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Ionization of the one-dimensional Coulomb atom in an intense laser field
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Interaction of the one-dimensional (1D) Coulomb atom with an intense radiation field is analyzed us-

ing the "hard" Coulomb potential V, (x)= —1/~x i and the "soft" Coulomb potential
V(x) = —1/v x i+ 1. Evolution of the probability wave packet and the photoelectron spectra is simulat-

ed numerically. In strong fields it is found (a) that the electron wave packet can break up into individual

subpackets, (b) that there is a one-to-one correlation between the subpackets in space and the above-
threshold-ionization peaks in energy, and (c) that a spatial confinement of the probability density can
occur at a very high intensity. Finally, an example is given which indicates that the 1D "hard" Coulomb
atom is less stable than the 1D "soft" Coulomb atom.

PACS number(s): 32.80.Rm

V,(x)= —I/~x~ . (2)

Recently, classical calculations of Grochmalicki,
Lewenstein, and Rzyzewski [5], Gajda et al. [6], and
Menis et al. [7] have shown that the form of the atomic
potential strongly affects ionization: the more Coulomb-
like the chosen binding potential, the higher the ioniza-
tion probability. This leads to the question, what will be
the effect on ionization, according to quantum dynamics,
if the atom is described by the "hard" Coulomb potential
(2)l

II. REGULARIZED COULOMB MODEL

The one-dimensional (1D) Coulomb model is defined
by its Hamiltonian

1
H, (x)= lim ——

a Q 2

1 0 1

2 gx'

1

/x/+a
(3)

(4)

Loudon [8] has studied the eigenvalues and correspond-
ing eigenfunctions of (4): it is shown that there exists a
doubly degenerate set of normalized bound-state eigen-
functions with even (o =0) and odd (a = 1) parity

I. INTRODUCTION

Based on nonsingular atomic potentials of the form

V(x)= —I/+x +1,
many papers (see, e.g., [1—3]) have been published inves-
tigating the dynamics of a model quantum system in one
dimension interacting with a laser pulse [throughout this
paper atomic units (a.u. ) are used: A'=e=m =1]. Such a
model was suggested first some years ago by Eberly and
collaborators [4] and is usually called the "soft" Coulomb
potential. The potential (1) avoids numerical difficulties
that usually occur at the origin x =0 when dealing nu-
merically with the one-dimensional singular Coulomb
field

P„(a=O,x)=(/2/n ixi(sgn(x))

X exp — F 1 —n, 2,
n

'' ''
n

where n =1,2, . . . , 00 and the energy eigenvalues are

1e„(a=O)=-
2n

(6)

In case of the continuous spectrum with positive-energy
eigenvalues the wave function can be obtained by analytic
continuation

n = i/k wi—th e(a=0, k)=k /2 . (7)

1
eo(a }=—2 ln

a
for a((1

and

eo(a ~0)~—oo, (9)

implying an infinite binding energy which is clearly un-

physical. The corresponding normalized eigenfunction
(even parity) for a ((1 is

exp( —
Lx i /a )

(10)v'a

Thus, except the lowest (unphysical) state that satisfies

~$0(O, x}~ =5(x}, all eigenfunctions of (4) vanish at the
origin.

We now introduce a formal definition of a one-
dimensional "hard" Coulomb model with the Hamiltoni-
an

8,"(x)= lim ——1 a'
2 Bx

(11}
x +a

The projection operator —
~ $0 )eo ( $0 i

in (11) eliminates
the unphysical state $0 and ensures that all energy eigen-

The eigenvalue with the lowest energy is not degenerate
and depends logarithmically on a:

2
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values are similar to those of 3D hydrogen atoms where
eo(a=O) does not occur. Note that, in contrast to the
"soft" Coulomb model, the "hard" Coulomb model (11)
allows degeneracy of energy eigenvalues as does three-
dimensional hydrogen. Note also that the present model,
unlike the Coulomb model defined on the half axis [9,10],
retains parity as a good quantum number.

The time-dependent interaction

8;(x,t)= xE(—t) (12)

describes the influence of the laser field
E(t)=Eof(t)sin(cot) in dipole approximation. Eo
denotes the peak amplitude, f (t) the envelope, and ro the
frequency of the electric field.

