
PHYSICAL REVIEW A VOLUME 50, NUMBER 1 JULY 1994

Ramsey fringes in laser-assisted collisions
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It is shown theoretically that Ramsey fringes can be produced when a laser-assisted reaction of the
form A &+ A l +AQ~ A l + A 2 is driven by a pair of ultrafast radiation pulses, each of whose temporal
widths is less than the duration ~, of a collision between the A and A' atoms. The excitation profile of
the laser-assisted collision is calculated as a function of detuning of the laser field frequency from the
initial- to final-state transition frequency. For radiation pulses separated by time T, Ramsey fringes ap-
pear separated in frequency by T '. The modulation depth and shift of the central Ramsey fringe as a
function of (T/~, ) provide information about the collisional interaction. Both the weak- and strong-
field regions are considered and comparison with laser-assisted collisions using excitation pulses having
temporal widths greater than ~, is made.

PACS number(s): 34.50.Rk, 32.80.—t, 42.65.Re

I. INTRODUCTION

A2+ A i+fiQ~ A i+ A~ . (2)

In this case both atoms change their states as a result of
the combined radiative-collisional interaction. A typical
level scheme for a LICET reaction is shown in Fig. 1.

Most experiments involving laser-assisted collisions
have been carried out with nanosecond laser pulses,
whose duration is much larger than the time ~, =1.0 ps

A'

FIG. 1. Level scheme for the LICET reaction
A2+ A', +AQ~A, + A2. The transition from the initial state
i 1)= i21) to the final state i2) = i 12) proceeds by a virtual in-
termediate state not shown explicitly in this figure.

Laser-assisted collisions refer to reactions that require
the simultaneous action of a collisional interaction and an
interaction with a radiation field. These reactions have
been divided into two categories, collisionally aided radia
tive excitation (CARE) and light induce-d collisional ener

gy transfer (LICET) [1]. CARE reactions are of the form

A1+ A i+|rtQ~ A2+ A i .

Two atoms A and A' collide in the presence of a radia-
tion field having frequency Q. The field is detuned from a
resonant transition frequency in atom A, but, as a result
of the combined collisional-radiative interaction, atom A
is excited to state i2) while atom A' remains in its
ground state. LICET reactions are of the form

of a collision. As a result, the field amplitude can be con-
sidered to be constant during a collision. It was proposed
by Lee and George [2] that the use of ultrafast pulses,
having a duration smaller than or on the order of v„
could enhance CARE cross sections. At large atom-field
detunings, CARE excitation is produced when the col-
lisional interaction brings the A atom into resonance
with the field. In a molecular picture, a crossing occurs
at the internuclear separation necessary for this condition
to be satisfied. In the time domain, the crossing is
traversed twice, on the incoming and outgoing trajec-
tories of the particles. For strong fields, the crossing be-
comes an anticrossing between dressed atom-field states,
with the spacing between the levels equal to the Rabi fre-
quency of the field. The (anti)crossing is then traversed
adiabatically. Before the first (anti)crossing, the atoms
are in a state that has evolved adiabatically from state
il) of atom A. Following the incoming (anti)crossing
the system is in a state that asymptotically goes into state
i2) of atom A, but on the outgoing (anti)crossing it re-
turns to a state that asymptotically goes to state

i
1 ). The

overall transition probability is small, resulting from any
nonadiabatic contributions at the (anti)crossings. The
idea of Lee and George was that the short pulse will en-
able the atoms to experience only one (anti)crossing, lead-
ing to an increased cross section. These ideas were fur-
ther developed by Sizer and Raymer [3], who produced
experimental evidence for the effect. The experiment has
been reanalyzed recently by Miklaszewski and Reben-
trost [4].

In CARE, atom-field detunings are suSciently large to
ensure that no excitation occurs without a collision. The
situation in LICET is different in that exactly resonant
fields can be used since the LICET reaction does not
occur unless both collision and radiation fields are
present (the LICET transition matrix element depends on
the product of radiative and collisional interaction
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strengths). Consequently, it is interesting to look at
LICET cross sections near exact resonance. For long
pulses, the cross section at the line center (which is shift-
ed by the ac Stark effect) varies as the field intensity in
the weak-field limit, and as the field amplitude in the
strong-field limit [1]. A preliminary calculation of
LICET using ultrafast pulses was given by Payne [5]. He
found that the strong-field result is modified significantly
if ultrafast pulses are used. Instead of varying as the field
amplitude, the LICET excitation profile is approximately
field independent over a large range of detunings. Radia-
tive collisions between Rydberg atoms have also been in-
vestigated when the reaction occurs during a time inter-
val that is smaller than the collision duration [6,7].

