PHYSICAL REVIEW A

VOLUME 50, NUMBER 1

Gain and noise in subthreshold longitudinal laser modes

R. Loudon and C. J. Shackleton
Department of Physics, University of Essex, Colchester CO4 3SQ, United Kingdom

M. Harris, T. J. Shepherd, and J. M. Vaughan
Defence Research Agency, St. Andrews Road, Malvern, Worcestershire WR14 3PS, United Kingdom
(Received 14 December 1993)

A theoretical study is presented of the gain profile and noise spectrum in the vicinity of the
longitudinal-mode frequency separation of a single-mode laser amplifier of class A4 or class B. The gain
and the noise are associated with the adjacent subthreshold modes on either side of the lasing mode; cou-
pled equations of motion for these three modes have been solved. The amplitudes of the contributions of
each individual subthreshold mode to both the gain and the noise are generally anticorrelated. Thus
striking cancellation effects should occur in self-heterodyne measurements from the superposition of
these contributions. The theoretical predictions are compared with the results of a parallel experimental
study on a single-mode argon-ion laser amplifier. Measurements of the gain profiles and noise spectra
close to the longitudinal-mode separation are reported for a range of laser output powers. Results are
presented for simultaneous detection of the contributions of the two adjacent modes; for detection of
only one adjacent mode, the other being suppressed with a Fabry-Pérot étalon; and again for detection of
both modes but with their phase relative to the central laser beam modified by a Fabry-Pérot phase
shifter. The predicted cancellation effects are clearly confirmed, and the gain profiles and noise spectra
are in good agreement with the theoretical expressions. The noise-cancellation effect is demonstrated by
the generation of an optical “antinoise” beam that is nearly 180° out of phase with respect to a broad-
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band noisy input beam.

PACS number(s): 42.60.Lh, 42.60.Mi, 42.79.Qx

I. INTRODUCTION

In a recent series of papers, we have reported experi-
mental and theoretical studies of the gain profile and
intensity-fluctuation noise spectrum of the Ar* laser in
conditions where only one longitudinal (axial) mode is
above threshold [1,2]. In such experiments, it is con-
venient to consider the noise as arising from the beating
(or heterodyning) between the broadband spontaneous
noise contribution and the lasing mode. The light emit-
ted into this mode may be considered monochromatic,
and it similarly acts as the local oscillator for the gain
measurements. We have shown that both the gain and
the noise are controlled by previously unexplored correla-
tions between ‘‘signal” and ‘“image” frequency com-
ponents that lie symmetrically on either side of the laser
frequency. The frequency components are coupled by a
four-wave-mixing process driven by pulsations in the
population inversion. The effect of these correlations is
generally a reduction in the gain and the noise that would
be observed in their absence, so that the overall effect is
one of anticorrelation.

The details of the anticorrelation between signal and
image contributions should ideally be determined by ex-
periments in which the two components are measured
separately and in combination. Such experiments are
difficult to perform on the single longitudinal mode of the
Ar™ laser because the narrowness of the line precludes
practical separation of contributions from opposite sides
of the peak. We have found, however, that the funda-
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mental anticorrelation effects survive in the contributions
to laser amplifier gain and noise from the pair of adjacent
longitudinal modes on either side of the laser line. The
same four-wave-mixing process via population-inversion
pulsations couples the gain and the noise contributions
from the adjacent modes, and the separation between
longitudinal-mode frequencies is sufficiently large for rel-
atively straightforward experimental discrimination of
their contributions.

The main purpose of the present paper is a comprehen-
sive account of the theory and experiments on adjacent
longitudinal-mode gain and noise. There has been a con-
siderable amount of previous work on laser systems that
involve the excitation of two or three longitudinal modes,
including studies of mode locking and competition [3-5],
mode hopping [6,7], multimode instabilities [6,8], and
schemes for quantum noise reduction [8,9]. Semiconduc-
tor lasers display a range of phenomena that parallel
those found in gas lasers considered here. Thus a four-
wave-mixing process driven by pulsations in the carrier
density plays important roles in determining the relative
gains of adjacent modes [10,11] and the conditions for
multimode or single-mode operation [12-15]. However,
the details of these effects in semiconductor lasers often
differ qualitatively on account of the gain-dependent
modulation of the carrier contribution to the linear re-
fractive index (the linewidth enhancement factor), which
is insignificant in gas lasers. These earlier studies of semi-
conductor and other varieties of laser have apparently
not covered the results reported in the present paper.
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Measurements of the noise spectra in the vicinity of the
longitudinal modes adjacent to the lasing modes of semi-
conductor lasers [16,17] have been interpreted [17] in
terms of the theory for the gain presented here; this has
appeared previously along with other aspects of our work
in brief papers [7,18,19].

Figure 1 shows the relevant part of the longitudinal-
mode structure, with a lasing mode of frequency w; and
the adjacent modes at separation A on either side. The
single lasing mode is selected by an intracavity étalon
with the transmission characteristics indicated, so that
the additional loss at the adjacent modes is sufficient to
keep them below threshold. Part (a) of Fig. 1 represents
the two noise contributions from the adjacent modes,
which we shall find to be anticorrelated to an extent that
varies not only with the values of atomic and laser pa-
rameters, but also with the laser output power. Part (b)
of the figure represents the single noise contribution that
can be observed with appropriate filtering of the other
adjacent mode.

In addition to the longitudinal modes shown in Fig. 1
(assumed to be TEM), there are also higher-order trans-
verse modes of the laser cavity. These lie on the high-
frequency side of each longitudinal mode with offsets that
range upwards from about 25 MHz with increasingly
complicated transverse intensity distribution. These
transverse modes also show interesting gain and noise
properties [20,21], but their behavior differs somewhat
from that of the family of longitudinal modes with
lowest-order transverse properties, i.e., that which con-
tains the lasing mode. Because of their different trans-
verse distributions, they tend to interact with different
spatial parts of the gain medium and their dynamics are
partially decoupled from those of the lowest-order trans-
verse modes. Also, because a higher-order transverse
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FIG. 1. (a) Position of the lasing mode, subthreshold modes,
and intracavity étalon transmission. (b) Spectrum of the beam
for single-sideband intensity-fluctuation measurements.

mode has in general no image mode on the opposite side
of the laser frequency o, , there is no enhancement of the
population-inversion-driven four-wave-mixing process,
and the anticorrelation effect cannot develop. We there-
fore do not include transverse modes other than TEM,,
in the present account.

The theory of the gain and the noise associated with
the adjacent subthreshold modes is presented in Sec. II.
The calculations are an extension of the analysis previ-
ously presented [2] for the gain and the noise at frequen-
cies within the central laser mode, where it is now neces-
sary to include the contributions of the three distinct cav-
ity modes represented in Fig. 1. The Ar* laser used in
our measurements has an atomic dipole decay rate y,
that exceeds the mode spacing A by a factor of order 60.
The laser gain is therefore constant over the frequency
range o; —A to w; +A of interest here. Thus the effects
of any inhomogeneous broadening can be neglected, and
the motion of the atomic dipole moment can be decou-
pled adiabatically from the other laser variables. The
other atomic variable, which describes the population in-
version, has a decay rate y, whose magnitude is compara-
ble to the mode spacing A. It is therefore necessary to
seek solutions of the coupled equations of motion for the
population inversion and the cavity fields. The Ar™ laser
is normally assigned to class A, specified by the condition
Y1>>Y,>>Y., where vy, is the cavity mode decay rate.
We have suggested [7] that a laser whose parameters
satisfy this condition should quality for a subclass A2
and that promotion to subclass 41 should be granted
when the more stringent condition y,>>y >>A is
satisfied. With the parameter values mentioned above, the
Ar™ laser clearly belongs to class A42. The theory
presented in Sec. II also applies to class-B lasers—for ex-
ample, the CO, laser, where the decay rates satisfy
Y22V =Y

The experimental results of measurements of sub-
threshold mode gain and noise for the Ar' laser are
presented in Sec. III. The measurements cover experi-
ments made with both simultaneous and separate detec-
tion of the contributions of the two adjacent modes, and
they therefore allow a direct evaluation of the effects of
anticorrelations between the mode excitations. Further
experiments have been carried out in which the relative
phases of the three components (signal, image, and lasing)
are examined in detail. The artificial production of two
anticorrelated noise sidebands has also been demonstrat-
ed. The noise level in this case is shown to be very sensi-
tive to the phases of the separate components.

