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Dark solitons generated by second-order parametric interactions
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We show that parametric interactions in quadratic nonlinear media can support a novel type of spatial
dark soliton. In contrast to the conventional dark soliton in cubic nonlinear media, the most unique

feature of the new soliton can be seen in the twin holes in its intensity pro6le. With a typical nonlinear

material, a way to generate the soliton is proposed. A higher-dimensional extension of it is discussed.

PACS number{s): 42.50.Rh, 02.30.Hq, 42.60.Jf, 42.65.Jx

I. INTRODUCTION

The concept of solitons has now become ubiquitous in
modern sciences, and can be found in various branches of
physical science [1]. Of these, the type that can be de-
scribed by the cubic nonlinear Schrodinger equation
(NLSE) is regarded as one of the most attractive objects.
A representative example of the soliton is found in the
laser beam (pulse) propagation in cubic (third-order; y' ';
Kerr-like) nonlinear media that include fibers [2,3]. As is
well known, there exist two kinds of solitons in the
canonical (1+1)-dimensional NLSE: bright and dark sol-
itons. Owing to its unique features that cannot be found
in the bright soliton, in recent years much attention has
been paid to the underlying physics of the dark soliton
[4]. In this paper, we present a novel type of dark soli-
ton, taking advantage of mutual supporting assistance re-
sulting from two-wave parametric interaction in quadra-
tic (second-order; g' ') nonlinear. media. For the new
dark soliton we find some remarkable features. Unlike
the conventional hyperbolic-tangent-type dark (black)
soliton that is based upon the Kerr-type nonlinearity [4],
the most unique and fascinating feature of the present
y' ' dark soliton lies in its topological property in the
cross-sectional field profile. As a higher-dimensional
solitary-wave (quasisoliton) version of the soliton, an
analytical expression for the fundamental-dark-soliton
crosses is derived through self-consistent-field (Hartree-
like} approximation. With an available nonlinear materi-
al, a specific method for generating the new dark soliton
is proposed. It is found that the intensity that is needed

for exciting it can be lowered optionally by tuning the

temperature.

II. FUNDAMENTAL CONCEPT
OF THE DARK SOLITON

As a physical system to support the dark soliton, we
consider a phase-matched traveling-wave configuration of
optical wave mixing between the fundamental (co) and the
second-harinonic (SH; 2') frequency components
through the second-order nonlinearity of a dielectric
medium. From Maxwell's and material equations with a
propagation factor, exp [in(Pz tot)] (n =1,2), being—im-
plied, the coupled-wave equations of the slowly varying

electric-field amplitudes A (eo) and A '(2to) along the
propagation axis z are derivable [5-7]:

i2B&gA =t)g A +(s B)A—+2tt A ' A',

t'4Bt)tA—'=&~A'+4(s' B')A'—+4tt'A2,

(la)

(lb)

where g=k, z (ko being the wave number of the funda-
mental wave in vacuum); g=kox (x being a transverse
axis); B=plko (p being a phase constant along the z
axis); s is the relative permittivity; tt represents a relevant
component d 1 (i =1,2, 3; j=1,2, . . . , 6) that is involved
in the second-order nonlinear tensor [d] (=—,'[y'2']); and

the asterisk denotes complex conjugate. The specific
combination of (A, A', ~) depends on the crystalline an-

isotropy as well as the polarization. For instance,
for uniaxial crystals [optical (c} axis being assumed
to align along the x axis] with the class 3 mm of a
trigonal system [e.g., (LiNb03}], we can choose
(A, A ';n') =(E„(e),E„'(e);d3q), (Ey(o ),E'(o );d22), or
(E (o),E„'(e);d3i), where o (e) indicates the ordinary (the
extraordinary) wave. Note that in these combinations
one need not worry about the spatial walk-off problem [5]
since both the waves and the rays are propagating col-
linearly. (In this context, the method called 90' phase
matching [5] may be applicable to the second combina-
tion via d22. } In this paper the prime (the primeless) indi-
cates the quantity with respect to the SH (the fundamen-
tal) frequency component [e.g., A = A(co), A'= A'(2co);
s=s(to), s'=s'(2to)]. In the derivation of Eqs. (1) we
have confined ourselves to the parametrically coupled di-
chromatic beams in a transparent medium; efFects due to
absorptions will be mentioned below (see Fig. 2 and brief
discussion in Sec. III}. Note that the permutation sym-
metry [5] requires that tt= a'.