The use of ultrafast pulses in laser-assisted collisions al-
lows for the possibility of using two or more excitation
pulses during the same collision. In this paper we ana-
lyze the LICET cross section when two pulses separated
in time by T are incident on an atomic vapor. It is found
that Ramsey fringes having spacings of T ' are pro-
duced when the LICET cross section is measured as a
function of detuning of the incident fields from the
overall transition frequency of the LICET reaction. For
weak incident fields, the modulation depth and shift of
the central Ramsey fringe as a function of ( T/r, ) provide
information about the collisional interaction. In strong
fields, the modulation depth of the Ramsey fringes in-

creases, but the fringes no longer provide any additional
information about the collisional interaction. It should
be noted that the Ramsey fringe structure has already
been seen in radiative collisions involving Rydberg states

[7], but under conditions different from those considered
in this work.

The paper is organized as follows: In Sec. II, the gen-
eral equations for LICET using ultrafast pulses are de-
rived. The LICET cross section in the weak-field limit is
calculated in Sec. III, a qualitative discussion of the
strong-field limit is given in Sec. IV, and a discussion of
the results is presented in Sec. V.

quency shift of level i resulting from the light shift pro-
duced by the incident radiation field, and ~,. =E,. /A,
where E; is the energy associated with state ~i ). General
formulas for T, S&, and SL can be found in the literature
[8], and specific expressions for these quantities are given
below.

The electric field of the two incident pulses may be
written as

2 iP.(t) ik. R
E(R, t)= —,

' g e, 8 e ' e ' e '"'g(t t,—) +c.c. ,
j=1

(4)

where g (t) is a pulse envelope function centered at t =0
having a temporal width of order ~ . Pulse j has field
amplitude 8, polarization ej, propagation vector k,
phase P~(t), and frequency Q. The time between pulses
T=(t2 t i ) is—greater than r but less than or on the or-
der of the collision duration r, (see Fig. 2). Furthermore,
it is assumed that the pulses are ultrafast; in other words,

(5)

At thermal temperatures, ~, is of order of a picosecond,
implying that pulse widths less than or of the order of
100 fs are required for the validity of condition (5). We
note in passing that the phase factor exp(ikj R) at soine
given atomic site can be arbitrarily set equal to unity
since it does not vary significantly during the collision
duration ~, .

When condition (5) holds, the atomic motion can be
considered to be frozen during each of the pulses (but not
necessarily for the time T between the pulses). Transi-
tions from state ~1) to ~2) occur at times t, and tz The.
interference between the excitation amplitudes at times t,

~~
~ ~

II. THEORY

a& = iT(t)a2 i [coi+SL ( I; t)+Sc—(1;t) ]a i,
a2=iT'(t)a, i [co2+SI (2;t)+—Sc(2;t)]a2,

(3a)

(3b)

where T ( t) is a matrix element of the efFective
collisional-radiative operator that couples states ~1) and
~2), Sc(i;t) is the frequency shift of level i (i =1,2) re-
sulting from the collisional interaction, SL (i; t) is the fre-

The energy-level diagram for the two atoms A and A'

participating in the LICET reaction is shown in Fig. l.
Initially the atoms are in the composite state
~1) = ~21) =

~
A2)

~

A'I ). As a result of the combined ac-
tion of the incident field and the collision, transition to
the final state

~

2 ) =
~
12 ) =

~
A 1 ) ~

A '2 ) may occur. It is
assumed that composite states other than ~1) and ~2)
enter the problem as virtual states only. As a conse-
quence, the state vector for the A —A' system can be
written as ~f(t) ) =a, (t)~1)+a&(t)~2), where the proba-
bility amplitudes a, and a 2 satisfy