II. THEORY OF SUBTHRESHOLD-MODE
GAIN AND NOISE

We need to calculate the gain and the noise at frequen-
cies detuned from the central laser line of frequency w;
by amounts o that are close to the longitudinal-mode
spacing A. The required theory can be developed by an
extension of our previous work on the gain and noise at
frequencies within the central laser mode [2] (this paper
and its equations are identified by the abbreviation
LHSYV). Preliminary details of the extended theory have
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been briefly reported in a previous publication [18]. We
use the same notation as in these earlier papers, except
that the detuning, which is here denoted w, replaces the
symbol 8 used in [18]. Subscripts + and — are used to
distinguish quantities that refer to the longitudinal modes
adjacent to the laser mode on its high- and low-frequency
sides, respectively.

In treating the gain, we consider an input signal field in
the form

Bin=B; exp| —i(o, tw)t], Q.1

whose frequency lies within the cavity mode centered at
frequency w  =w; +A. Similar to the situation for a sig-
nal frequency that lies within the central laser mode, the
signal excites not only the mode of frequency w, but also
the image mode at frequency o _ =w; —A. To first order
in the signal amplitude B, the mean field a inside the
laser cavity consists of the three-mode superposition

a=a; exp(—io t)ta_exp[—ilo; —w)t]
+a, expl—ilo, tw)], (2.2)

where a; is the amplitude of the free-running laser. The
atomic medium that drives the laser is described by two
variables, the mean collective atomic dipole moment d,
with the form

d=d; exp(—iw t)+d_ exp[ —i(w, —o)t]
+d exp] —ilo; tw)t], (2.3)

and the mean population inversion D, which also has
three contributions in the form

D=Dy+D_expliot)+D, exp(—iwt) , 2.4

where D, is the constant population inversion of the
free-running laser and D _ =D?* is of first order in the in-
put signal amplitude. The pulsations of frequency o in
the population inversion are responsible for the four-
wave-mixing process that couples the signal and image
excitations.

For calculations of the noise, it is necessary to consider
the fluctuations of the field and atomic variables around
their mean values. The fluctuations are produced by
quantum noise sources whose effects can be represented
by random Langevin forces. The three laser variables
each have their own Langevin force, denoted I' ,, ", and
T,, but T', is generally very small, and it is set equal to
zero as in LHSV (2.14). The remaining forces have zero
mean values,

(Ip)=(Try;)=0, 2.5)

as in LHSV (2.9).

The laser equations of motion are similar to LHSV
(2.6) to (2.8), the conventional Maxwell-Bloch equations
[4,22,23]. Thus the separated equations of motion for the
three modes that make up the cavity field are

a,Hy.tiog)a,=gd; , (2.6)

a_+Hy_“io_ )a_=gd_ , 2.7

a,+Hy,tio)a,=gd, +v\?B, , (2.8)

where 7., ¥ _, and y , are the damping rates of the three
field contributions, defined in the manner of LHSV (2.1)
and (2.2), with the cavity here assumed to be symmetri-
cal. The adjacent mode damping rates can generally be
written

’Vi:’}/c+ei ’ (2.9)

where €, represents the extra losses in the two adjacent
modes that ensure laser action only at the single mode of
frequency w;. The forces on the right-hand sides of (2.6)
to (2.8) result from the interactions of the cavity fields
with the appropriate components of the collective atomic
dipole moment d with coupling constant g, and the input
signal f3;, that drives the mode centered on the frequency
Oy

The equation of motion for the atomic population in-
version is identical to LHSV (2.7) in the form

D+yD=yD,—g(a*d+ad*)+T, (2.10)

where the population of the lower atomic level of the
laser transition is assumed to be negligible compared to
that of the upper level. Here, y is the population-
inversion decay rate and D, is the equilibrium population
inversion in the absence of any cavity field; thus, D, is
proportional to the laser pumping rate. For the Ar™
laser used in the measurements reported later in the pa-
per, both natural and collisional broadening contribute to
the value of the dipole decay rate, denoted y,. The corre-
sponding homogeneous linewidth is approximately 10
GHz, and y, /A is of order 60. The laser gain is therefore
flat over the frequency range w_ to w, examined here.
The effect of any inhomogeneous broadening may be
neglected in these conditions, and it is permissible to
make an adiabatic approximation in the equation of
motion for d, in the form of LHSV (2.15), putting

y.d=gaD+T, . .11

More generally, this equation is valid for lasers in classes
A and B that satisfy the additional condition ¥, >>A, and
it enables the atomic dipole moment to be removed from
the equations of motion (2.6) to (2.8) and (2.10).

A. Gain

The linear amplification of the input signal is deter-
mined by solution of the Maxwell-Bloch equations (2.6)
to (2.8) and (2.10), with the adiabatic approximation
(2.11), where the Langevin forces are set equal to zero in
the last two equations in view of the condition (2.5).
With (2.11) used to eliminate d, and (2.10) separated into
a dc component and a component at frequency o, there
are five equations for the five unknowns a;, a_, a, Dy,
and D_=D*.

Two of the equations are used to obtain the parts of the
solution that describe the free-running laser. Thus the
mean photon number in the laser mode is given by

la, >=(C —1)n, , 2.12)
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where

C=g’D,/v.v, (2.13)

is the cooperation parameter or normalized pumping
rate, equal to unity at threshold, and

n,=v,y,/28* 2.14)

is the saturation photon number, that is, the number of
photons in the laser cavity at a pumping rate equal to
twice the threshold value. The solution for the steady-
state population inversion is

Dy=v.v,/8%, (2.15)

independent of the pumping rate.

With the use of these solutions for |a; |* and D, the
remaining equations of motion obtained from (2.7), (2.8),
and (2.10) can be written in the forms

(e_+io—iA)y,a_—g%a;D_=0, (2.16)
(e;—io+iA)y,a,—g*a; D, =y yB,, @17
(Cyy—iw)D, +2y (aja,+a a)=0. (2.18)

It is convenient to take the complex conjugate of the first
of these equations and to solve them for the variables a* ,
a,,and D, with the results

a;=la;|expli¢;) . (2.23)

In the experiments reported later in the paper, the ad-
ditional losses €_ and €, at the adjacent modes are pro-
duced by the insertion of an intracavity étalon whose
transmission maximum can be tuned through the range
of frequencies covered by the three modes considered
here. We have shown that complicated gain profiles and
noise spectra can occur when the étalon maximum is de-
tuned from w; so that e_ is quite different from €, [18].
For sufficient étalon detuning, the lasing frequency hops
from o; to one of the adjacent modes, and we have
shown that the hopping behavior displays hysteresis
effects which can be understood on the basis of expres-
sions for the gain obtained from the above calculation
with €_5<€, [7] (see also [6]). However, the experiments
reported in the present paper use a symmetrically tuned
étalon with

€_=€,=¢€, (2.24)
and we henceforth make this assumption in the theory.
The denominator (2.22) simplifies to

d gen=[(e—i0+iA)Cy —iw)+2yy (C—1)]