Imposing the stationarity t)& ——0 reduces Eqs. (1) to the
form

d(A+(e —B )A+2ttA*A'=0,

d~A'+4(e' B)A'+4ttA =0—.

(2a)

(2b)

A(g)=Ao[1 —@sech (ag)], (3a)

As an ansatz that satisfies the asymptotic behavior,
A(g)+0, A'(g)%0, and d&A =d&A'~0, as g —+choo, we
set
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The validity of this methodology was fully ensured
through extensive applications to stability analyses of sol-
itary waves in Kerr-like media [8,9]. With this method,
one first inputs on a computer the solitary wave into a
nonlinear medium (LiNb03) and traces the subsequent
variation of the input field during propagation over
sufBciently long distances. If the input solution were
stable, it would maintain its initial shape after propaga-
tion. Through careful analyses we have confirmed that
despite a numerical noise that may perturb the signal
after the long-distance propagation, the solitary-wave
solution we have derived above is stable against propaga-
tion (Fig 1).. To check the effect due to a perturbation,
similar calculations have been made by including dissipa-
tions (one- and two-photon absorptions of LiNb03). The
simulated result is plotted in Fig. 2. The data of the ab-
sorption constants have been extracted from Ref. [11],
and are given with the description in the subsequent sec-
tion. Although the amplitude decreases after the long-
distance propagation, as in conventional optical solitons
in a cubic nonlinear medium with loss [4], the evolution
is found to be quasiadiabatic. Numerical results simulat-
ed with amplitudes not exactly equal to the values of Eqs.
(Sc) and (Sd) have shown quasistationary propagation
provided that the deviation is roughly within 10%. This
property is consistent with that of the conventional y'3'-

based dark soliton, which was found to be quite stable
against perturbations [4]. All these results verify that
Eqs. (1) have a dark-soliton solution. Note that as obvi-
ous from Eq. (Sc), there exist two modes: AoAo &0 and

o~o&0

III. NUMERICAL RESULTS AND DISCUSSION

The profiles of the amplitudes and the intensities of the
present soliton are sketched in Fig. 3, wherein a unique
topological structure is seen, i.e., the transverse phase is
reversed at the two sites, /+=+0. 6585/a. As depicted
in Fig. 3(b), these null points form a local hole doublet in
the intensity profile, which propagates independently
because of the stationary (the eigenfield) nature of
the fundamental soliton. The normalized spacing a be-
tween the two valleys is given by the relation
o =g+ —

g =1.317/a, which is 45% of the normalized
FWHM (=2.914/a). The FWHM of each individual
hole is estimated to be 0.6597/a. It should be em-
phasized here that this noninteracting behavior of the
holes is quite unique, and indeed in sharp contrast with
the repulsive force acting during the copropagation of
two closely spaced dark solitons in Kerr nonlinear media
[10]. From Eq. (5b) the spacing is inversely proportional
to the square root of the dielectric-constant mismatch

Below we shall explore how to experimentally generate
the parametrically excited dark soliton. As obvious from
Eqs. (Sc) and (Sd), to reduce the intensity necessary for
forming it, one needs to select a material that exhibits
smaller permittivity difFerence between the two frequency
components or larger y' ' nonlinearity. Of some candi-
dates we have found nonlinear interaction through d3& in
LiNb03 to be the best for this purpose. In this

2N
I

/
I

I
I

(a) (b)

FIG. 3. Transverse profiles of (a) the amplitude and {b) the
intensity of the present dark soliton. Twin intensity nulls are
seen at g=g+ and g=g; the spacing between them is denoted

by cr.
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FIG. 4. Temperature dependence of typical soliton parame-
ters in the vicinity of the critical temperature (A, =1.064 pm,
A.'=0.532 pm). Parametric interaction via d3& is considered for
LiNb03. (a) Intensity FWHM and spacing between holes, and
(b) intensity at the plateau. The dashed line points out the criti-
cal temperature, t„=43.076'C, at which the permittivity
mismatch Lc between the two spectra vanishes.