C

FKJ. 2. Schematic picture of the temporal evolution of the
laser-assisted collision. The large curve represents the collision-
al interaction as a function of time for a collision having an im-

pact parameter equal to the Weisskopf radius of pressure
broadening theory. The two pulses, represented by square
waves in the Sgure, each have a temporal width ~~ &&~,. The
pulses are separated by T, and the time midway between the
pulses is separated from the central time of the collision by to.
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and tz can result in Ramsey fringes.
We now return to Eqs. (3) and adopt specific forms for

T, Sc, and SL [8]. To simplify the discussion, we take
e, =ez, 8,= Cz ——C, and constant phases (I},=$2. The col-
lisional interaction is assumed to be a dipole-dipole in-
teraction, although the qualitative nature of the results
does not depend on this choice. For a dipole-dipole col-
lisional interaction, the coupling strength and collisional
shift terms are given by

term proportional to g (t t—, )g (t —t2 },since the incident
pulses do not overlap.

Introducing an interaction representation defined by

aJ=K exp i —to t+ f dt'[Sc(j;t')+SL (j;t')]
0

and dimensionless variables

Sc(j;t) =C, (j )/[R (t)]', (6b}

respectively, where C3 and C&(j) are constants, and R (t)
is the A —A' internuclear separation (unless specified
otherwise, j = 1,2). The light shift term can be written as

S~(J';t}=K,B'[g'(t —t, )+g'(t —t, )], (6c)

where K is a con.stant. In writing Eq. (6c},we neglect a

T(t)=2C, C[R (t)] '[g(t t, )—+g(t t—2)] cos( Qt) (6a)

and

t —tITIt, t] =t) IT, t, =t, l'hatt

T= T/rp =t2 ti, —

a(t ) =C, C[R(t~, )] 'r, ,

F=[Cs(2)—Cs(1)]I(@C3~~),

p=(K~ Ki)6 —r
6= [Q—(a)2 —

du) ) ]r~,
one can rewrite Eqs. (3) as

(8a)

(8b)

(8c)

(8d)

(8e)

2 2

K, =i x a(t~)g[(t t ]e ]exp tt—tt iFf a (t —}dt i(t x f g ](p—tt)et]d—t at,
j=1 j=1

2 2

kz=i g a(t )g[(t —t )r ]exp ibt+iF f—a (t )dt +i@ g f g [(t t )r ]d—t n]. '

j=1 j=l

(9a)

(9b)

In writing Eqs. (9), we have used condition (5) to evaluate the coupling terms at t =t, have employed the resonance ap-
proximation, ~h/Q~ ((1,and have set " "=d/dt.

Equations (9a) and (9b} are solved subject to the initial condition

5)( —oo )=1, tt'z( —oo )=0 . (9c)

The probability amplitude 52is a fu'nction of the collision impact parameter b, relative A —A speed u, and the (dimen-
sionless} time to which specifies the interval between the time of closest approach of the collision and the time midway
between the two pulses (see Fig. 2). If the central time of the collision is arbitrarily taken equal to zero, then

T — — T=t —— f =t +—.
1 0 2 2 0 (10)

The number of atoms excited per unit volume in a time 5t large compared with T and r„but small compared with
the pulse repetition rate, is then equal to

N(5t)=N„N„.u f dto f 2mb db P(t, )~n, (b, t, ; ~)~'5t,—(x] 0

S=u~ f dto f 2mbdb~Z, (b, to;~)~2,
0

(12)

which we refer to as the "signal" or the "lineshape. "
Before solving Eqs. (9) in various limits, it is useful to

where N„and N~. are the atom A and A ' densities, and
P(to) 0& l(5t) is the relative probability for a time inter-
val to [All time.s to in the interval 5t =5t/rz are equally
likely; however, only times

~ to ~

~ (r, /~~ ) contribute
significantly to the integral. ] In principle, result (11)
should also be averaged over relative speed u and the spa-
tial distribution of the field [9]. The excitation probabili-
ty is proportional to a quantity

introduce a few characteristic phases and radii. During
each excitation pulse, the probability amplitudes in Eq.
(3) acquire a phase shift of order Sc(t )r owing to the
collisional shifts and SL(t )r owing to the l.ight shifts.
Moreover, it follows from Eq. (3) that the coupling term
T(t) can lead to transition probabilities that vary as sin
or cos [T(t )~~] when ~T}&&[Sc(,~SL ~. Between the
pulses, there is an additional phase of order Sc(to }Tpro-
duced as a result of the collisional shift term. Finally, it
is useful to define the phase Sc(t =0)~, acquired over the
entire duration of a collision. This is the phase which
would enter for LICET using pulses having temporal
widths greater than ~, .
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(C6/R, )r~ =1,
where

C =~C (2)—C6(1)~ .