X(e—io+ild) . (2.25)

a*t =—y ¥ (C—1yl B exp(—2i¢; )/ g,  (2.19)
. . . Consider first a pair of experiments in which the laser
a,=[(e_—io+iA)Cy —iw) output from only one of the adjacent modes, centered on
+ C—D)WW\2B. /., 2.20 either w_ or w,, is observed in isolation from the other
Tiel e Pa/ gen 2.20 adjacent mode. The theory of gain measurements using
D,=—2y¥a}B . (e_—io+iD)/d 4o » (2.21)  one or both adjacent modes is outlined in the Appendix.
. . The intensity gains in transmission obtained with the use
with a denominator of (2.19) and (2.20) are
& gen=(€4—io+iANe_—io+iA)Cy,—io) a_ |° riyic—-1p2
, . G-V |7 | =— Q7 (2.26)
+77(C—1e;+e_—2iw+2iA), (222) Bs Den
where ¢; is the phase of the laser field, and
J
G .= |2t ! P {[(0—A)Cy +eAP+[(0—A)A—€Cy,—¥.(C— D]}
r+=Ye¢ B |~ D ) (2.27)
s den [
where where
1)den= |‘{den|2 =—-——2A7NYC(C_1) (2.30)
= ([(y— 2 Clyi+A?
={[(0—A)Cy,+eA] I
+{(@—A)A—€eCyy—2y,7.(C— 1] and
X[(0—AP+€] . (2.28
. [{e— ) . ) 4yjy.C(C—1)
In view of the proximity of the detuning » to the mode r=—————+42¢. (2.31)

spacing in the experiments considered here,  has been
replaced by A in the above expressions except where it
occurs in the combination ®—A. The denominator can
be reexpressed as a product of two Lorentzian factors:

Dyen=(C*y}+AY)[(0—A—S)>+(T'/2)?]

X[(o—A)Y+€?], (2.29)

Clyj+a?

The first Lorentzian factor shows a shift S in its reso-
nance frequency away from the mode spacing A; the shift
varies with laser power in the manner illustrated in Fig.
2, with zero shift at threshold (C =1) and at very high
powers (C — « ), and a maximum value of
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noise profiles: shift. The profiles are of Lorentzian shape
throughout.
Ay,
Sox=—— 55 (2.32)
TR VN S TN
at a power corresponding to
C—1=[1+(Aa/y)1'2. (2.33)

The full width at half maximum (FWHM) bandwidth I'
of the first Lorentzian factor varies with C as shown in
Fig. 3; the bandwidth tends to 4y, +2e at high laser
powers, compared to the values 2y, of the empty cavity
bandwidth. The width and shift are simply related by

r—2_Cr
28 A

It is of course possible in principle to separate the two
gains (2.26) and (2.27) into contributions that have the in-
dividual Lorentzian denominators from (2.29), but the re-
sulting expressions are complicated and we do not give
them here.

The gains (2.26) and (2.27) are not in fact ordinarily ob-
served in the straightforward arrangement where the
laser amplifier output falls on a photodetector without
any intermediate filtering. Such an experiment, as report-
ed in Sec. IIT A, observes simultaneously the self-
heterodyne beats between the strong laser beam of fre-
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quency o; and the signal and image contributions of
equal and opposite detuning. Then similar to LHSV
(5.15) and (5.17), and as outlined in the Appendix, the
transmission gain is given by

(2.35)

and use of the solutions (2.19) and (2.20) for the field am-
plitudes gives the simple expression

Grlo)=y |afa,+aa*)/alB,|?,

,},2
(@—A—SP+(L /2?2’

where the shift S and width I' are again given by (2.30)
and (2.31), respectively. Remarkably, the gain profile is
therefore a single Lorentzian, the final factor in the
denominator (2.29) having cancelled in the formation of
the sum of signal and image contributions in (2.35). The
gain (2.36) is thus the net result from partial cancellation
of larger out-of-phase amplitude gains for the individual
adjacent modes. The similar cancellation that occurs for
an input signal whose frequency lies within the central
lasing mode is discussed by LHSV.

B. Noise
We use again the Maxwell-Bloch equations (2.6) to
(2.8), (2.10), and (2.11) with the forces I', and I'; now re-
tained but the signal amplitude B, set equal to zero. We

look for field solutions similar to (2.2) but with the
modified form

Grlw)= (2.36)

a(t)=[a; +8a;(t)]exp(—iw 1)
+8a_(t)exp[ —ilw; —A)t]

+0a  (t)exp[ —i(w;, +A)], (2.37)

where the 8a quantities represent zero-mean-field fluctua-
tions associated with the three modes and only the laser
mode has a nonzero mean field a;. The population in-
version is also similar to (2.4) but with the modified form

D(t)=Dy+38D(t)+56D _(t)expl(iAt)

+8D | (t)exp(—iAt), (2.38)

where

8D_(1)=8D% (1) . (2.39)

These trial solutions are now substituted into the
Maxwell-Bloch equations and only the terms of first or-
der in the fluctuating variables and the Langevin forces
are retained. The noise properties of the central lasing
mode, determined by the solutions for 8a, (¢) and 8D (¢),
have been fully discussed by LHSV. We consider here
the noise properties of the adjacent modes, determined by
the solutions for da_(t), 8a(t), and 8D _(z) or 8D (¢).
The required equations of motion are

da_(t)+e_8a_(t)—(g?/y,)a, 8D _(1)

=(g/y )T (t)expli(w;, —A)], (2.40)
da () +e da (t)—(g?/y )a 8D, (1)
=(g/y ) (t)explilw, +A)], (2.41)

and



50 GAIN AND NOISE IN SUBTHRESHOLD LONGITUDINAL ... 663

8D+(t)+(Cy"—iA)8D+(t)+27c{aLSa_(t)"‘+a28a+(t)}
=—(g/y ) a,Ti(t)exp(—iw t)+aiT (t)explio t)] exp(iAt)+T'p(2) exp(iAtr) ,

where (2.9) and (2.12) to (2.15) have been used.

(2.42)

It is convenient to solve the equations of motion by taking somewhat unconventional Fourier transforms of the vari-

ous time-dependent quantities defined in accordance with
dai(w)=2m) 12 [ dt expli(@—A)t]8a (1),
Sa* (w)=(2m) "2 [ dt exp[i(0—A)]8at (1) ,
I‘d(w)=(21r)—1/2fdt expli(w—A)]T,(2) ,

(2.43)

and so on. The Fourier transforms of (2.40) to (2.42) can then be solved straightforwardly for the three variables of in-

terest and the results are

da(@)=((g/y){(e—io+id)[ 1y (C+1)—iA]l+yy (C— T (0, to)

—(g* /2y, +e—io+iA)aiTiw, —w)+(g2/y Ne—io+iA)a T y(0)) /o 4o »
da* (0)=(—(g3/y)) 2y, +e—io+iA)a}T (o, +o)

(2.44)

+g/y ){(e—io+id) 1y (C+1)—iAl+yy(C —D)}THo, —w)

+(g¥/y Ne—io+iA)aiT p(®0)) /& gen

and

(2.45)

8D (0)={—(g/y )2y . +e—iow+id)|alT (0, to)ta;Tio, —0)]+(e—io+iA)p(w)}(e—iotid)/d 4, »

(2.46)

where the denominator is given by (2.22) and the additional losses at the adjacent modes have been assumed equal as in

(2.24).