configuration, the fundamental wave is an ordinary (o)
wave, whereas the SH wave is an extraordinary (e) wave,
which corresponds to the third combination mentioned in
the preceding section. Taking advantage of the different
temperature dependence of the two refractive indices
(n„n,) [11],one can tune the magnitude of hs in an op-
tional fashion. For some typical wavelengths we have ex-
amined the variation of he [=n, (2') —n, (to)] on the
temperature. Through the examination we have found
that for A, =1.064 pm from a Nd:YAG (where YAG
denotes yttrium aluminum garnet) laser, at
t„=—43.076'C, the difference he vanishes completely [7].
To examine the variation of soliton parameters in the vi-

cinity of the critical temperature t„,we plot in Fig. 4 the
intensity FWHM, the spacing between the local intensity
holes, and the time-averaged intensity [I:BA, /—2(I':BA, ' /2) fo—r the fundamental (the SH) wave]. The
vertical dashed line drawn on Fig. 4 points out t =t„,
and all the material data are extracted from Ref. [11]
(e.g., d3, =—6 pm/V). It should be noted that only the
lower-half region, t &t„,is allowable, and the region
t &t„is forbidden because therein hc & 0, which results,
from Eq. (5b), in a being imaginary. It can be seen from
Fig. 4(a) that the spot size of the soliton decreases with
decreasing the temperature, but the rate gets smaller as it
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decreases. The more interesting quantity to observe the
soliton is the light intensities that are required to sustain
it during propagation. From Fig. 4(b), we find that in the
close vicinity of t„the intensities grow monotonically
with decreasing temperature. %'ith a commercially avail-
able thermostat, the temperature deviation of 0.01—0. 1 'C
would be achievable. For instance, at 43.06 C, one finds
from Fig. 4(b), I=0.6 kW/mm, and I'=1.2 kW/mm,
which can be realized with the laser under consideration.
As in the excitation of the dark soliton in cubic nonlinear
media, the use of a suitably designed phase mask [12] al-
lows one to shape the alternating phase profile on the en-
trance face. Surface damage would be avoidable by
adopting a pulsed-mode operation [11]. As has been
verified in Fig. 2, effects due to linear absorption wil1 be
negligible with propagation distances considerably short-
er than the absorption length I, For LiNb03, from the
data available [11], we estimate I., = 12.5 cm for
X=1.064 pm, and I-,' =35.7 cm for A,

'=
—,'A, =0.532 pm.

Both the two-photon absorption (TPA) of the visible SH
light (TPA coefficient being 2.9X10 cm/W [11] at
0.532 pm) and the self-focusing effect (Kerr coefficient be-
ing 2.2X10 ' m /V [13])can be ignored at least within
the intensity scale shown in Fig. 4(b). Practically, the
strict realization of dark soliton will be impossible since
infinite power is required for realizing infinite back-
ground of the plateau. However, this difficulty will not
be crucial because through experiments [14] and numeri-
cal simulations [15] of the conventional y' '-based dark
soliton, it was found that the solitonic feature can be
maintained even in a finite background, provided that the
plateau is wide enough to ignore the effect of diffraction
(dispersion).

IV. EXTENSION TO HIGHER-DIMENSIONAL
SOLITARY-WAVE FIELDS

Finally, we attempt to extend the results presented
above to the higher-dimensional solitary waves. For the
two-dimensional cross section, Eqs. (2) are replaced with
the following equations:

(c)t+c}„)A+(e—8 )A+2aA "A'=0,

( }t+c)„)cA'+4( ' e8) A' —+4~ A=0,

(6a)

(6b)

where g=koy. Unlike the case of the one-dimensional
confinement, for any higher dimension the exact analyti-
cal approach is no longer available. In what follows, we
shall derive an approximate stationary solution through
the use of a self-consistent-field (a Hartree-like) approach
[16,17]. With this method the first step is to assume an
ansatz in the form of a separation of variables:

A (g, il) =f(g)f(il),

A'(g, il)=f'(g)f'(il), (7b)

where both f and f ' are assumed to be real functions that
obey the asymptotic behavior of the dark fields.