To study the dynamics of the "hard" Coulomb model
in the laser field, we are interested in the solution of the
time-dependent Schrodinger equation 0

i P(x,—t) = [8,"(x,t) xE(t)]—f(x, t), (13)
-400 x (a.u. ) 400

where an initial wave function f(x,O) = tI)„(x} with
n =1,2, . . . , ~ is given. The solution can be computed
numerically most conveniently from

FIG. 1. Probability density ~lit(x, t)
~

of the "hard" Coulomb
atom in the laser field; co= 1 (a.u. ) and ED =0.5 (a.u.) (perpendic-
ular perspective).

1 xE (t) —f(x, t), Vx %0,

l((O, r)=p(0, 0) Vr . (14)

A mathematical demonstration that Eq. (14}is equivalent
to Eq. (13) is given in the Appendix. The reader should
note that an initial state that is zero at the origin at the
time t =0 evolves into a state that remains zero at x =0
at all times [see Appendix, Eq. (A6)]. Furthermore this
time-dependent solution remains orthogonal to Po (the
unphysical ground state of the nonregularized Hamiltoni-
an) at all times [Eqs. (A7) and (A14)]. For the numerical
integration of (14), we have used a finite-diference repre-
sentation where the time derivative is given by a two-
point scheme of second-order accuracy, and the second-
order derivative in space is given by a five-point
difFerence scheme of fourth-order accuracy (cf. [11]).

sin'[mr i(2r) ], 0 & r & ~

f(r)= 1, r&r&T
cos [m.(t+r T)/(2r)],—T —~&t &T

(15)

where T denotes the pulse duration (25 optical cycles)

25 =====

tern compared to the latter.
In the present investigation the frequency of the laser

field, E(t)=Eof (t)sin(co, t), is chosen to be co= 1 (a.u. )

(45.563 nm), which lies in the ultraviolet region. In this
case the energy of one photon is sufficient for ionization
(a nominal one-photon process}. Furthermore we choose
an electric field envelope

III. RESULTS AND DISCUSSION

In the rest of this work we use both the "hard"
Coulomb and the "soft" Coulomb model to investigate a
number of phenomena in laser-atom interactions in in-
tense fields. We report on (a) the splitting of the electron
wave into subpackets, (b) a one-to-one correlation of the
subpackets in space with the individual above-threshold-
ionization (ATI) peaks in energy, and (c) a form of "local-
ization" or "confinement" in which the extension of the
electron wave packet for a high laser intensity is more
"confined" in space than that at a lower intensity, fol-
lowed by a "dispersion" of the wave packet during the
tai1 of the pulse. Ionization probability for different laser
intensities is also investigated, and an example of the
difference in the survival probability calculated with the
"hard" Coulomb model and the "soft" Coulomb model is
given, which indicates lesser "stabi1ity" of the former sys-

0
O

CL
O

0
-400 x {a.u. )

FICx. 2. Same as Fig. 1, but Eo = 1 (a.u.).

400
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and r the time for turning on and the turning off (five op-
tical cycles each) of the field. The solution is propagated
with a given initial wave function g(x, t =0). The numer-
ical convergence of the solution has been tested first by
changing the step sizes in time and space and by moving
the boundary to higher lxl values, until reflection effects
were eliminated. Finally, the norm of the converged
wave function has been checked during the simulation
and has been found to be accurate to within a maximum
error of less than 0.2'Fo. In case of the field strength
ED=0.5 (a.u. ) and ED=1 (a.u. ) we have taken 400000
discrete time steps and a spatial step size 5x =0. 1 (a.u. ) in

the difference scheme, whereas for Ea = 10 (a.u. ) we have
found 2 400000 discrete time steps and 5x =0. 1 (a.u.) to
be sufficient for convergence. For simulations shown in
Figs. 1, 2, and 3(a), a maximum value lx,„l=400 (a. .)
has been found to be sufficient to eliminate any boundary
reflections.

To check whether alternative schemes of regularization
of the Coulomb model give difFerent results or not, we
have compared the results, based on the analytic regulari-
zation (14) and the results obtained from two other nu-
merical limiting procedures where (i) the potential pa-
rameter a has been decreased systematically, until the re-
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FIG. 3. (a) Same as Fi . 1, but F. =10 a.u. .'g. , 0= (a.u. ). (b) Probability density at time t =25 (optical cycles); co=1 (a.u. ), E0=10 (a.u.). (c)
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suits have become independent of a; and (ii) the Coulomb
potential Vc has been cut off at the origin with increasing
depths, until the results have become independent of the
cutoff depth. The results of these two comparative com-
putations have been found to be indistinguishable from
those obtained from (14) for a~2X10 and/or for
cutoff depths of the potential ~ —500.

