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Velocity-selective optical pumping in four-wave mixing
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The effects of velocity-selective optical pumping in nearly degenerate four-wave mixing are studied us-

ing a model in which the radiation fields interact with "three-level" atoms in the A configuration. The
conditions under which it is possible to observe resonances characterized by an effective ground-state

width are explored. It is shown that saturation of the system by optical pumping can lead to the disap-

pearance of these narrow resonances in some limiting cases.

PACS number(s): 32.80.Bx, 42.65.Hw

I. INTRODUCTION
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FIG. 1. Configuration of the input beams in nearly degen-
erate four-wave mixing. The output, or the phase-conjugate
beam, propagates in the direction opposite to that of the probe.

Optical pumping among the ground-state sublevels in a
multilevel atom can significantly affect spectroscopic line
shapes. Ground-state optical pumping occurs in weak
fields if the interaction time of the atoms with the fields is
much longer than the inverse optical pumping rates. In
this article, we examine the weak-field saturation effects
induced by optical pumping of the ground state in nearly
degenerate four-wave mixing (ND4WM) (see Fig. 1). In
particular, we determine under what conditions narrow
resonances (having a width determined by some effective
ground-state relaxation rate) can appear in the ND4WM
line shapes. The narrow resonances can be exploited in
the construction of optical filters or for locking two laser
frequencies together. Moreover they can be used to mon-
itor ground-state relaxation processes. One of the goals
of this article is to establish the background for a future
planned article in which we will attempt to explain the
experimental results of Liu and Steel [1]. In their experi-
ment, Liu and Steel studied the effect of collisions on the
narrow resonance in ND4WM.

In a typical experiment involving ND4WM, one mea-
sures the intensity of the four-wave-mixing signal as a
function of the detuning between two of the incident
fields. When the fields drive transitions between multilev-

el ground- and excited-state manifolds, the ND4WM
profile generally consists of narrow and broad resonances
characterized by the ground- and excited-state relaxation
rates, respectively [2,3]. The ground-state relaxation rate

is determined by both the optical puinping rate I' and
the transit time ~=y, ' that an atom spends in the field

interaction region. If the saturation parameter
S =I ~&&1, optical pumping effects cannot be neglected
[4]

Optical pumping creates population imbalance in the
atomic ground states through the cycle of excitation and
spontaneous emission. Since the laser linewidth and
excited-state width may be much narrower than the
atomic thermal distribution, this process can be velocity
selective. When the laser detuning falls within the
Doppler profile of the distribution, those atoms whose ve-

locity brings them into resonance are more strongly cou-
pled to the field and thus undergo optical pumping more
rapidly than those atoms that are not in resonance, re-
sulting in a velocity-dependent redistribution of popula-
tion among ground-state sublevels. Thus velocity-
selective optical pumping (VSOP) can create ground-state
velocity distributions in a multilevel atom very different
from a Maxwellian thermal distribution. This distortion
can involve shifting population between magnetic sublev-
els, giving rise to a velocity-dependent magnetic polariza-
tion to zeroth order in the applied fields [5], and the shift-
ing of population between the ground-state hyperfine lev-
els, giving rise to a velocity-dependent zeroth order
hyperfine population difference [6]. This distortion in the
ground-state populations can have a significant influence
on measured line shapes in different types of spectrosco-
py. The effect of VSOP has been analyzed in two-photon
spectroscopy [6], polarization spectroscopy [7], and satu-
ration spectroscopy [8], and VSOP has been utilized in
Doppler-free spectroscopy [9]. In addition, VSOP has
been utilized to study collisional effects [10]. Our work
builds on these earlier studies and demonstrates the im-
portance of VSOP in ND4WM.