(13)

(14)

The radius Rz at which the collisional phase acquired
during the interval between the two pulses is equal to uni-

ty is given by

Each of these phases varies as some inverse power of
the internuclear separation R. The LICET transition
probability oscillates rapidly as a function of R for
R &R,„.„,», where R,„.„,» is a value of R for which any
of the phases discussed above is equal to unity. Contribu-
tions to the LICET transition probability from the oscil-
latory region are significantly smaller than those for
R )R„;„.„~ [1,10,11];as a consequence, the largest value

of R,„„»associated with the various phases serves as an
effective cutoff radius for the problem. Values of these
radii are tabulated below.

The radius R, at which the collisional phase acquired
during the pulse duration ~ is equal to unity is given by

two pulses, while R z is a cutoff radius for the interference
term involving the two pulses. In strong fields

(R, »R z, R, ), R, serves as the cutoff radius for both the
direct and interference terms.

The relative contribution of the interference term to
the signal must also depend on the ratio (r, /T) since, for
(r, /T) « 1, the two pulses cannot occur in the same col-
lision and the interference term must vanish. Thus the
signal should depend in some manner on the quantity

s=r, /T=R+/UT . (18)

III. WEAK-FIELD LIMIT

Perturbation theory is valid provided ~a2( ao ) ~
is much

less than unity for the range of impact parameters that
contribute to the signal. The major contribution to the
integral (12) occurs for R & R„since the integrand oscil-
lates rapidly for R & R, [1,10,11]. The validity condition
for perturbation theory, which follows from Eqs. (13),
(17), (8d), and (14},is then

(C6/Rr )T= 1 . (15)
R, «R, (19)

(C6/Ra, )r, =1 . (16)

The collision duration ~, and radius R ~ can be defined

such that R ~=v~, . Finally, the radius R, at which the
phase acquired from the combined collisional-radiative
interaction is equal to unity is given by

The radius Ra (often referred to as the Weisskopf radius)
at which the collisional phase acquired over the collision
interval ~, is equal to unity is given by

or

IFi»l, (20)

which can always be satisfied for sufficiently small C. In
this section, it is also assumed that the light shift term
can be neglected, ~p~ &&1 (for typical atomic parameters,
~pF~ =1, implying that ~p~ &&1 if ~F~ &)1).

For the purpose of this calculation, we shall take the
pulse envelope function to be given by

(~C3~8/R, )r =1 . (17)
g(tr )=(I/v'n )exp( t ) . — (21)

For weak incident fields (to be defined below), the radius

R, is a cutoff radius for direct excitation by each of the

I

Setting a, (t) =1 in Eq. (9b}, and solving for ifz using Eq.
(21) and condition (5), one finds a transition probability

to+ T/2

~a2(~)~ =a/exp( p, /2)+—a2exp( —pz/2)+2Re a&a2exp[ —(pf+pz)/4]exp idT+iF f— a (t )dt

(22)

where Ur, fdro f2~bdb= fd'R . (25)

P.=b, Fa— (23) We consider the direct and interference terms separately.
In the direct terms, one encounters factor of the form

and

a —=a(t, ) .
EE =G/R. . ,

(24)
where

(26)

The first two terms represent the "direct" excitation pro-
duced by the individual pulses centered at t, and t2,
while the third term is an interference term that can give
rise to Ramsey fringes.