The Langevin force correlation functions that are needed to evaluate the power spectra of the field fluctuations are
obtained from the results of Louisell [22]. For lasers in which y, is very much larger than both ¥ and A, the only

correlations of significant magnitude are given by
(T, +0)T (o, +0')) =2y Didlo—0a’)
and

(T'p(@)T'h(w)) =2y Dodlo—a") ,

(2.47)

(2.48)

where the reality of T'j,(¢) has been used. It is now algebraically tedious but straightforward to evaluate the adjacent-

mode noise-field correlation functions and the results are

(8a* (0)da_(—w')=(ba%(w)ba (—a'))

! 1 Cyj+A? 1
Sr et A e T A (w—A—S)2+(1"/2)2] 24
and
(8a_(w)da,(—w')) =y, exp(2i$; )d(w+a’) l-— Cy|2|+A2 L J , (2.50)
(0—AP+€  CHI+A? (0—A—SP+(T/2)

where the shift S and width IT" are given by (2.30) and
(2.31). For reasons to be discussed, we refer to the two
Lorentzians in (2.49) and (2.50) as the phase modulation
(PM) and amplitude modulation (AM) components of the
adjacent-mode noise spectra, respectively. It is seen from
(2.50) that the AM components of the noise for the two
modes have the same phase but the PM components are
in antiphase.

[

Consider first an experiment in which the output from
the laser falls on a photodetector but with the noise con-
tribution from one of the adjacent modes removed by a
filter. The arrangement is therefore analogous to the
single-mode gain measurements treated in (2.26) and
(2.27). The experiment observes the self-heterodyne beats
between the laser light and one adjacent-mode noise com-
ponent, and the spectra are proportional to the correla-
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tion functions given in (2.49), as outlined in the Appen-
dix. It is seen that the PM and AM components of the
noise both contribute, analogous to the occurrence of
both Lorentzian factors in the denominator (2.29) of the
single-mode gains. The integrated spectra are propor-
tional to

[do [do'(8at(w)bai(—a'))
— l.{. C‘)/ﬁ-i-A2
‘le  2vly.C(C—D+e(Cli+AY) |’

(2.51)

where (2.31) has been used to express I in terms of the
primary parameters of the laser model.

Now consider an experiment in which both adjacent-
mode noise components and the strong laser light fall on

sin’p

a photodetector. Then similar to the gain measurement
treated in (2.35), the self-heterodyne spectrum is propor-
tional to the square modulus of the quantity:

0A4(0,0)=qa;8a* (w)+ajda, (w) . (2.52)

Experiments reported in Sec. III C make measurements
of this kind but with the added feature that the phase of
the laser light is shifted by an amount ¢ relative to that
of the noise, by means of a Fabry-Pérot étalon. We thus
need to consider a more general quantity,

8A(w,¢5)=a; explidg)ba* (w)
+aj exp(—i¢g)da (o), (2.53)

and, in accordance with the argument given in the Ap-
pendix, the self-heterodyne spectrum is proportional to

Cyl+A? cos’p

(84*(0,95)8A(—0',¢g)) /ay =4y 8w+’

where (2.49) and (2.50) have been used. The integrated
spectrum is

Jdo [do'(84* (0,458 4(—a',¢5)) /lay

sin’p

=4y,

(Cyj+A2) cos’py
27ty C(C—D+e(Cyi+A?)

. (2.55)

The straightforward experiment with no additional phase
shift in the laser light (¢; =0) thus observes only the AM
component of the adjacent-mode noise, with four times
the strength obtained in measurements of the single-mode
noise, described by (2.49) and (2.51). The PM noise com-
ponent is removed because of the opposite phases of the
contributions of the two adjacent modes. This behavior
is analogous to the occurrence of the single Lorentzian in
the two-mode gain profile (2.36). Thus similar cancella-
tion effects between the contributions of the two adjacent
modes occur in both the gain profile and the noise spec-
trum. More generally, (2.54) and (2.55) show that arbi-
trary combinations of the PM and AM spectra can be ob-
served for appropriate phase shifts ¢ of the laser light.
Measurements of such spectra are reported in Sec. III, to-
gether with observations of single adjacent-mode noise
spectra.

The detailed theory given above is complemented by a
more qualitative interpretation in terms of ordinary
phase and amplitude modulation [19]. Consider a carrier
wave (the lasing mode) modulated by two weak sidebands
of relative frequencies @ and complex amplitudes
E  (w). The total field is

E(t)=E; exp(—iow t)+E_(w)exp[ —i(w; —w)t]

+E  (w)exp[ —ilo, tw)t], (2.56)

(w—A)+é€

, 2354
Ci+A? (0—A—8?+(T/2)

f

analogous to (2.37). We choose amplitudes and phases of
the three contributions in accordance with

E,=|E;|expli¢;), (2.57)

E_(w)=a(w)expli¢; —id_(w0)], (2.58)
and

E  (0)=a(w)expli¢; —id ()] . (2.59)

The real field obtained from (2.56) correct to first order in
the small quantity a (0)/|E, | is then

ReE(t)={|E.|+2a(w)cos® _(w)cos[wt —P (w)]}

Xcos{w;t —P; —2a—(9—)— sin®_(w)
|EL|

Xcos[wt—®  (w)]} , (2.60)
where

D (0)=1[¢ (0)td_(0)] . (2.61)

It is seen that the field has both phase modulation, whose
depth is proportional to

a(w)sin®_(w) (PM), (2.62)

and amplitude modulation, with depth proportional to

a(w)cos®_(w) (AM). (2.63)

The sideband field amplitude a (w) is assumed to be a
stochastic variable whose correlation function has the

form
(a(w)a(w'))=(a?) dlo—0'), (2.64)

where (a?), is the field fluctuation power spectrum. The
sideband fields (2.58) and (2.59) therefore have the corre-
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lation functions
(E*(0)E_(—0")=(E}(0)E(—a"))
=(a?) Sw+ao"){{(sin’®_(v))
+(cos?®_(w))}

(2.65)
and
(E_(0)E  (—0'))
=(a?) 8(w+0')exp(2ig;)
X { —(sin’®_(w)) +{cos’®_(w))} , (2.66)

where it is assumed that positive and negative values of
®_(w) given by (2.61) are equally likely. The large
bracket in (2.65) is of course equal to unity, but the corre-
lation function is written in this form to facilitate com-
parison of (2.65) and (2.66) with (2.49) and (2.50). It is
seen that the following identifications of phase- and
amplitude-modulation spectra can be made:

Ye

(az>m(sin2¢_(w)>=m (PM) (2.67)
and
(a?),{cos’®_(w))

Cyi+A?

St v (AM) .  (2.68)

C}+A? (0—A—SP2+(T/2)

It is easily shown with the use of (2.30) and (2.31) that the
two spectra become identical for C — 1, with

(cos?®_(w))=(sin’®_(0))=1, (2.69)

suggesting that all values of ®_(w) are equally likely.
The amplitude-modulation spectrum tends to zero for
C >>1, suggesting that

¢ _(w)=7/2 or ¢_(0)— ¢, (0)=m, (2.70)

with the sideband fields in antiphase.

An expression for the spectrum similar to (2.54) is ob-
tained from the above simple model if the carrier-wave
field (2.57) alone is subjected to an additional phase shift
¢z. In particular, the PM component of the total field
(2.60) is observed with maximum strength for a carrier-
wave phase shift of ¢ =m/2. The PM component is also
observed in single-sideband detection, where the mea-
sured signal is determined by the field correlation (2.65)
alone. These are well-known techniques for detection of
phase-modulation spectra at radio frequencies.