Substituting Eqs. (7) into Eqs. (6) and applying the
Hartree procedure, we obtain a set of the
integrodifFerentia1 equations,

d,f(v)+ (Z B—)f(v)+2lcf (v)f'(v) =0,
d„f'(v)+4('E' B—)f'(v)+4K'[f(v) j =0,

with

Z=e —f [d„f(u)]du f [f(u)] du,

(Sa)

(&b)

(9a)

Ic—Kf [f(u)]'f (u)du f '
[f(u)]'du (9b)

Q Q + ~ '
y 9c

~ =~f" [f(u)] f'(u)du f [f'(u)]'du,

foi (u, v)=(g, il), (ri, g). Here 8 is a positive constant
sufficiently larger than the FWHM [& && (FWHM)]
which will be set to be infinite (R~~) eventually
[17,1g]. Note that Eqs. (8) are formally identical to Eqs.
(2). Here in the limit of R ~ 0D, one obtains &~s,&'~&',
k~f0 K and Ic'~(fo/f&)tc, where fo=f(+~)—,
f0

=f'(+ ao ). Therefore, through the same procedure as
used in the one-dimensional case, we can obtain a com-
pact analytical expression of the higher-order fundamen-
tal dark fields, Eqs. (7), with

f(v)=fo[1 ——', sech (av)],

f'( v ) =f0 [1—
—,
' sech (av ) ] for v =g, il,

(10a)

(10b)

and with 8, a, Av (=f0), and A o (=fo' ) given by Eqs.
(5a), (5b), (Se), and (5d), respectively.

The result of Eqs. (10) shows that in the framework of
the Hartree approximation the two dark-soliton com-
ponents, f(g) and f(g) [f'(g) and f'( t)r] in Eq. (7a) [Eq.
(7b)], are supported independently in the nonlinear medi-
um. Note that also for the conventional fundamental
dark soliton in cubic nonlinear media, the similar conse-
quence was derived [17]. Therein we showed that this
solitary-wave solution can provide a theoretical explana-
tion of a quasisoliton termed a fundamental-dark-soliton
cross (FDSC) by Swartzlander et al. [12], who demon-
strated it experimentally. Here we find that this would be
the case as well for the present dark solution for the y' '

nonlinearity. A schematic illustration of the FDSC's is
depicted in Fig. 5(a); for comparison we show in Fig. 5(b)
that of the conventional FDSC in cubic nonlinear media.
Obviously, the topological cross section of the present
field [Fig. 5(a)] is more complicated than that of the con-
ventional field [Fig. 5(b)]. As in the generation of the
FDSC in cubic nonlinear media [12], such a phase distri-
bution wi11 be realizable by placing an optimal phase
mask on the entrance face of the nonlinear medium.

Assuming a laser operation with ultrashort pulses, one
might expect to obtain the FDSC's in the three-
dimensional space-time (i.e., two in space, one in time).
Indeed, we have verified that the Hartree approximation
for the three-dimensional version of Eqs. (6) leads to the
three-dimensional FDSC's, provided that both the group
velocities and their dispersions are matchable between
the fundamental and the SH pulses. %ith currently
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V. CONCLUSIONS

(s) (b)

FIG. 5. Schematic of the cross-sectional topology in (a) the
present FDSC's that are parametrically generated in quadratic
nonlinear media, and in (b) the FDSC that was formed in cubic
nonlinear media [12]. Note that in the former there exist qua-
drupled crosses. In each region on the cross section, the relative
phase is marked with a plus or a minus.

We have discovered a novel type of dark soliton, which
arises from mutual supporting assistance due to two-wave
mixing in quadratic nonlinear media. Subsequently, we
have discussed some unique properties of this soliton,
proposed a way to generate it, and suggested the possibil-
ity of shaping the dark-soliton crosses. Finally, we would
like to stress the fact that the results presented herein
have close relevance to diverse areas of science, such as,
e.g., Fisher-type models in mathematical biology [19]and
excitable (activator-inhibitor) systems that can be
modeled by Fitzhugh-Nagumo equations [20]. This will
ensure that with minor changes the present results are
applicable to these problems with different contexts.
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