To carry out the integrations needed in Eq. (12), it is

useful to introduce a cylindrical coordinate system in

which Z=v~ to. Then,

and

Ri —=R(ti) (27a)

G=C3~ 6 . (27b)

Assuming straight-line paths for the collisions, one can
write
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(Ri 2) =b +(ZpZ, )

where

(28) 1.4

1.2—

Z, =uT/2=vs& T/2 . (29)

Changing variables to Z'=Z+Z1, and going over to a
spherical coordinate system, one finds that the contribu-
tion to the integrated signal (12) from each of the direct
terms is the same, and that the total direct signal is given

by

pdjgsegt 87' 6 R
0

Xexp[ (5 —FG R— 6) l2]R dR . (30)

1.0—
CO

0.8—

0.6—

0.4—

0.2-

0.0
-20 -15 -10

Setting y =F6 R, one obtains

Sdirect =So A (~) &

where

S,=4~G/(3&IF
I )

and

A(b, )=f (y) ' exp[ —(y eh) l—2]dy
0

= 't/Pre D, ( eh )—
The quantity e is defined by

(31)

(32}

(33)

(34)

FIG. 3. A graph of the "direct" LICET pro61e A (6) as a
function of dimensionless detuning 5=(0—

co&& )r~. In this and
all subsequent graphs, we set e= —1 and normalize such that
A (0)=1.

from Eq. (33) that A -&2n /~ b, ~, while, in the antistatic
wing (b »1), A -&n /b, exp( —5 /2). This marked
asymmetry is also found in LICET with long pulses [1].
In contrast to LICET using long pulses, the maximum of
the signal does not occur at 6=0. The maximum occurs
at some average collisional shift, a result which can be
obtained by differentiating Eq. (33) with respect to b, . In
the impact core of the line ( ~h~ && 1), A -2.16—1.035.

We now return to the interference term and write the
internuclear separation as

and D is a parabolic cylinder function [12]. For
~
b,

~
&&1

and e negative, the collisional interaction can bring the
atoms into resonance with the applied field for negative
detunings, but not for positive ones. In this limit, one
refers to the line shape for b, « —1 as the quasistatic
wing and that for 6 »1 as the antistatic wing [1]. For
positive e, the quasistatic wing occurs for positive detun-
ings and the antistatic wing for negative ones.

A graph of A(h)/A(0) [A(0)=2.16] vs b, is shown in
Fig. 3 (in this, and all subsequent examples, we take
e= —1). In the quasistatic wing (b, « —1}, it follows

R (t)=b +u t =b +v (t t +t )—
=R +2Zu(t to)+v —(t —tc) (35)

S;„,=SOB(b,r, T),
where

(36)

where R =b2+v to and Z=vtc=R cos8 in a spherical
coordinate system. With the change of variables
y=FG R, x =R cos8, one can write the interference
term as

B(b,r, T)=Re exp[ b l2 ib T]f—dy f—dxy 3~ (f~f )i~2exp[ (f2+ +f2 )/4+st(f—++f )/2]
0 0

Xexp icy(T/2)(r/y)'~ f, ,do(1+2ox+o }—(y/~)
(37}

fg =y [ I +2(y/r)'~ x+(y/r)' ~
]

r= ~F~G /zi =C6r /zi =(2Rir/uT) (w /w, }=(2RT/uT) T =64T (r, /r )

(38}

(39)

and we have used the fact that R ~=v ~, .
The interference term depends on the two dimensionless parameters T and r. There are practical limits on the values

of T and r. The interference term is clearly a maximum for r )&1, since this corresponds to having both pulses occur at
closely separated positions during a collision. On the other hand, one cannot take T arbitrarily small, since T) 1 is
needed for the observation of Ramsey fringes. For 10-fs pulses, ~, /~ is of order 100. If we want T equal to 10, the
maximum value of r is of order 6X 10 . Even for somewhat smaller w, /~~, it is possible to choose T & 1 and still have
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r »1, allowing for the observation of Ramsey fringes.
Figure 4 shows a plot of the 8 term for r =20000 and T= 10 (corresponding to ~, /r =50 and s =R ii, /UT= 5), nor-

malized to A (0). The total line shape

I=(Sd;„„+S;„,/So)/A (0)= [ A (b, )+8(b„r,T)]/A (0) (40)

is plotted in Fig. 5. Ramsey fringe structure is clearly seen in these graphs. The central fringe is shifted as a result of
the collisional interaction.