Physically this result can be understood in terms of the
negligible probability for a laser-induced transition from
an initial bound state (e.g., P, ) to the unphysical state $0
if the parameter a is close to zero [in case of a=2X 10
the energy difference for such a transition is according to
(8) about 77 (a.u. ) or 2079 eV]. When a is small enough,
it is expected therefore that the contribution of $0 would
be negligible and the results would be numerically
equivalent to those of the "hard" Coulomb model where
a=0 and tI)0 is projected away from the spectrum. This
expectation is fully substantiated by the converged results
according to the three different procedures discussed
above. We may note parenthetically that spontaneous
(i.e., not induced) transitions are not considered in our
simulations.

The wave function in the case of the "hard" Coulomb
atom is propagated with the initial state

~ ~ ~ \ ~ I ~ I I \ ~ I ~ I ~ I ~ ~
I

I ~ I ~ ~ ~ ~ ~ ~ I ~ ~ I I ~ I ~ \ ~
I

~ ~ ~ I \ I ~ I ~
I

~ ~ ~ I ~ I l I ~ I ~ I ~ ~ l ~ ~ ~ 1 I ~ ~ I ~ ~ ~ I ~ ~1

10:—

9 '-

U)
Z'.
LLI
C3

7:-

2:-

0
ai I I ~ I I III ~ WI ~ I ~ I ~ I ~ IM I ~ I ~ IL IS I ~ I ~ ~ I ~ III I ~ ~ II I ~ I ~ II I I ~ I I I I I I I I I'

1 2 3 4 5 6 7

ENERGY (a.u. )

~ ~ ~ ~ e ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I
~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ l ~ I ~ I ~ ~ ~ ~ ~ ~ ~ I ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~ ~ I ~ ~ ~ ~ ~ ~ ~ ~4 ~ ~

FIG. 4. ATI spectrum of the "hard" Coulomb atom in the
laser field; co= 1 (a.u.) and Ep =0.5 (a.u.).

'(x) =~2x exp( (16)

corresponding to an energy e&= —0.5 which is equal to
the ground-state energy eigenvalue of the ordinary hydro-
gen atom. It should be remarked that the initial state
chosen in this simulation has odd parity (o =1), and re-
sults of calculations beginning with an even state are
qualitatively analogous. The probability densities
~P(x, t)

~
of the atomic electron in the three diff'erent laser

fields with peak amplitudes ED=0.5 (a.u.), Eo= 1 (a.u. ),
and EO=10 (a.u. ) (intensities in the range 8.75X10'5
W/cm —3.5X10' W/cm ) are shown in Figs. 1, 2, and
3(a), respectively. The corresponding electron energy
spectra are presented in Figs. 4, 5, and 6. The photoelec-
tron spectra for Eo 0.5 (a.u. ) (Fig. 4) and ED= 1 (a.u. )

(Fig. 5) show kinetic-energy distributions that are typical
for the so-called above-threshold ionization (ATI) [15] for
high incident laser intensities: in both spectra there are
sequences of peaks, separated by the photon energy co = 1

(a.u. ), i.e., at high intensities the atom absorbs more pho-
tons than are actually necessary for ionization. For the
field amplitude ED=10 (a.u. ) we find a photoelectron
spectrum with a broad energy distribution with complex
fine structures (Fig. 6).