III. EXPERIMENTAL MEASUREMENTS
OF GAIN AND NOISE

In this section we present results of gain measurements
for above-threshold amplification, in which the injected
signal has been tuned close to resonance with a sub-
threshold axial mode. The measurements are made using
the same straightforward technique as in [1,18,19], and as

described in detail in [2]. The technique uses an acousto-
optic modulator (Fig. 4) in double pass to provide a
frequency-shifted signal of variable offset w for reinjec-
tion into the laser. The amplification is assessed from
measurements of the optical beat at the detuning frequen-
cy o. This beat results from the mixing of the output
amplified signal (together with its image band counter-
part) and the free-running laser output, which acts as a
local oscillator. The gain is defined [1,2] as the ratio of
the measured heterodyne beat signal power to that de-
rived from the same input signal mixed, before reentering
the laser, with an identical strength local oscillator. The
laser parameters are identical to those in [1] and [2] and
are briefly summarized here: we use a double-ended
argon-ion (Ar™) laser with a temperature-tunable intra-
cavity étalon selecting a single longitudinal mode at 488
nm. The mirror reflectivities are approximately 95%, the
axial (longitudinal) mode spacing A /2w is 156.02 MHz,
and the passive mode width I'y /27 is 2.77 MHz (FWHM)
which corresponds to 7, (=T,/2) of 8.7X10°s™!. We
define laser power (P) throughout as the output from
only one end.

In addition to the gain measurements, we have mea-
sured intensity-fluctuation noise spectra of the laser at
frequencies close to the mode spacing (156 MHz) by il-
luminating a fast photodiode detector (Fig. 4). The spec-
tra are then derived by Fourier analysis of the detector
output current. The noise arises from beating between
the lasing mode and the emission into the two subthresh-
old axial modes, one on each side of the laser line. Data
have been obtained for both single- and double-sideband
spectra: these clearly demonstrate the existence of noise-
cancellation effects. Both the gain and noise data show
excellent qualitative agreement with the predictions of
Sec. II; discrepancies between theory and experiment are
discussed in Sec. IV.

Experiments have also been carried out in which the
relative phases of the three output components (laser, sig-
nal, and image) can be varied using a Fabry-Pérot phase
shifter. This allows direct examination of the PM contri-
bution to the laser noise, and of cases intermediate be-
tween pure AM and pure PM. In addition, a “noisy”
(thermal) source has been used to provide an input for the
laser amplifier: the output is shown to contain two dis-
tinct noise output components in the signal and image
bands. The image band noise may be considered to be
the ‘“antinoise” counterpart to the signal band noise,

DETECTOR LASER (488nm) AOM {f\ %
1 ﬂ |1 .
% %—a»é——{ - «I + :L— —-— F
| | Vol |,
T NDF L J nop \iH
\/ 4
\ﬁl’;'i ! [
i | SPECTRUM B

J‘ ANALYZER f f
]

FIG. 4. The experimental arrangement. For noise measure-
ments, only the equipment to the left of the laser is required.
The other components provide an input signal for the gain mea-
surements. NDF denotes a neutral-density filter and AOM is an
acousto-optic modulator.
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since its presence leads to a significant reduction of the
overall noise level (noise cancellation). Finally, a study
has been made of some of the other spectral lines of the
Ar" laser. The noise spectra obtained show widely
differing behavior.

A. Gain measurements

In this section we summarize briefly the gain measure-
ments obtained in Ref. [18], and compare the results with
the theory of Sec. Il A. Data were obtained over a wide
range of laser power, and particular care was taken to en-
sure that the intracavity étalon was tuned precisely into
resonance with the lasing mode, in order to avoid the
complex effects of asymmetric tuning described in [18].
We emphasize that the overall gain measurements report-
ed here include the effects of both signal and image com-
ponents in the output laser beam. Simple experiments
were also carried out in which the output was studied
with a high-resolution étalon; these verified the existence
of separate amplified signal and image components.
However, no detailed measurements were made on the
gain experienced by these individual components.

The gain profiles are symmetric Lorentzians, in agree-
ment with (2.36), and their center shifts to higher fre-
quency as the laser power increases. Shift and width
measurements obtained for the gain are displayed in Figs.
5 and 6. Also plotted are the theoretical predictions of
(2.30) and (2.31) with suitably chosen parameter values
for the decay rates y. and y|, and the saturation power
P, defined as the laser power at twice threshold pumping
rate (C =2) [2]. The dashed curves indicate the sensitivi-
ty of the fits to the value of y. It should be stressed that
the shift of Fig. 5 does not originate from a change in the
mode spacing A: the results to be presented in Sec. III B
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FIG. 5. Experimental values of double-sideband shift on the
488-nm line. @, data from noise measurements; [J, data from
gain measurements. Solid curve: best fit to theory;
7| =4.0X10% s7', A/y =2.4. Dashed curves: theory, with v,
set equal to (a) 2.0X 10® s™! and (b) 8.0X 10® s~!. Plotted for
comparison with 488 nm is noise data (A) obtained on the
5154-nm line (Sec. III E). Only the lower x axis (laser power)
has significance for these data: the values of C would be
significantly lower for 514 nm than those depicted on the upper
X axis.
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FIG. 6. Experimental values of double-sideband width. The
symbols and curves refer to the same conditions as in Fig. 5.

demonstrate that A remains virtually unchanged as
power is varied. The theory of Sec. II shows that the
shift in the gain and noise profiles arises because of asym-
metric cancellation of signal and image components. The
cancellation effect is greater on the low-frequency side of
the mode center, leading to the appearance of an overall
shift of the profile to higher frequency.

Absolute values of gain were assessed by calibrating
the beat gain in transmission against that in reflection at
large detuning; this latter gain is assumed to be unity [2].
The product of root peak gain and bandwidth was shown
to be constant to within 10%. Its independence of laser
power is in agreement with (2.36). The value of the width
intercept as P—0 (e/7) is determined by the parameters
of the intracavity étalon (thickness =11.0 mm, refractive
index =1.47 at 488 nm, reflectivity =21.6%). The
étalon is inclined slightly from the normal to the laser
axis in order to avoid feedback problems. The width in-
tercept was calculated to be 194120 kHz, in excellent
agreement with observation.

B. Double- and single-sideband noise spectra

Intensity-fluctuation noise spectra were presented ear-
lier for double-sideband [18] and single-sideband [19]
detection. Here, we summarize those data and perform a
more detailed analysis in order to relate the results to the
theory of Sec. I B. The double-sideband measurements
are the more straightforward, since they only involve
detection of the total laser output, followed by Fourier
analysis of the detector current. The results for shift and
width are again presented in Figs. 5 and 6. The close
agreement between gain and noise behavior is a particu-
larly striking feature, emphasizing a fundamental proper-
ty of amplifiers [24]. By way of contrast, the data for the
514-nm line are also plotted in Figs. 5 and 6. This line
displays much reduced values of width and shift; we de-
scribe the behavior of the other Ar* lines in more detail
in Sec. IIIE.

The measurements of single-sideband noise clearly re-
veal the noise-cancellation effects predicted in Sec. II B.
In the absence of any correlation between the two noise
sidebands, the single-sideband spectra would have the
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same shape as for double-sideband detection, with a sim-
ple halving of the noise power level. In fact, the data
show a very large increase in noise level for single-
sideband detection. The single-sideband experiment is de-
scribed in detail in [19]): one or other of the two side-
bands is removed from the laser beam by filtering with a
Fabry-Pérot étalon. This leaves the laser spectrum as de-
picted in Fig. 1(b). The measured intensity-fluctuation
noise then results from a simple beat between the broad-
band noise component and the (effectively monochromat-
ic) lasing mode, acting as local oscillator.

Single- and double-sideband noise spectra are shown in
Fig. 7 for a range of laser power levels. At the lowest
power, close to threshold, the four-wave-mixing process
is weak, and so there is very little correlation between the
sidebands. Under these conditions, the single-sideband
noise spectrum may be obtained by simply halving that

T T II T T
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SINGLE-SIDEBAND

DOUBLE-SIDEBAND P=0.84mW

SINGLE-SIDEBAND
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NOISE POWER DENSITY

P=2.85mW
C=1.52
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MODE
. SPACING

1 |
155.0 155.5 156.0

FREQUENCY (MHz>

156.5 157.0

for the double-sideband measurements. However, as the
laser pumping rate (C) increases, the noise cancellation
quickly becomes apparent: at C =2, the two noise levels
at frequency w=A already differ by over an order of mag-
nitude.