The value r =20000 give results that are approximately equal to those obtained in the asymptotic limit when r —~.
The limit r —~ is approached if (UT/R) &&1 at the cutofF radius Rr [see Eq. (15)] associated with the interference
term. Since r =(2RT/UT) (T) ', values of r & 10 are needed before the asymptotic limit is reached. For such values
of r, (y/r) « 1 for all y contributing to the integral (37). In this limit, the interference term can be written as

8(b„oo,T)=Re[exp( b2/2 —i b T }—f dy y
'/ exp( y /2—+ehy+iey T)]

0

=VnRe[exp( h2/2 —id, T)—exp[(h+iT) /4]D, /i[ e(h+—iT)]] . (41)

For T»1, it follows from the asymptotic expansion of
the parabolic cylinder function [12] that

8(g &g) T) 1/~e
—5 /2(+2+ T2) —1/4

X cos [ b, T+ ,' arg[ —e(b, +i T—) ] ]

which, for T»
~
6 ~, reduces to

8(b„~,T)-(/me / (T) '/ cos(b, T e~/4), —

(42)

(43)

with corrections of order T . The maximum amplitude
of 8/A (0) for r = ~ is 0.260 as compared with a max-
imum value of 0.254 for r=20000. The scaling as
(T} '/ can be easily deduced from the integral expres-
sion in Eq. (37). The phase shift of m. /4 as well as the
(T} '/ dependence is related to the nature of both the
LICET coupling strength and the collisional shift term.
For a transition matrix element that varies as R™and a
collisional shift term as R ", the amplitude of the B term
(for r —~) varies as (5 +T ) i' and the phase as

p[arg[ e(b+iT)—]],where p =1—[(2m —3)/n], subject
to the constraint that p &0.

As v decreases, the time between pulses approaches
and becomes greater than the duration of a collision. As

a consequence, one would expect the amplitude of the
Ramsey fringes to decrease with decreasing r. This trend
is seen in the curves of Fig. 4 drawn for r=6.4 and
T= 10 (corresponding to s =R n, /v T= 1 and r, /r = 10)
and r =0.2 and T= 10 (corresponding to
s=Rs/vT=0. 5 and r, /r =5), respectively An. esti-
mate of the scaling for small r can be obtained from Eq.
(32}by setting x =0 in that equation. For r «10 (i.e.,
for s «0. 1), g+-r, provided that x is not too close to
unity. As a consequence, one sets all the exponential fac-
tors in the integrand equal to unity, and finds that the
amplitude of the interference term scales as

8(o)- f y
' '[y/[1+(y/r)'"]dy=(3'/8)&r .

0

(44)

IV. STRONG FIELDS

In this paper, we present only a qualitative picture of
the strong-field regime, and defer more quantitative con-
siderations to a future planned paper. The strong-field
regime is defined as one in which the cutofF radius R, as-
sociated with the transition coupling term is larger than

0.3

CO 01—

C0

-0.1

-0.2—

-0.3
-2.5

I

-1.5 -0.5

I I

r=20,000
r=6.4

A

I

0.5
I

1.5 2.5

1.6
CO

1.2

CO
CO
COO 08

0.4+

0.0
-3

FIG. 4. A graph of the interference term, B(h, r, T)/A(0),
for T=10 and r =20000 (solid curve), r =6.4 (dashed curve),
and r =0.2 (dot-dashed curve).

FIG. 5. A graph of the total licet profile,
[ A(h)+B(h, r, T)]/A (0), for r =20000 and T=10. The
Ramsey fringe structure is clearly seen.
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R„ the cutoff radius associated with the collisional shift
term. From Eqs. (9), (Sc), (Sd), and (6b), one sees that the
strong-field regime for the direct terms is given by

iF i =(R, /R, )' «1, (45)

where R, and R, are defined by Eqs. (13) and (17},respec-
tively. When (45) holds, one may neglect the collisional
shift that occurs during each excitation pulse.

