters.

In contrast to the three-dimensional case, in planar sys-
tems the local field factors f~ and f& for electric dipole
and electric quadrupole moments are equal:
f =fg=(a+I)I2.

The local field factor f2 for arbitrary m-pole moment
in the three-dimensional case is suggested to be

IV. APPLICATION TO COMPOSITE MEDIA
AND SELF-ASSEMBLED FILMS

The most evident candidate for the application of the
obtained results are quasi-two-dimensional composite
media. Take as an example the "mesoscopic" structure
when, on the one hand, each column is sufficiently large
for forming the macroscopic dielectric permittivity e but,
on the other hand, rather small compared with A, and
may be considered as an elementary radiator. As justified
in the Introduction, if we confine ourselves to considering
the dipole radiation only, then the results become appli-
cable to the case of a random distribution of columns in
the xy plane. So it is possible to use all the formulas de-
rived for the macroscopic optical parameters of the medi-
um provided that the microscopic polarizability tensor a
1s

1 e—1 z e—1 2
xx yy 2 +1fp & azz 4

pp (37)

It at once follows from the known solution of the prob-
lem about the dielectric cylinder in an external homo-
geneous field [8]. By use of Eqs. (34) we obtain the fol-
lowing dielectric permittivity tensor e:

@+1+c(e—1)
&XX =&

a+I —c(e—1) '

E —1 =c (6 1), — (38)

where c = mr oN is the bulk material concentration.
For a description of the optical properties of the film it

is convenient to introduce the optical anisotropy parame-
ter

tensors PM, and qsr2, which in the three-dimensional iso-
tropic case equal zero. It is a qualitative distinction. On
the other hand, similar to the three-dimensional case, the
higher multipole moments are more sensitive to rnicro-
structure of the medium. For example, the tensor P
equals zero both for the quadratic and isotropic lattices,
i.e., dipole radiation does not "differentiate" these
configurations, whereas the tensor gi turns to zero only
for a random arrangement of the cylinders in the xy
plane. The calculation of this tensor for a quadratic lat-
tice is presented in Appendix A.

m(e+ I)+ I
2m +1 (35} E'~ —1

&XX
(39}

From dimensional considerations it may be assumed that
for the two-dimensional case this factor takes the form Then from (38) and (39) we obtain

m(e+ I) @+I
2m 2

(36)
(e—1)P=c(1—c) e+ I+c(e—1}

(40)

We note that the independence of the factors on multipo-
larities allows us to significantly simplify the calculation
of the medium optical parameters by use of the multipole
expansion for an elementary radiator as it will be per-
formed in the following section under investigation of
composite media.

The anisotropic, from the three-dimensional viewpoint,
character of the problem causes the appearance of the

For small concentrations (c «1) Eq. (40) coincides with
the results of [10], where the infiuence of the dielectric
columns on each other has not been taken into account:

(41)

For large bulk material concentration 1 —c « 1, Eq. (40)
takes the form
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P=(1—c) (E 1—)
2E

(42)

&e+ 1c,„= (&2e —&a+1) . (44)

From (44) it follows that c,„&0.5 for any magnitude of
e. With e~ 00, c~» approaches the upper limit

c,„=&2—1=0.41. The shift and asymmetry of the
P(c) dependence are the manifestation of the elongated
columnlike morphology of the medium.

Consider such an operation of "phase transformation"
when the dielectric regions transform into voids and vice
versa. In the general case this means a change of the
medium's morphology. But for certain types of inclusion
geometry (for example, square rods inserted into a quad-
ratic lattice) the medium's mesostructure does not
change. Then the curve P(c) will be symmetrical and
have a maximum at c =0.5.

By use of these results we may calculate the dielectric
permittivity tensor of a set of vacuum columns in bulk
crystalline silicon. It is the "phase transformed" image
of the dielectric columnar mesostructure. Since e is, in
fact, the ratio of the dielectric constants, then it is
sufficient to substitute a~ I/e and c —+1 —c in Eq. (38).
Then instead of Eq. (38) we get

2+c (e—1)
~xx =& e„—1 =c(e—1), (45)

2e c(e 1) —'—
where e is the concentration of crystalline silicon.