The theory of Sec. II suggests that the asymmetric
single-sideband noise profiles may be separated as the
sum of the two Lorentzians shown in (2.49). One of these
(the AM part) should have the same width and shift as
the double-sideband spectrum shown in (2.54) for ¢z =0,
but reduced in height by a factor of 4. The PM part
should contribute a component of constant width, always
positioned at the mode center. At higher laser powers, it
is this PM contribution that dominates. A detailed
analysis confirms that the experimental profiles are con-
sistent with this picture. Figure 8 shows an example in
which the AM and PM parts have been separately

P=432mW
C=179

DOUBLE-SIDEBAND
SINGLE-SIDEBAND

P=6.40mW

DOUBLE-SIDEBAND c=216

SINGLE-SIDEBAND

NOISE POWER DENSITY
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SINGLE-SIDEBAND

(b)

155.0 155.5 156.0
FREQUENCY (MHz>

156.5 157.0

FIG. 7. Single- and double-sideband noise spectra. The noise power density is plotted on a linear scale in arbitrary units: (a) low

laser power; (b) high laser power.
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FIG. 8. Separation of single-sideband noise data (plotted on a
linear scale in arbitrary units) into AM and PM components.
Curve (a) represents the best fit to the double-sideband data;
curve (b) is curve (a) divided by 4 and represents the AM contri-
bution to the single-sideband spectrum [see Egs. (2.67) and
(2.68)]. The best fit to the single-sideband data [curve (d)] is the
sum of two Lorentzian contributions from the AM and PM
components [curves (b) and (c), respectively]. Note that the
background has been subtracted from the data before fitting.

identified. The width of the PM contribution is plotted in
Fig. 9 as a function of laser power. Possible reasons for
its slight increase will be discussed in Sec. IV.

C. Experiments with Fabry-Pérot phase shifter

The relationship between AM and PM contributions to
the noise was further explored by examining the double-
sideband spectra while varying the relative phase of the
three components with a Fabry-Pérot phase shifter
[25,26]. This device is the same as that used for filtering
out a single sideband in Sec. III B, except that one of the
mirrors is of nearly 100% reflectivity. A light beam in-
cident upon the mirror at the other end (reflectivity 89%)
must now be totally reflected by the étalon, and it will ac-
quire a phase shift up to a value of 7 depending on its
frequency relative to the Fabry-Pérot resonance. Thus,

0.4 T T T T nE
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2
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o
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=
a
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O
0 1 2 3 4 5 6 7 8 9 10

LASER POWER (mW)

FIG. 9. Analysis of single-sideband profiles: PM width

against laser power.

by tuning the étalon to alter the phase ¢ of the central
lasing component, the noise may be cycled from pure
AM far from resonance (¢z=0), through pure PM
(¢g=m/2), and back to pure AM precisely on resonance
in accordance with (2.54), (2.67), and (2.68). Figure 10 il-
lustrates noise profiles for the pure AM and PM cases.
For intermediate phase shifts, the transition from a
broadened, shifted Lorentzian (AM) to a narrow, unshift-
ed Lorentzian (PM) is clearly apparent. No detailed mea-
surements were carried out on these profiles because the
lack of active étalon locking led to problems of long-term
stability.

D. Generation of “optical antinoise”

The observation of correlated signal and image com-
ponents in our laser output suggests that if a broadband
(“noisy”) input is injected into the laser, then the output
should contain not only an amplified version of the input,
but also an anticorrelated (“antinoise”) component in the
image band. The input noise bandwidth would obviously
have to lie within the above-threshold amplifier gain
bandwidth, and the effect of noise cancellation would be
most noticeable at higher laser powers. We have per-
formed such an experiment to generate optical antinoise
and have achieved a large reduction in noise level when
this antinoise component is detected, compared to the
case when it has been eliminated by optical filtering.

The broadband input with Gaussian statistics is pro-
vided by scattering the laser beam from a rotating
ground-glass screen [27]; it is tuned close to resonance
with the subthreshold mode (w~156 MHz) by an
acousto-optic modulator (as in Fig. 4, with the ground-
glass screen replacing the mirror). Figure 11 shows a plot
of the resulting noise measured for a laser power of about
30 mW. This power level ensures strong four-wave mix-
ing and a high degree of correlation between output sig-
nal (“noise”) and image (“antinoise”) components. The
effects of this correlation are clearly illustrated in Fig. 11,
in which the lower trace shows the noise spectrum for the
light output with no filtering. In the upper trace, the rel-
ative phase of the “noise” and “antinoise” has been al-
tered by 7 with the Fabry-Pérot phase shifter, such that
their contributions now add. This leads to a noise level
increase of nearly two orders of magnitude, illustrating
the efficiency of the noise cancellation in the original
(unfiltered) output.

E. Other spectral lines of the argon-ion laser

All the experiments described so far have studied the
highest gain (488 nm) spectral line of the Ar™ laser. Be-
cause its gain is much higher than for the other lines, the
blue 488-nm line provides the only lasing component at
relatively low discharge currents (I <18 A), even when
the laser employs no means of spectral selection. We
have carried out experiments in which a prism is inserted
into the cavity, to allow selection of the other spectral
lines at appropriate values of discharge current. Mea-
surements have been made of intensity-fluctuation noise
spectra for four other lines of the Ar™ laser. Widely
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TABLE I. Relaxation rates for different spectral lines of the Ar™ laser and corresponding lifetimes
(1=1/7)) of the upper lasing level. The uncertainty in the measurement for 488 nm is about +10%. It
is £30% for the other lines, except 514 nm, which has a small shift and as a result is subject to an un-

certainty of > +50%.

A (nm)
Quantity 4579 476.5 488.0 496.5 514.5
vy (10° s71) 3.1 33 4.0 35 2.8
7 (ns) 3.2 3.0 2.5 2.8 3.6
7 (ns) (from [28)) 8.8 9.4 9.1 9.8 7.5

differing behavior is observed, reflecting the different sat-
uration and relaxation rates involved for the various lev-
els and also the sensitivity of the spectra to these rates.
The measurements allow estimates to be made of the
values of y for each of the lasing transitions.

The cavity length is increased approximately 4% by
the introduction of the frequency-selecting prism. As a
result, the longitudinal-mode spacing is reduced by the
same factor to between 150.25 and 150.6 MHz, depend-
ing on the wavelength of the selected lasing line.
Double-sideband noise data were taken for the lines at
458, 476, 497, and 514 nm over a range of laser power,
with particular attention being paid to the low powers.

The various lines display significant differences in their
behavior, resulting from different values of saturation
power and relaxation rate, Yy From these data, esti-
mates were made for each spectral line of the gradient of
plots of width and shift versus power in the limit of zero
power (see Figs. 2, 3, 5, and 6). The values of Y, were
found from (2.34) with the pumping rate C taking a value
close to 1 at low power:

I'—2e - C'}’"

25 A (3.1)

Hence, this may be rewritten in the low-power limit as

FIG. 10. Noise profiles with phase shifter

ﬁ (plotted on a linear scale in arbitrary units).
7] Profiles (a) represent the noise spectrum for
uZJ the natural laser output. For the profiles (b),
(a] the phase of one of the noise sidebands has
E been shifted by .
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FIG. 11. Generation of optical antinoise. A noise input is in-
jected into the laser, and the output then has “noise” and “an-
tinoise” components in the signal and image bands, respectively.
As the name suggests, these components cancel efficiently in the
laser output (a). However, the noise level may be greatly in-
creased by altering the relative phases of the components (b).
The noise power density is plotted on a linear scale in arbitrary
units.