Pont et al. [12] and Kulander, Schafer, and Krause
[13]have found in 3D calculations a "dichotomous" peak
splitting of the wave function with separations of the or-
der of the "quiver radius" ao=EO/co (a.u.). This
phenomenon has also been observed by Su, Eberly, and
Javanainen [2] and Reed, Knight, and Burnett [3] in cal-
culations in the space translated (Kramers-Henneberger)
frame [14] with the "soft" Coulomb model, where a two
or more peaked spatial distribution has been found. For
the present calculation with the "hard" Coulomb model,
we have found a multiple splitting of the spatial electron
distributions at high laser intensities as shown in Figs. l
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and 2. It is seen that electron subpackets appear that are
separated asymptotically by much larger distances than
o.o. What is the physical significance of this
phenomenon? We interpret this as a spatial grouping of
the ATI electrons by establishing a one-to-one correlation
between the individual spatial subpackets inside the field
and the individual peaks in the ATI energy spectra. This
is evidenced in Fig. 7, which brings together the spatial
atomic probability distribution ~g(x, t)~ shown in Fig. 2
and the corresponding energy distribution shown in Fig.
5. It is seen that each particular subpacket asymptotical-
ly moves with a velocity U =b,x/b, t, which can be read
off from the slope of the line defining the motion of the
crest of the particular subpacket. The associated kinetic
energies u /2 turn out to be equal to the energies of the
corresponding ATI peaks (indicated in Fig. 7 by an ar-
row). This correlation is also shown quantitatively in
Table I. Thus we are able to identify the motion of the
ATI electrons in space with individual subpackets of the
probability density ~g(x, t)~ . Note that the subpackets
traveling on the left-hand side of the origin are associated
with negative values of v's but correspond to the same en-
ergies of the ATI peaks as shown above. An exactly

TABLE I. Velocities v =Ax/ht and the associated kinetic
energies v /2 of the electron probability subpackets in the laser
field where Eo = 1 {a.u.) and ~= 1 (a.u.). The associated kinetic
energies can be identified with the energies ez of the individual

peaks in the ATI spectrum.

16.0
16.0
16.0
16.0

15.6
27.5
35.6
42.2

v =Ax/ht

0.98
1.72
2.23
2.64

v /2

0.48
1.48
2.49
3.49

Es

0.48
1.48
2.48
3.48

analogous correlation exists between the spatial subpack-
ets in Fig. 1 and the ATI peaks in Fig. 4, corresponding
to Eo=0.5 (a.u.}, co= 1 (a.u.}. For very high intensities,
the ATI peaks tend to smear out into a broad distribu-
tion, but even then a trace of the same correlation may be
detected as seen between Figs. 3(a) and 6 for Eo=10
(a.u. ), re= 1 (a.u.). In this case of a very intense laser field
with Eo=10 (a.u. ), we also observe a form of "localiza-
tion" or "confinementlike" behavior in Fig. 3(a): the
electron probability in space is now confined within only
about half the distance from the origin than for the lower
intensities (Figs. 1 and 2), for the same duration of the
pulse. An even more pronounced "confinement" effect is
seen in case of the "soft" Coulomb atom (see Fig. 11
below}. Another interesting effect seen in this case is that
the wave packet tends to "disperse" during the last five

cycles when the field is switched off. In the present pa-
rameter domain, this effect is found to be not very
significant in case of the "soft" Coulomb model (cf. Fig.
11 below). We note that this phenomenon is numerically
stable, but requires further investigation regarding its
physical significance or otherwise. In Fig. 3(b) we show
the probability density distribution at the end of the pulse
in the (laboratory frame) along with a magnified view
near the origin (see inset). It shows no presence of the
so-called "dichotomy" and the peak values of the density
are an order of magnitude smaller near ~xl =ao or 2ao
than at much larger distances. Figure 3(c} shows the
probability density near the midpoint of the pulse [when
the field amplitude E(t)= 10 (a.u. ) and the corresponding
quiver energy is 680 eV] along with a magnified view,
within 30 (a.u. ) from the nucleus, given in the inset. In
this case too there is no clear sign of a "dichotomous"
behavior near

~
x

~

=ao or 2ao.
The total ionization probability of the "hard" Coulomb

atom interacting with the laser field is investigated using
the definition

P;,„(t)=1—g g P„(r), (17)

x (a.u. ] where

n =I o=O

FIR. 7. Correlation between spatial subpackets, formed by
wave-packet splitting, and the ATI peaks [co=1 (a.u. ) and
Fo= l (a.u.)j. The crest of each subpacket of the electron prob-
ability density moves with a velocity v =Ex/bt; the associated
kinetic energy v /2 can be identified with the energy of an indi-
vidual peak in the ATI spectrum (indicated by an arrow).

(18)

In our commutations the sum in (17) is taken over the
first 100 bound states with n =1, . . . , 50 (each with even
and odd parity). Contributions from P„(t)for n & 50 are
found to be neghgible.
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FIG. 8. Ionization probability of the "hard" Coulomb atom
in the laser field; co = 1 (a.u.) and Eo = 1 (a.u.).