Curve II in Fig. 1 shows the P(c) dependence for vacu-
um columns in the bulk dielectric structures. This depen-
dence strongly differs from that given by curve I. The

p
'~ c =14 j:—S i co Iurnns

II —vacuum columns

Q.O 0.2 0.4 0.6 0.8 l.O

FIG. 1. Anisotropy parameter P as a function of silicon con-
centration c. I, silicon columns in the vacuum; II, vacuum
columns in bulk silicon.

In both limiting cases the parameter P for homogene-
ous one-component media naturally turns to zero. The
optical anisotropy dependence vs concentration c is
shown in Fig. 1, curve I. The maximum value P',„ofan
anisotropy is

P~» = (&2e—&e+ 1)

at concentration

maximum value of the anisotropy P",„equals

n 1 @+1+&2e
&max ~ + 1+~2 4 max (46)

and for large t. &)1 this value is about e times less than
that for the silicon column-type geometry:

(47)

This example with dielectric and vacuum columns vividly
demonstrates that the macroscopic optical properties of
the composite system may dramatically depend not only
on the concentration of the inclusions but on their form
as gael/.

Nonlinear susceptibility presents an even more striking
example. Since the field acting on the cylinder multiplies
the macroscopic field by a factor of (e„„+1)/2, then for
the third-order susceptibility, with allowance for Eq. (36),
we have a factor of [(e„„+1)/2] . For the mesostructure
of the silicon cylinders the field inside each cylinder is
less than the acting field by a factor of (a+1)/2 [8],
whereas for the mesostructure of the vacuum cylinders
this factor is of the order of unity. As a result, for the sil-

icon and vacuum columnar mesostructures the nonlinear
susceptibilities would diff'er by two orders of magnitude.

We would like to emphasize once more that the con-
sideration of columnlike porous media was carried out
under the assumption of purely dipole fields from the
columns. This holds true either for arbitrary relative po-
sitions of the columns when the intercolumn distances
are large in comparison with their diameters or for arbi-
trary concentrations under a random disposition of the
columns. The case of the ordered locations and the very

high concentrations demands that the further multipole
moments of the radiator's field be taken into account.
This problem will be considered elsewhere.

With regard to the optical properties of LB films

[1,11,12] and organic films in general [13],this is motivat-
ed by the high nonlinearity of the organic molecules
which compose the films. Equations (22)—(26) may be ap-
plied immediately for calculation of these macroscopic
optical properties, i.e., linear and nonlinear susceptibili-
ties, if the polarizabilities of the molecules are known.
Previously, calculations of these nonlinear susceptibilities
were performed with a customary three-dimensional local
field factor (@+2)/3 [14]. But for LB and self-assembled
films constructed from elongated molecular chains it is
much more reasonable to use the 2D factor (@+1)/2.
Even for moderate values of e-4 the difference between
these factors is about 15—25%. Since the second- and
third-order susceptibilities y' ' and y' ' are proportional
to the third and fourth powers of the local field factor,
then the distinction between the calculations with two- or
three-dimensional local-field factors may reach 100%%uo or
more. The account of the regular properties of 20 struc-
tures [see Eqs. (24)—(26)] gives a still more vivid distinc-
tion from the usual isotropic 30 approach. Sufficiently
exact measurements of the polarizabilities and suscepti-
bilities will allow us, with the help of Eqs. (10), (11), and
(23)—(26), to obtain information about molecular spatial
configurations in the film. Valid information about local-
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field factors may be essential for optimization of the film's

parameters [15].

V. SUMMARY

The general idea of the substitution of variables in the
MIEs happens to be effective for the analysis of quasi-
two-dimensional optical media. Just as in the three-
dimensional case the optical parameters of the medium
contain information about the geometry of the meso-
structure with the characteristic sizes much less than the
wavelength. Moreover, the finer peculiarities of such a
mesostructure are described by the multipole moments of
higher order. For example, the tensor g, of the "quadru-
polar origin" equals zero for the chaotic medium in the
xy plane and differs from zero for the quadratic lattice
whereas the "dipole tensor" P:—0 in both cases. The
second example presents a quasi-two-dimensional medi-
um with random isotropic arrangement of the radiators
(cylinders) in the xy plane: in such a system the tensors
of the magneto-dipole origin tI~ and g~2 differ from zero
whereas for really isotropic random three-dimensional
media these tensors are exactly equal to zero.