For the interference term, there are both intermediate-
and strong-field regimes. There is a collision-induced
phase acquired between the applied pulses that is propor-
tional to T, and a corresponding cutoff radius Rz [see Eq.
(15)]. The intermediate-field regime is defined by
R~&R, &R, or

IFIT&1, (46)

In this limit, the collisional shift acquired during each ra-
diation pulse can be neglected, but the collisional shift ac-
quired between the two pulses is not negligible and leads
to a decrease in the fringe contrast of the Ramsey fringes
just as in the weak-field case. For very strong fields, such
that R, & Rz & R„or

IF I T «1 (47)

Ipi »1 . (48)

The equations of motion for a single pulse, centered at
t =0, can be written as

&, =iaog(tv~ )exp iht i@f g (t ~ )d—t a2, (49a)

ci2=iaug(tv~)exp iht+ip I g (t—r~)dt it, , (49b)

where the collisional shift terms have been neglected in

the collisional shift between the pulses can also be ig-
nored and the fringe contrast should approach unity for
uT/R, «1. In the following discussion, it is assumed
that (47) holds. As a consequence the field dependence of
the LICET cross section is determined by the effect of a
single radiation pulse.

It is perhaps useful to recall that in LICET with long
excitation pulses the cross section varies as 8 in the
strong-field limit. In the long-pulse limit, the phase asso-
ciated with the transition coupling term varies as
P(b) =a@/b, where b is the collision impact parameter
and ~ is a constant. Moreover, the Stark shift is constant
during the collision. In the region of detuning equal to
the Stark shift, the major contribution to the LICET
cross section comes from those collisions having b & bo,
where bo is the impact parameter defined by P(bo)=1;
the cross section varies as b 0, that is, linearly with C.

The situation for ultrafast pulses is dramatically
different. The Stark shift is now a function of time dur-
ing the excitation process. In the strong-field regime, the
Stark shift parameter p satisfies

the strong-field limit and ao ——a(0).
We now consider several limiting cases. For a square

pulse tuned to the Stark-shifted resonance, the situation
is similar to the long-pulse case, and the cross section
again varies as C. For a smooth pulse, however, the de-
tuning 6 can equal the Stark shift during the pulse only if

ib I
& ipig (0), 5/p &0 . (50)

Provided conditions (50) holds, it follows from a
Landau-Zener treatment at the crossings where the de-
tuning equals the Stark shift that the cross section is al-
most independent of 8 [5,13]. For the detuning

5=A (0), (51)

at which the two crossings coalesce, the uniform approxi-
mation gives a cross section that varies as 8'~ . For a
laser field with a Gaussian spatial profile, there can be a
ring, whose radius is determined by Eq. (51), for which
the strong-field LICET cross section grows more rapidly
than at other points in the beam [14].

V. DISCUSSION

Ramsey fringes appear when a given transition can be
driven by two excitation pulses separated in time by T,
provided the atomic coherence acquires a phase shift b, T
between the pulses (5 is an atom-field detuning). Since
this is precisely the excitation scheme considered in this
paper, the appearance of Ramsey fringes in the LICET
profile may not seem surprising. When one considers
that the results are averaged over impact parameter and
time of closest approach of the atoms, the persistence of
the Ramsey fringes is somewhat more mysterious. The
qualitative features of the Ramsey fringe pattern can be
understood in terms of the various characteristic radii in-
troduced in Sec. II, and the weighting factors which enter
the integrated signal (12) and (25).

In the weak-field regime, the weighting factor for the
direct terms, obtained from Eqs. (22), (24), and (8c), is
proportional to R dR /R, while that of the interference
term is proportional to R dR/[R(t, )R(t2}] . Moreover,
in the weak-field limit, contributions to the interference
term are dominated by collisions having impact parame-
ters b & R z, while for the direct terms the range is b & R,
(for I 6 I

& 1). Consider first the limit when s =
R~/uT&&1, for which R(t, )=R(tz)=R(to)=R. The
weighting factors for the direct and interference terms
are then approximately equal, leading to a LICET signal
proportional to R, for the direct terms and Rz. for the
interference terms. Since (R, /Rz. }~ T', the interfer-
ence to direct term ratio scales as (R, /R z )