FIG. 9. Same as Fig. 8, but Eo = 10 (a.u. ) ~
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FIG. 10. (a) Probability density @(x,t) h' and the corresponding ATI spectrum of the "soft" Coulomb model; co = 1 (a.u. ) and Eo = 1

(a.u.). (b) Probability density as in (a), but with a reduced vertical scale and fewer time steps, which reveals the linear motion of the
high-density group of the wavepackets more clearly.
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For Eo =1 (a.u. ) the laser interaction leads to an oscil-
lation of the ionization probability and ends with a com-
plete ionization of the atom as shown in Fig. 8; at the end
of the process there are no electrons left in bound states
with negative energy. In Fig. 9 the ionization probability
is shown for Eo=10 (a.u. ). After only a few optical cy-
cles the laser-atom interaction leads to a continuum pop-
ulation equal to unity, but as in the previous case with in-
creasing time, the atom periodically returns to bound
states and finally ends with a nearly complete ionization
(=97%). Thus in relation to the process where En= 1

(a.u.), the atom appears to be somewhat more stable at
the higher field strength Eo = 10 (a.u.). This phenomenon
is correlated to the confinement of the probability density
in space, we have mentioned above.

To make sure that the phenomena of (a) the breaking
up of the wave function into subpackets, (b) the one-to-
one correlation between spatial subpackets and ATI
peaks, and (c) the tendency of "confinement" of the prob-
ability density in space at very high laser intensity are not
peculiarities of the "hard" Coulomb atom, we have car-
ried out a sequence of simulations with the "soft"
Coulomb model.

In Fig. 10(a) the electron density distribution for the
"soft" Coulomb atom in the laser field with ED =10 (a.u. )

is compared with the corresponding ATI spectrum. As
in the simulation with the "hard" Coulomb atom, the
electron density breaks up into subpackets, which again
can be correlated one-to-one with the main peaks in the
energy spectrum. In Fig. 10(a), the motion of the low-
density group of the subpackets can be observed clearly.
In contrast to the low-density group, the high-density
group is rather obscured due to the choice of the scale.
The motion of the high-density group is resolved more
clearly by reducing the vertical scale and thinning out the
time steps as shown in Fig. 10(b). The estimated veloci-
ties v and the associated kinetic energies v /2 are com-
pared with the energies es of the ATI peaks in Table I,
which shows the one-to-one correlation as noted above
for the "hard" Coulomb atom We conclude that the
correlation between the subpackets in space and the ATI
peaks in the energy spectrum is essentially independent of
the chosen atomic model.

In Fig. 11 we show the spatial electron density ob-
tained by a simulation with the "soft" Coulomb atom at
the very high field strength Ep =10. As in the case of the
"hard" Coulomb atom (cf. Fig. 3), the wave packet at
Ep =10 is seen to be confined closer to the origin
( ~x,„~= 100) than in the case of the lower field strength
ED= 1 (~x,„~=200). On the other hand, as mentioned
above, the strong "dispersive" effect (seen near the end of
the pulse in case of the "hard" Coulomb model) is rather
negligible in the case of the "soft'* Coulomb model.

Finally we have considered the survival probability
(i.e., the probability to find the atom in its initial state)

-400 x (a.u. ) 400

FIG. 11. Probability density
~ 1((x,t) ~' of the "soft" Coulomb

atom in the laser Geld; ~= 1 (a.u. ) and E& =10 (a.u. ).
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The oscillations of the survival probability and the ion-
ization probability indicate repeated bound-free transi-
tions, especially from the initial state to continuum states
and vice versa, until the pulse is over. Whether the oscil-
lations of the probability (computed in the laboratory
frame) will have measurable consequences is an interest-
ing question whose answer would depend on possible ex-
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using the 1D "hard" Coulomb atom, which is shown in
Fig 12. It is .seen that P, (t) oscillates with increasing
time and tends to zero after only a few optical cycles.

FIG. 12. Survival probability of the "hard" Coulomb atom in

the laser field' co= 1 (a.u. ) and E0 = 1 (a.u. ).
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C)

0.4:—

i P(x—, t) =[8,"(x,t) xE—(t) ]f(x,t),

where

(A2)

0.3 .-'

0.2 —.