It will be seen that, in certain cases, optical pumping
can result in the disappearance of the narrow resonance.
The disappearance of the narrow resonance in the
ND4WM signal of "closed" two-level systems (systems in
which the sum of ground- plus excited-state populations
is conserved, except possibly for an overall decay rate) is
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A. Density-matrix equations of motion

To calculate the ND4WM signal, it is necessary to
solve the density-matrix equations of motion. The densi-
ty matrix, considered as a function of classical position
and momentum variables, evolves as

dp 1
[H,p]+p I „„„„,.„+A, (2.1a)

FIG. 2. Three-level atom in the A configuration. The in-
cident fields drive both the 1-3 and 2-3 transitions.

with a Hamiltonian H =Ho+ V, where Ho is the atomic
Hamiltonian given by

co3 0 0

Ho —A 0 co& 0

0 0 co)

(2.1b)

already well documented [2,3]. In some respects, the
disappearance of the narrow resonance for the multilevel
ground-state system can be interpreted in terms of a
"closing by saturation. " A major objective of our work is
to examine in detail this process of closing by saturation,
using as a prototype atomic system the three-level A
scheme shown in Fig. 2.

The article is organized as follows. In Sec. II we solve
the density-matrix equations of motion for a three-level
atom to obtain the ND4WM signal. In doing so we find
the solutions for the third-order optical coherences,
which are responsible for the phase-conjugate emission,
and also solutions for the unmodulated part of the
ground-state populations, which show the effects of opti-
cal pumping. We consider the ND4WM signa1 for
several saturations, and show that when the intensity of
the back pump is sufficiently weak, the system is able to
close by saturation, and the narrow resonance disappears.
In Sec. III, we analyze the conditions under which the
atom is able to close by saturation. We suggest several
situations where this effect may be demonstrated, and we
outline an interpretation of a recent experiment which
will be more fully analyzed in a forthcoming article.

II. FOUR-WAVE MIXING
WITH VELOCITY-SELECTIVE

OPTICAL PUMPING

Many of the important features of closing by satura-
tion in the ND4WM line shape can be demonstrated in a
"three-level atom, " in the A configuration shown in Fig.
2. Three fields are incident on the atomic medium: a for-
ward and a backward pump, respectively, and a probe, as
shown in Fig. 1. The frequency spacing between levels 2
and 1, co&&, is less than the Doppler width ku (k is the
field propagation constant, and u is the most probable
atomic speed), such that each field drives both the 1~3
and 2~3 transitions. On the other hand, co&, is much
greater than the rate at which optical pumping transfers
population between states 1 and 2, allowing one to
neglect any coherence between states 1 and 2, i.e., the
density-matrix element p&z can be set equal to zero. The
atoms are initially in a thermal distribution and the

Doppler width of the distribution is much greater than
the excited-state decay rate.

and V is the interaction Hamiltonian given by

V= —dE
or

V= —
dz3 E

di3 E

d3q E d3).E
0 0

0 0

(2.1c)

where d is the dipole operator, and E is the total electric
field

E= —,
' g E exp[i (k r 0 t)]+—cc.

m=f p, b

(2.2)

p331„1= —(I +yt )p33

P22 ~ rel ~2P33 7 tP22

Pl 1 ~rel ~lp33 ) tP11 t

P23l 1= («2+ r—, )P23

p]3l 1 (I /2+1, )p, 3

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

where I is the total spontaneous emission rate from level
3, I

&
and I ~ are the spontaneous emission rates from lev-

The subscripts f,p, b refer to the forward pump, the
probe, and the backward pump, respectively. The for-
ward and backboard pumps travel in opposite directions,
(kb = —kf = —kfz), and the probe makes a small angle
with respect to the forward pump, k =k cosK
+k sin8x, where z and x are unit vectors in the z and x
directions, respectively, and 8((1. In this three-level
model, the vectorial nature of the fields and the dipole
matrix elements are irrelevant; each of the fields couples
both 1~3 and 2~3. In all cases, the fields are weak,
i.e., the Rabi frequency associated with each field is much
less than the spontaneous emission rate. The forward
pump and probe are taken to have equal field strength,
and the strength of the backward pump is variable. The
two pumps have the same frequency, and the probe is
slightly detuned from the pumps: Qf =Qb —=0 and
Q =0+5.