_ [width gradient (P—0)] A (3.2)
Yi™ "[shift gradient (P—0)] 2 '

One of the more striking features in the data is the con-
siderably higher value of saturation power for the 514-nm
line, that is, its output at twice the threshold pumping
rate is about 3—-4 times that for 488 nm. Width and shift
data for the 514-nm line are plotted for comparison in
Figs. 5 and 6. The results of the relaxation rate measure-
ments are presented in Table I; they differ significantly
from those in [28] measured by time-resolved detection of
fluorescence after pulsed excitation. Indeed, our values
of v, would imply decay time scales that are smaller than
the experimental time resolution of [28]. Our results are
not necessarily inconsistent with those of [28], since the
latter work measures the free ion lifetime, whereas ours
are appropriate to the rather hostile environment of the
argon discharge. Hence, some of the discrepancies in
Table T may arise from effects such as collisional deexci-
tation of ions in our discharge.

IV. DISCUSSION AND CONCLUSIONS

The work on gain and noise associated with the sub-
threshold modes of a laser amplifier reported in the
present paper forms a natural extension of our previous
study of the gain and noise associated with the lasing
mode itself [2]. The theory developed in this previous
work identified strong anticorrelations between the con-
tributions to both gain and noise from frequency com-
ponents within the laser line that are offset from line
center by equal amounts on either side, denoted ‘“‘signal”
and “image” components. The anticorrelations are a
consequence of pulsations in the population inversion
that couple the signal and image components via a four-

wave-mixing process. However, we were not able to test
the theoretical predictions by experiment since the lasing
line of our available argon-ion system is too narrow for
practical discrimination of frequencies within the line but
on opposite sides of line center. The self-heterodyne mea-
surements that can be made with the system thus record
a superposition of signal and image contributions whose
separate effects cannot be unscrambled. By contrast, it
should be noted that linewidths in semiconductor laser
systems are typically many orders of magnitude greater
than in gas lasers, allowing experimental studies of the
light obtained by filtering frequency components within
the laser line [29,30].

The experimental difficulties associated with the laser
line in the argon-ion system are overcome in the work re-
ported in the present paper, by shifting attention to the
adjacent subthreshold modes on either side of the lasing
mode. The theoretical description of the three longitudi-
nal modes that must now be considered is somewhat
more complicated, but the same anticorrelation effect,
mediated by population pulsation and four-wave mixing,
persists as the detuning increases from the confines of the
central laser line to the next adjacent modes on either
side. The three modes are sufficiently well separated for
their contributions to be filtered individually by Fabry-
Pérot techniques. Comparisons of the measured gain
profiles and noise spectra obtained for the single adjacent
modes with those obtained for the two modes in superpo-
sition clearly show the cancellation effects produced by
their anticorrelations. The level of agreement between
theory and experiment is generally excellent, as is partic-
ularly demonstrated by the comparisons shown in Figs. 5,
6 and 8.

We now address the discrepancies between theory and
experiment; in particular, there are two effects still need-
ing proper explanation and we suggest some possible
causes. First, the measured widths of the double-
sideband spectra seem too small at higher laser powers
(Fig. 6). Second, the widths of the PM contribution to
the single-sideband spectra become too large at the
higher powers (Fig. 9), rather than remaining at a con-
stant value as the theory predicts.

The theory throughout this paper has assumed perfect
spatial homogeneity of the gain medium, and also a flat
gain spectrum for the lasing medium (since y,>>A).
These approximations are likely to break down to some
extent, particularly at higher laser powers. In particular,
in making the adiabatic approximation (2.11), our theory
ignores any terms of a lower order in y,. Castelli, Lugia-
to, and Pirovano [31] have included such terms in a
theory of frequency conversion by four-wave mixing for
light injected into a laser cavity. Their results indicate
that the extra terms may be of sufficient importance to
explain at least partially some of the discrepancy between
our theory and experiment. Dealing now with any altera-
tion of the gain profile with laser power, spectral hole-
burning effects are likely to be small, because the homo-
geneous broadening width is much greater than the mode
spacing (see Sec. I). On the other hand, the phenomena
studied here are likely to be quite sensitive to these
effects, although it would be very difficult to make a
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quantitative assessment of the degree of spectral hole
burning. There are two aspects of spatial hole burning
which must be considered in detail: namely, those due to
longitudinal and transverse effects. The standing wave
formed by the light field in the laser cavity possesses
many minima and maxima along its axis (nodes and an-
tinodes), separated by A/2. The excited ions, however,
are moving sufficiently quickly to “wash out” any effect
of spatially dependent saturation caused by the longitudi-
nal field inhomogeneity. A more serious discrepancy is
likely to arise from the neglect in our theory of the trans-
verse inhomogeneity of the gain medium. In reality, the
intracavity field will saturate more effectively the central
regions of the transverse gain distribution. At sufficiently
high pumping rates, this eventually encourages higher-
order transverse modes to exceed the lasing threshold,
since they can make better use of the relatively unsaturat-
ed gain in the outer regions of the discharge. Inclusion of
these effects may lead to a modification and distortion of
the lasing mode field, which will consequently affect the
gain and noise behavior studied here. The theory is
currently being extended to include transverse inhomo-
geneities in order to describe the behavior of subthresh-
old transverse modes [32].

There are a number of other complications in the phys-
ics of the Ar*t discharge that have not been included in
the theory of Sec. II. We have ignored any effect due to
the net ion drift velocity, typically of order 100 ms™!
[33]. It would be necessary to take this drift into account
in any rigorous assessment of spatial and spectral hole
burning. The population of the lower level involved in
the lasing transition has been assumed to be negligible
throughout (perfect inversion). A nonzero lower-level
population was shown in the Appendix of [2] to have a
significant influence on the gain and noise spectra of
Class-B lasers. In contrast, the gain behavior for the las-
ing mode of Class- A lasers such as Ar" was shown to be
unaffected, and the noise was simply increased by a con-
stant factor. However, it is not clear whether any correc-
tion for lower-level population is necessary for the situa-
tion dealt with in this paper.

We have emphasized the similarities between the an-
ticorrelation effects that occur for pairs of signal and im-
age components within the same central laser line and
within the separated adjacent modes on either side. As
was mentioned in Sec. I, higher-order transverse modes
occur as satellites on the high-frequency sides alone of
their lowest order (TEM,,) partners, and they lack the
twins that are needed for the formation of anticorrelated
pairs. Nevertheless, study of the gain and noise associat-
ed with the transverse modes provides both interesting
contrasts with the phenomena examined here, and fur-
ther insight into the mechanisms of laser action.
Theoretical and experimental work on the transverse
mode gain and noise in the argon-ion laser will be report-
ed in a subsequent publication [32].
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APPENDIX: SPECTRAL ANALYSIS OF SIGNAL
AND NOISE PHOTOCURRENTS

In this appendix we wish for completeness to establish
that the method of spectrum analysis employed in the ex-
periments described leads to the quantities computed for
both the gain (or signal) and the noise. For this we shall
use a simplified model of the spectrum analyzer described
in [34]; however, our analysis addresses different issues
from those in this reference. The spectrum analyzer is as-
sumed to perform the following sequence of operations.

(i) The (real) photocurrent i (¢) to be analyzed passes in-
itially through a dc blocking filter, in which zero-
frequency components are removed.

(ii) The emerging current then passes through a band-
pass filter of width ¥, and centered on frequency . The
filter scans slowly through different values of w. (Alter-
natively, a bank of identical-width filters could be em-
ployed, with each filter centered on a different value of
.)