After the substitution of the three-dimensional Green's
function by the two-dimensional one and the replacement
of the surface integration by integration along the bound-
ary lines, an extinction theorem for the two-dimensional
medium coincides with its three-dimensional analog.

The concept of the elementary cylinder radiator
(mesoscopic atom) converts the MIE into quite an
effective tool for the analysis of optical properties of com-
posite media, while for the case of the random (three- or
two-dimensional) distribution of inclusions the results ob-
tained through the dipole approximation may be directly
applied to composite media. In particular, it may be ar-
gued that the three-dimensional Maxwell-Garnett formu-
la

4m%a
e—1=

4m
1 — 1Va

3

and the formula for the mesoscopic polarizability a
e —1 3 . E+2+2c(e—1)

(48)

(49)

obtained on its basis for the spherical inclusions, hold
true for arbitrary concentrations c of the inclusions. Un-
der the regular arrangement of the inclusions and high
concentrations we must keep the multipolar terms.

As well as in the three-dimensional case [6] calcula-
tions in Appendixes A and 8 and all the rest of our calcu-
lations are made with an accuracy up to the parameter ka
inclusive. Therefore, all these results hold true with the
same accuracy not only in the limit kb ~0 but also in the
first-order approximation. Consideration of the retention
of higher-order terms [in this case the terms
-(kb) ln(kb)] will be given elsewhere. The technique
developed, in our opinion, is the most useful for the
analysis of composite media with inclusion sizes and in-
terinclusion distances not too small compared to the
wavelength, just as in the case of the workable two-

dimensional PBG structures.
After our work was submitted for publication we be-

came aware of the recently published paper by Robertson
et al. [16] about the measurement of the dielectric con-
stants for different orthogonal polarizations in two-
dimensional order dielectric arrays. In the limiting case
of a long wavelength they obtained good agreement with
the phenomenological Weiner theory for an E field paral-
lel to the rods, but for the perpendicular E field there is
strong disagreement, by a factor of about 2, for the re-
fractive index (n~ —1) (experimentally equal to 0.11 and
0.09 for quadratic and triangular lattices, respectively) in
comparison with the prediction of the phenomenological
theory of 0.06 and 0.05, respectively [Eq. (6) of Ref. [16]].
Substitution of their experimental concentrations c for
both types of lattices and the dielectric constant e of the
material (c =0.125, 0.11, and a=8.6) into our Eq. (38)
immediately gives for the lattices' refractive index
(n j

—1) the values 0.11 and 0.091, respectively, in splen-
did agreement with the cited experiment. This
correspondence is even better than one would expect be-
cause our theory takes into account only the first (dipole)
term of the multipole expansion of the elementary
radiator's field. However, one could object that the field
of a dielectric cylinder has pure dipole form only in a uni-
form external field. Such a situation exists within the
random disposition of radiators and therefore each
cylinder behaves as an ideal two-dimensional dipole for
arbitrary concentrations of the inclusions. It seems that
symmetry of the triangular and quadratic lattice is
sufficient to ensure the quasiuniformity of the field in the
vicinity of lattice points.
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APPENDIX A:
THE CALCULATION OF TENSORS P AND 0

FOR THE REGULAR SQUARE LAITICE
AND CHAOTIC MEDIA

From a requirement of the tensor equality covariance
for the central symmetrical media we get the condition

(Al)

For the calculation of the tensors y, g, , and g~ the gen-
eral idea based on the fact that for the medium with two
orthogonal axes of symmetry (rectangular lattice) all the
terms with odd powers of the Cartesian components n&-

turn to zero,

(A2)
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and

0'

(g, )„=8b g[(1—5„)5, 5, (n, ),

—2(25,q5(~+5„5 )(1——', 5, )

X(nIJ ),(nij. )p]
R

2(ni, )(z+5(4).((, =2b' &

(A3)

(A4)

random spatial configurations, summation may be
changed for integration. A11 zeroth tensor components of
the square lattice will equal zero after the averaging.
But, besides, due to the angular dependence (n, )„ the
right-hand side of Eq. (A5a) after angular integration
turns to zero. As a result one obtains Eq. (12).