The relaxation terms in the density-matrix equations
are specified as



50 VELOCITY-SELECTIVE OPTICAL PUMPING IN FOUR-%AVE MIXING 613

0 0 0
A= 0 A/2 0

0 0 A/2

(2.4)

where the pumping rate is A, =y, W and W is a Maxwelli-
an distribution,

W(v)=(mu) 3~ exp( —v /u ) . (2.5)

This pumping matrix leads to equal populations in states
1 and 2 in the absence of applied fields [11].

Expanding Eq. (2.1a) and assuming
~(Q —co,")/(Q +co,j ) ~

&&1, one obtains

a=f,p, b

+c.c.—(I +y, )p33,
I(k r —0 t)

pm= i X—y2e ' p23+c c.
a=f,p, b

+ I'2P33 y,p22—+A, /2,
a ' ~a +apii= i g y—7e ' pi3+c c.

a=f,p, b

+r,p33 y,p~~+X/2,

p32= (i t@32,+—I /2+ y, )p3$

(2.6a)

(2.6b)

(2.6c)

el 3 to levels 1 and 2, respectively, and y, is the inverse
transit time.

The pumping matrix is

refer to the same quantity.
Using standard procedures for solving the density-

matrix equations, one first obtains solutions for the popu-
lations and uses these solutions in the expression for the
relevant component of the optical coherence. The popu-
lations are obtained as a Fourier expansion in the modu-
lation, but only the lowest-order terms contribute
significantly. Successive terms in the expansion decrease
in magnitude as powers of the ratio of the optical pump-
ing rate to the effective grating decay rate. Only terms of
zeroth and first order are significant.

The efFective grating decay rate is determined by
thermal washout: the time it takes a thermal atom to
traverse the spatial grating. The spatial period of the
lowest-order grating formed by the forward pump and
the probe is 2m. /~ k&

—
k» ~, and the most probable speed of

a thermal atom is u. Therefore a thermal atom traverses
the grating in a time (~k&

—k»~u) so the gratings wash
out due to thermal motion over times of order

(~kI —
k» ~u) '. The effective grating decay rate resulting

from thermal motion is therefore ~k/
—k

~
u —=y „,.

The optical pumping rate I =~y~2I is the rate at
which the combined action of the fields and spontaneous
emission transfers population between states 1 and 2.
The rate that the lowest-order grating is created is I p
and the rate that it decays is y~„„so one expects the
lowest-order grating amplitude to be of order I' /y „,
and the higher-order grating amplitudes to decrease in
magnitude as powers of this ratio. In the problems con-
sidered here, the field strength is small enough that

i(k .r —0 t)+ X +2 (P22 P33 )
a=f,p, b

P31 31 y )P31

a '("a'—"a+' X &le (Pl i P33)
a=f p, b

Pij =Pji

where the Rabi frequency is defined as

(2.6d)

(2.6e)

(2.8)

PP e
' ~ "P' 0'~

13=fp b

(2.9)

so one can drop the higher-order terms from the Fourier
expansion.

The first-order coherences are obtained from Eqs.
(2.6d) and (2.6e) by factoring out the rapidly oscHlating
part

'Ea
i =1,2, (2.7)

and ro;J =co; —co is the transition frequency between lev-
els i and j. The derivative is the total derivative

p,j=(8/Bt+v V)p;J.
One solves these equations in the steady state to third

order in the field amplitudes for the coherences P3& and

p32 by an expansion in the field modulation starting with
zeroth-order ground-state populations. As a result of in-
terference of the difFerent fields, the ground-state popula-
tions are spatially modulated; these modulations are re-
ferred to as the population "gratings. " The term "zeroth
order" refers to that part of the population that is not
spatially modulated. As a result of optical pumping by
each field acting separately, the zeroth-order populations
need not be zeroth order in the applied fields. Rather,
they are zeroth order in the modulation, and are the same
as the spatially averaged populations. The terms
"zeroth-order population, " "unmodulated part of the
population, " and "spatially averaged population" all