(iii) The filtered current undergoes nonlinear process-
ing (assumed here to be the squaring operation).

(iv) The squared current is time averaged over a suit-
ably long period 7.

(v) The mean-squared signal is measured and displayed
for each value of .

We shall consider both discrete line spectrum inputs,
of the form

i(t)=Ya,coslw,t —0,) (a, real, o, >0) (A1)

n

(in which the a, and w, are to be estimated), and con-
tinuous line spectrum inputs i(¢), which are assumed to
be both stochastic and stationary.

The scanning filter is required to be real and causal.
The simplest filter impulse response is

f(t;0)=y06(t)e Y cos(wt +¢) , (A2)

in which 6(z) is the unit step function and where the scal-
ing factor y ensures a unit amplitude output for a unit
amplitude input. The output of the scanning filter is
given by

iout(t;w)=f:° dt'f(t—twi(t') .

The modulation transfer function (MTF) f(Q;w) of the
filter is defined as the Fourier transform of the impulse
response f (t;0),

(A3)

RV | *® . iQ
f(ﬂ,w)—‘/—ﬂf_wdtf(t,w)e t, (A4)
and it assumes the form
1 1 e'® e i
Q; = —
o= e 7 —ie—ia T yFie—ia | A

The filter output for the line spectrum input of Eq.
(Al)is

lou(t;0)= @zan {fo,;0)e

—iw, t+if,

i, t—if,

+*w,;0)e } . (A6)
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The displayed output from the spectrum analyzer is

and it takes the form
0 (w) (A8)

=73allf(w,;0).

It may be demonstrated straightforwardly that, for
o>,

2
1 1
(w,50)*= 1= +
lf ny@ | 87 (Q)_Cl)n )2+Y2 ((1)'+'CO" )2_‘_,},2
(A9)
so that
. 2 1
. _—— _+_ _ s
7!1_1}r{)|f(co,,,cu)| 87;-(8“”‘% 5, w,.) (A10
where
0, w#w,
8‘”"%2 I, v=w, (All)

In this limit it is seen from (A8) and (A10) that O(w)
does indeed reproduce the spectrum of i (), with the nth
line of the spectrum having a height proportional to a?2.

The same apparatus is used to measure the noise power
spectra. In this case an ensemble mean-square average of
the scanning filter input gives

0 (w)=(i2,(t;0))
:f.w da)lf_°° do,f(o;0)f(0y);o)

—ilo;twyt, .

Xe (i(w)ilw,)) , (A12)
where i (@) is the Fourier transform of i (¢). Hence,
0(m)=x/ﬁf°° do,|f(o;0)|% (o)) (A13)

where ¢ (w) is the Fourier transform of {i(¢)i(0)) and is
the true photocurrent spectrum to be determined. In this
case, however, the required continuous spectrum c () is
obtained in the limit

L

lim L0 ()= (Al14)

y—0Yy
since |f(w;w,)|*/y is a density, with the asymptotic
value

lin{)|f(a);a)1)|2/7/=%[8(w—a)|)+8(w+w1)] , (A15)
’}/—)

clw),

and c¢(w) is an even function of w. From Egs. (A8) and
(A14) it appears that a factor proportional to the scan-
ning filter bandwidth y distinguishes continuous power
spectra from discrete line spectra in the spectrum
analyzer output. When the removal of zero-frequency
components in i (¢) is taken into consideration, it is clear
from this discussion that the ideal noise spectrum mea-
sured by the detector is proportional to s (w), where

= [7 dte’{(a)?a(0)?) = (|a(0)]*)?]
(A16)

in which the photocurrent i(¢) has been assumed to be
proportional to the instantaneous detected field intensity
la(?)]?. The complete noise spectrum also contains a
constant additive shot-noise component; see [35] for a
complete derivation.

As an example of the detection of line spectrum sig-
nals, consider the case of a cavity field consisting of a
strong mode at frequency w;, amplitude a;, and two
weak modes of amplitude @, and a_ equally spaced on
either side. The detected field, measured outside the cavi-
ty, is a continuous mode field equal to the total internal

field a(z), scaled by the cavity lifetime factor y!/2. It is
thus proportional to
75/2 (t)=7/i/2(aLe _imLt+a+e TrentTi
+a_e _mLHMI) , (A17)
with
ai <<ap . (A18)

To order |a.|, the photocurrent i(t), proportional to
lar(1)]2, will be

i()=ky (lay|>+ de "8+ 4*e') | (A19)
where k is some constant and
A=a;a* taja, . (A20)

The zero-frequency term kv !/?|a; |? is blocked by subse-
quent processing, and the spectrum analyzer receives the
current

i(t)=2ky.| Al cos(At —Y) , (A21)
where
A=|AleX . (A22)

From the discussion above, the ideal spectrum analyzer
displays a line at w=A of height proportional to | 4|%,
and this is therefore the quantity employed for gain cal-
culations in (2.35), and in previous publications
[1,2,7,18,19]. It is clear that in the absence of either side
mode a . or a_, this result carries through, with an obvi-
ous modification of A4 in (A20). As explained in Sec. III,
the signal gain is defined as the photocurrent beat ampli-
tude for the self-beating laser output divided by the pho-
tocurrent beat amplitude which would be obtained by
straightforward heterodyne mixing of the unamplified
signal field B, with the central laser mode output
y2q, exp[ —iw t]. This latter beat amplitude is pro-
portional to k2?y,|B,|*|a, |? while, from the discussion
above, the self-beating laser output photocurrent beat
amplitude is proportional to k2y2| 4|2. These quantities
are used in the definitions (2.26), (2.27), and (2.35).

The computed noise spectrum can also be explored in
more detail. With a(¢) given by (2.37), the measured
noise spectrum given in (A16) can be reduced (after drop-
ping terms of order |8a/|® and higher) to

=[7 dte’B(1)B(0)), (A23)
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where

B(1)=8A(t)e 'M+54*(t)e'™ (A24)
and 6 A4 (¢) is given by

8A(t)=aida (t)+a;ba’(t) . (A25)

In terms of 8 4 (@) [the Fourier transform of 8 4 (¢)], the
noise spectrum becomes

s(w)=if:°dco'([8l4(w)+8A‘(—a))]

X[8A4(0)+84*(—a")]) . (A26)

In Sec. II only the quantities of the form
(8 A4(w)5A*(w')) have been calculated (with the addi-
tional phase shift ¢5). A calculation which includes the
contributions of (84(0)8A4(w')) and
(84*(w)84*(w')) gives (for zero phase shift ¢ )

=1 || TiAtyy | iAty,
s(w) 2ﬂ4yc|a,_|[ o) he—1)
+yAC—1) |—L1—
Yi h(w,A)
2
1
+h(w,—A) }’

where

h(w,A)=[—i(0—A)+e](—iA+Cy)+2y .y (C—1).
(A28)

Retaining only the “diagonal” terms in Eq. (A27), we find

2
-1 2 || Fidty
s(w) 21_’_47/C|¢JLLI t—h(w,:tA)
. 2
+ 2 — -
ey | [

(A29)

where choice of the upper signs produces the Lorentzian
centered at ®=A+S, corresponding to the second term
in the large bracket of (2.54). The lower signs produce a
Lorentzian centered at = —A—S, whose effect is negli-
gible at the positive measured frequencies w. The “cross”
terms in (A27) correspond to autocorrelations in 8 4 and
8A4*, and they can also be shown to be small. These
quantities have therefore been neglected in the treatment
of Sec. II B. Finally, in the absence of either side mode
field fluctuation da , or 8a_, the theory undergoes an ob-
vious modification following a redefinition of A (¢) in
(A25), upon removal of the term 8a , or da _.
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