0.1:-

1 88,"(x)=——
2 ax2

one obtains

1 —
14p&ep& 0 (A3)

~ I ~ I I I

2 4 6 B 10 12 14 16 18 20 22 24
TIME (opt. cycl .)

i P(x—, t)= g g [e„xE(t)—]c„(t)P„(x).
dt

(A4}

FIG. 13. Survival probability of the "soft" Coulomb atom in

the laser field' co = 1 (a.u.) and E0 = 1 (a.u.).

perimental arrangements to observe the time evolution of
the system and may not be ruled out a priori

We have also found indications that in contrast to the
"hard" Coulomb atom, the "soft" Coulomb atom in the
laser field is more stable. This is consistent with the re-
cent findings of classical simulations [5—7]. To give an
example, in Fig. 13 the survival probability of the "soft"
Coulomb atom is shown, where the same pulse as used
for the "hard" Coulomb atom (cf. Fig. 12) has been
chosen. It is seen that the probability of finding the
"soft" Coulomb atom at the end of the pulse in its initial
state is nearly 4%, while the "hard" Coulomb atom has
no probability of survival in the initial state.

To summarize, we have introduced a regularized 1D
"hard" Coulomb atomic model that provides energy ei-
genvalues analogous to that of the 3D hydrogen atom.
Numerical investigations of the interaction of the "hard"
and the "soft" Coulomb atom with intense laser pulses
reveal a highly nonperturbative phenomenon of multiple
splitting of the atomic wave packet into individual sub-
packets in space, which are correlated one-to-one with
the ATI peaks in the energy domain. A spatial
confinement of the wave packet at a very strong field is
observed. Finally, the quantum 1D "hard" Coulomb
atom is found to be less stable than the quantum 1D
"soft" Coulomb atom, which supports recent findings
within classical simulations.
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APPENDIX

In this appendix, we show the equivalence of the
Schrodinger equations (13) and (14}. On expanding the
time-dependent wave function in atomic eigenstates

g c„(t)$„(0)=0 .
n =1 a=0

(A5)

The last line follows in view of the fact that all eigenfunc-
tions P„(x)for n%0 vanish at the origin (x =0) and the
amplitudes c„(t)are finite quantities. Equation (A5) im-

plies that

(A6)

We note that f(0,0)=0 if one of the states P„(x)with
n%0 is taken as the initial state. The interested reader
may note that the wave function g(x, t) [solution of Eq.
(A2)] which evolves from any of the initial states, belong-
ing to the regularized Hamiltonian (A3), remains orthog-
onal to the unphysical state Pp at all times, i.e.,

I=lim 0 a,x x, t x =0, Vt .
~~O

(A7)

This can be seen as follows. Substitute (Al) for P(x, t), so
that

I=cp(t},
since

(A8}

(A9)

From Eq. (A6) we have

f(0, t) = lim g(x, t)
x~0

oo 1= lim lim c (tp)P (ap, }+xg g c„(t)P„(x)
a~Ox ~0

n =1 cr=O

(A 10)

The sum on the right-hand side goes to zero at least
linearly with x as x ~0. Therefore

Note that the n =0 term has canceled out exactly and
does not appear in Eq. (A4), as a result of (A3). Multipli-
cation of Eq. (A4) with 5(x}and integration over x leads
to

oo

i—f(O, t) =f dx g g 5( )x(E'„—Ex(t)) c(t)f„( )x
dt ) p
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P(0, t)= limco (t)Pc(a, x)
x~0

(A 1 1) I=co (0) . (A14)

and from (A6)

co (t)Pti(a, x) =cd (0)go(a, x) . (A12)

co(t)=co(0) .

Combine this with (AS) to get

(A13)

On canceling Pc(a, x) from both sides (for infinitesimal a)
we have

In other words, the overlap integral at all times remains
equal to the amplitude of the n =0 state at the initial
time. For an initial occupation of any of the eigenstates
of the regularized Hamiltonian (A3} in (13), cc(0}=0,
and from (A14), the overlap (A7) I =0. Note that the re-
lation (A13) has a simple physical meaning: an infinitely
deep nondegenerate state, if occupied initially, will
remain equally occupied at all times, since no finite
amount of coupling can cause a transition.
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