Using the orthogonality of the exponential functions and
the fact that in the steady state p~ =0, one obtains

l X2P22
~ p (o)

32 i (hf k—v)+ I—/2
(2.10a)

and

(2.10b)
p (o)lg)p

P3i
i (b~ kp. v)+ I'/2— —

where the detuning lP;= Q&
—co3;, PP&', and pzz' are the (as

yet unknown) zeroth-order ground-state sublevel popula-
tions, and I &)y, .

The second-order populations are spatially modulated
due to interference between the different waves. One ex-
pands the second-order population as a sum of modulated
terms,

p'„„'= g p~expi(k &.r —Q &t), (2.11)
a,P=f,p, b

where k &=k —
k&, 0 &=0 —0&, and p„„=0 in the

steady state. The p„~ with a+P are the population grat-
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(0) y aa (2.12)

ing amplitudes. The zeroth order, or unmodulated terms,
are obtained from Eq. (2.11) by summing with a =P,

Using the orthogonality of the exponential functions, and
using Eqs. (2.6a) and (2.10), one obtains steady-state solu-
tions for the excited-state grating amplitudes given by

aP 1
XaX~2*

1 + 1 (0)
—i(Q p

—k p.v)+ I i (b,~ k&.v—)+I"/2 i (b— k—v)+ I /2

+x x' 1 + 1 p(0)
i (b~ k& v)+—I /2 i (—b;, kv)+—I /2

(2.13)

Using Eqs. (2.6b) and (2.6c) for the ground-state populations, Eq. (2.13) for the excited-state population, and Eqs.
(2.10) for the coherences, one obtains an equation for the time evolution of the ground-state populations:

—p, ,
=k/2 — g g yj y~ expi (k &

r Q,&t—)

j=1,2 aP

I;
i(Q—

&
—k

&
v)+I

1 +
i (b~~ k& v)—+ I /. 2

where i =1,2, and

i (5—, —k v)+I /2
(0)+)'&;, p,, (2.14)

1, i=j
5;, = '0 (2.15)

0,

When Eq. (2.11) is substituted into Eq. (2.14), the resulting equations can be solved for p„„ in the steady state. The
ground-state grating amplitudes (aAP) are given by

aP 1

i(Q p
—k—p.v)+y,

+ 1 (0)
—i(bz —k v)+I /2

x y, y~2' —1+ I2 1

i(Q & k& —v)+—I' i(g~ k.v)+p/2—

+six~&'
I2

i(Q —
p kp —v)+I

1 + 1 (0)

i (b~—
k& v)+I /2 i (b, , kv)+—I /2— (2.16)

One obtains a similar expression for p&~& with the inter-
change of indices 1~2 in Eq. (2.16). In this expression,
one sees that, indeed, the lowest-order grating amplitude
is of order I /y „,. The solution of Eq. (2.14) for pP,

'

and pzz' is given in Sec. II C below.
Using Eqs. (2.6d) and (2.11), one obtains an expression

for the third-order eoherences,

p3 = —(ico3, +I /2)p~&,
'

+i g yf(p;;~ p3~~') exp—[i(kr+k —k&) r
aPy

I

(y, a,P)=(b,f,p). The third-order coherence is decom-
posed into a sum of modulated terms,

P3
= g Pz~r exP[i (kr+k —k ) r

aPr

i (Q~+ Q— Qp)t], —

and the relevant component is given by

iy", (p, ,
—p3()