APPENDIX B:
THE FACTORING OF THE OPERATOR V X V X

OUTSIDE THE INTEGRAL SIGN

%e start from an equality

(ki).((q =o

3 —8(nij ),

tj

(Asa)

(Asb)

whereas the rest of the components of the tensor g, equal
zero.

Finally, for a chaotic distribution of the radiators, tak-
ing advantage of the averaging over an ensemble of the

I

For the square lattice /=0, g&-e' and the convolution

gM with the symmetric tensor Q equals zero. Therefore,
we may put into (10) the tensor (M =0 and write the ex-
pression for g, in the following form [6]:

«1 )-.i.~.= —(0i ),(r, i,~(,,~,

f 'Sd'r =f ' "d'r'+ f ~(n), dr',

where F =F(r, r') is an arbitrary function and n is the
unit vector normal to the boundary 0. Set
F =inH~ '(kR)f(r') and, taking into account the small
size of a, expand f (r ) in a power series in the vicinity of
the point r:

() ()f(r')= f(r) n, a—+ n;n a+
()x; 2Bx;Bx .

a 2

=f(r) —a(n V)f+ (nn:VV)f+ . (B2)
2

Calculating directly integrals over o in the right-hand
side of the equality (B1) we obtain

f fGn, dr'=inaHc'"(ka)f f n;dQ isa H—o"(ka) f n, n dQ+ ,'isa Ho I(—ka) f n, n, n dkQ
o J BxjBxk

+0 " a ln(ka) = —im a Ho" " +0 " a ln(ka) =0+0[a ln(ka)], (B3a)

f f n;dr'= 2n f5;J(1——5;, )+O(a lna),G
0 Xj

n; r'=m
jk —; —;k 1—;,1—,+Oalnka

(r BXJ Xk

f f n, dr'=m —k f+— (5; 5k, +5k5i, +5;,5ik)(1 —5;, )(1—51, )(1—5k, )
()G, 1 2 18

()x 5&„()& 2 3 ()x

(B3b)

(B3c)

82 B2 82'f 5+ 'f 5+
ax„ax, '& ax, a~, " ax, ax, " (B3d)

Formulas (B3) are obtained with the accuracy up to the
first-order terms in ka inclusive. By use of Eqs. (Bl) and
(B3) we get the equalities with the same accuracy up to
the terms ka inclusive:

VX f fGd r'= f VXfGd r', (B4a)
o o'

VX f VXfGd r'
cr l

J VXVX fG d r' +2'(1+5,, )(f);, (B4b)
o

VX f 'Vx Vx fG d'r'
0'

f Vx Vx Vx fG d'r' +2~5,,(V xf ), ,
o' l

VX f V fGd'r'
0

(B4c)

f VXV.fG d r' —2m(1 —5,, )~;,k(f ),k, -

0

(B4d)
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VXf VXV f.Gd r'

X X - G r' +2m
CT

+mr(1 —5,, )[V.(f' f—) V—Trf ], ,

VX f VXVXV.fGd r'

(B4e)

vxvx f vxtGd r'
O

(+11) tk ~ stk

VXVX f V.fGd r'

X X X G r +Q]]: f
(B5b)

= f V XV XV.fG d r'+8„:(Vf ),

+2qr e,lk(5, —1)k f k

+5„VXV f+,f (B4f)

Repeatedly using Eqs. (B4) we obtain the desired relation-
ships:

(811)stkp ~5sp5tk+~(5- 1)—(5sp5tk+5sk5tp

+5„5k );
VXVX f VXV fGd r'

X X G r'

+k 8,:f+8„2(VVf),

(B5c)

VXVX f'fGd r'= f VXVXfGd r'+4 f,
CT 0'

(4)„=2qr5„(1+5„);
(BSa)

822)stkpq 2~estq5kp + + stp 5kq 5sz

(82)stk =2qrestk(5(z —1) .
(B5d)
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