3 ~ T
The collisions with R &R~ that contribute to the in-
terference term result in a shift of the central fringe by an
amount of order unity. When T is increased such that
s & 1, one can no longer set R (t i ) =R (t2 ) and the weight-
ing factor for the interference term must be replaced by
R dR/[R(t, )R(t2)] . Owing to the fact that the over-
lap function is small when T= (t2 —t i ) »R ~lu, the con-
trast of the Ramsey fringes decreases with increasing T.
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Ci A =Ci gib,;, (52)

where g is a Rabi frequency associated with the atom-
field interaction, and C3. is a constant. For the Eu-Sr sys-

tem, we can then take [15]

C6=(C3 ) /b, ;=4X10 s 'cm

6,- =1.2X10' s

v =5X10 cm/s, r, =5 ps, Rs,-—2.5X10 cm,

~y~ =10 +I(W/cm )s

(53)

where I is the incident laser power density. For the

In the tail of the quasistatic wing, the major contribution
to the LICET profile occurs at a radius
R =(C6/~b, ~)' &R, &RT. The rapid phase variation of
the interference term for such internuclear separations
explains the disappearance of the Ramsey fringes in the
quasistatic wing, even if s &) 1.

In the intermediate-field regime, the critical radius for
the interference term remains equal to RT, but that for
the direct terms is increased to R, =(Cih'/r )'~'. As a
consequence, the relative contribution of the interference
to direct terms scales as (R, /RT) 0- C(r /T) '~, which
shows that the fringe contrast increases with increasing
field amplitude. For very strong fields, all collisional
shifts are negligible, and the Ramsey fringe contrast
should approach unity.

It is possible to estimate the number of atoms excited
per unit volume for each pair of excitation pulses and to
estimate the field intensities needed to reach the strong-
field regime. As a prototype system, we consider Eu-Sr,
which has been studied extensively [1,15]. In all LICET
interactions, there is an intermediate state, now shown in
Fig. 1, that acts as a virtual state provided the energy of
the virtual state is sufficiently detuned from the real ener-

gy levels of the system. In the Eu-Sr system this inter-
mediate state has a frequency defect of 6;=10' s '. A
necessary condition for the two-state approximation to be
valid is ) b,; ~

r & 1. To satisfy this requirement, we choose
~ =200 fs. We restrict our discussion to the central part
of the excitation profile ~b, ~~

& 1, where the signal is

largest.
It is more convenient to write the factors appearing in

the coupling term as

values chosen, (r, /r ) =25, and we are in the large r-lim-

it for T= 10. Note that, if C6 ——(C3 ) /b. ; and

)tt=~y~ /b, ;, then Fp, ~
=1.

With these parameters, the perturbation theory is valid
if

~
F

~
& 1, or, equivalently, if

~q~ &(C,)'"a, /(C, &r, ) =&a, /~, =0.8X 10"s ',
(54)

which corresponds to power densities I &10' Wlcm .
This is the threshold power for the intermediate-field re-
gime. The threshold for the very-strong-field regime is
given by ~F ~

T= 1, which corresponds to a power density
(T)'~z times that of the intermediate-field threshold.
Such power densities are currently available experimen-
tally.

To estimate the number of particles excited per shot,
we assume that Nz =N„= 10' cm [15] and use Eqs.
(11), (12), (32), (33), (36},and (37) to obtain

N=[4nN„N„(C3 ) iy~ r /(3+C6b, , )](2+8)
=10—

»~y~' (55)

ACKNOWLEDGMENTS

The research of P.R.B. was supported by NSF Grant
No. PHY-9396245 and by the Center for Ultrafast Opti-
cal Science (a NSF supported Science and Technology
Center}.

For y= 10' s ' (limit of perturbation theory), a density
of 10 3' atoms/cm in the interaction volume is excited
per shot.

It might be noted in closing that the Ramsey fringes do
not probe the short-range part of the interatomic poten-
tial since they are produced by collisions having relative-
ly large impact parameters. On the other hand, the qua-
sistatic tail of the direct terms can be used to extract in-
formation about the short-range interactions. Additional
information can also be obtained by observing the final-
state Zeeman coherence induced by the incident polar-
ized fields [1,8, 16]. The contrast of the Ramsey fringes
would then reflect any depolarization that occurs be-
tween the application of the two pulses. It is also possible
to envision driving the LICET reaction with a number of
phased excitation pulses.
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