—i(Q +Q —Qp)t], + [same with f~b ], (2.18)

with i =1,2. Qf all the terms in the sum in Eq. (2.17),
only two contribute to the phase-conjugate wave: those
for which kr+k —k&= —k, with (y, a,P)=(f,b,p) and

where 5,-=0—~3,-, —k is the wave vector, and 0—6
the frequency of the phase-conjugate wave. The first
term corresponds to the back pump scattering off a grat-
ing formed by the forward pump and probe and the
second term corresponds to the forward pump scattering
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o8' a grating formed by the back pump and probe. The
second term in Eq. (2.18) does not contribute appreciably
to the phase-conjugate wave. The grating size of the
back pump-probe grating is of order 1/2k so the grating
efFective decay rate (inverse of the time it takes a thermal
atom to traverse the grating) is 2k'. This is much larger

I

than the population decay rates; the back pump-probe
grating is washed out over time intervals of interest in
this problem, due to the thermal motion of the atoms,
and can be ignored. Only the first term in Eq. (2.18) is
considered in the following discussion.

The relevant difference grating is

1

i(5 ~u—„)+y, i (5—~u„)+I' i(5 s—v„)+I

—XflXl'pl'l'&l
1 1 I2

i
l (5 Ku )+I i(5 KV )+y l (5 Ku )+I (2.19)

where

1 + 1

i (b,;+5—kv, —au„)+I'/2 —i (6;—ku, )+I'/2

(2.20)

and k=—lkfl, s=lkf —kzl =k8, and v„u„are the z,x
components of the atomic velocity. One obtains a similar
expression for pfill' —pg with the interchange of the in-

dices 1~2 in Eq. (2.19).
The terms in square brackets can be simpli6ed by ex-

panding in partial fractions to get

a&
PZi P8= X2Xf P22 2

KVx 'V t

1+a2+.
i (5 su„)+—I'

an interchange of indices 1~2 will give pfill' —pg. The
first term in each of the square brackets is responsible for
the narrow resonances in the ND4WM line shape. In the
limit that a&~1 and a, ~O, the system is a closed two-
level system (between levels 2 and 3) and one sees in Eq.
(2.21) that the narrow resonance associated with this
transition disappears. The fact that the 2~3 transition
is open allows the ground-state grating to decay at a
much slower rate; there is a "residual" ground-state grat-
ing.

One notes that the narrow resonance disappears if the
coe(Ficient of [i(5—sv„)+y, ]

' is zero, or if

I XXI p & =12XX p

which can occur if pit' and pz2' are distorted in an ap-
propriate way through optical pumping.

S. NonHnear yolarixation

f pe (0)
—a

+X1X1 Pl l +I

1+a2+.
i (5—~v„)+I' (2.21)

proportional1s

+dilp3l'( —k, Q —5)]d'v

The ND4WM signal
IP( —k~, Q —5)I2, where

P( —k, Q —5)=I[I' p' '( —k, Q —5)

to

where the branching ratio a; =I, /I' and I »y, . ~gain,
I

or

,
'

Jl ([ldi I'& [a,L, (y, )+(1+a )L(I')]EfEbE*

where

+ ld» I'Idyll'&lz[ —al«y, )+(1+a,)L (I )]]piz'

+ [ Idyll'Idil I'&zl[ —a~L (y, )+((+a,)L (I')]

+ ld» I'&»[a,L (y, )+(1+al)L(I ) ]]peal')div, (2.22)

and

1 1

i(+; 5+kv +vv„)+I /2 t (6 +5—ku sv„}+I/2 —. i (Q.—k )+I /2

L(y)= .
1

i (5 ~u„)+y—

(2.23)

(2.24}
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Using

ld32I'—=p2ldl', ld3) I'=p) Idl',

where d is a "reduced matrix element, "one can write Eq. (2.22) as

Ef. Eb&,'Idl'
P( —k, Q —6)= i-pl 8'

X p 22 a1L y, + 1+az L I +LM1p 12
—a1L y, + 1+a1 L 1 pzz'

(2.25)

+[p2ib, X2, [
—azL(y, )+(1+a2)L(I )+p, ,d»[a2L(y, )+(1+a,)L(I )]]p't, ')d u . (2.26)

This expression can be expressed in a more compact form by defining

a;J=p,;pja3 &(
—1)'+~, b) =p,.p.(1+a, ),

so that

.Ef be'

Idl�
'

P( —k, Q —5)= i — g f [a; L(y, )+b; L(I )Q; p,
' 'd u .

EJ

(2.27)

(2.28)

To evaluate this expression for the polarization, one must
first determine the zeroth order sublevel populations.

Ix, I'r
R~=

(b; +5—kv, )'+ (I'/2)' (2.3 lb)

C. Zeroth-order sublevel populations

In this section expressions for the zeroth order, or un-

modulated part of the ground-state sublevel populations,
are obtained. The sublevel populations are afFected by
optical pumping, and the amount of optical pumping de-

pends on the saturation. The saturation parameter,
S =I /y, is defined as the ratio of the resonant atomic
excitation rate to the inverse transit time.

If the system is unsaturated (S «1), there is no
significant optical pumping, and pIt' =p2'z' =

—,
' W( v ),

where W(v) is given by Eq. (2.5). In this case, the in-
tegrals in Eq. (2.28) can be expressed in terms of plasma
dispersion functions [12].

The system is saturated if S )&1. In this case there is
significant optical pumping, and the zeroth-order
ground-state sublevel populations are distorted.

To determine the zeroth-order or unmodulated part of
the sublevel populations, one obtains a set of coupled rate
equations for pIt,

' and pzz' from Eq. (2.14), the ground-
state equation of motion, and Eq. (2.12):

I~bI2r
R.b=

(b, , +kv, )2+(I /2)2
(2.31c)

In the steady state, Eqs. (2.29) can be solved to yield (us-

ing A, =y, W)

and

(0) (aqR ) +y, /2 }W
pzz azR, +a1R2+y,

(a(R2 +y, /2)W
P11'=

a,Rz+azR, +y,

(2.32a)

(2.32b)

where a; =I; /I . It is noted that the zeroth-order popu-
lation is conserved: p'11'+phiz'= 8'.

Equations (2.32) can be expressed in terms of the satu-
ration parameter S if Eq. (2.25} is used to set
ly; I =p;ly I, where y =dE /(2R). The forward
pump and probe are taken to have equal field strength,
and the field strength of the back probe is variable:
Igfl=lg~l=lgl and Ig I =Plgl, where 0&P& l. One
can then write Eqs. (2.32) as

pzz
= — y, + Rz pzz+ R1p» +A./2~ (0) 1 (p) 2 (O)

r
and

P11 = —y1+ R1 p11+ r Rzpzz+A. /2,~ (0) (0) (0)
r

(2.29a)

(2.29b)
where

[R i+ 1/(2S)] W

R1+Rz+ 1/S

[R~+ 1/(2S)] W

R1+Rz+ 1/S

(2.33a)

(2.33b)

where the total excitation rate out of level i is R, (u, )=p, a3
1

[(a, —ku, )/r]'+-, '

and

R; =R,f+R~+R.b

Ix'I'r
(6;—kv, ) +(I /2)

(2.30)

(2.31a}

1

[(b;+5—ku, )/I ] +—,
'

[(5,+kv, )/I ] + —,
'

(2.34)
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and

(2.35} [Rz(v, )+1/(2S)]W, (u, }
n, (u, )=

R &(v, )+R2(u, )+1/S
(2.38b)

(2.36)

p;', '(v)=n;(v, )W„(v„)W (v ),
where W(u;)=(v mu) '[ —u; /u ] is
dimensional thermal distribution, and

(2.37)

the one-

[R,(u, )+1/(2S)]W, (u, )
nz(v, )=

R I (v, )+R2(u, }+1/S
(2.38a)

Since the di8'erent velocity components do not couple
to each other, one may factor out the v„, v„, and v,
dependencies of the populations

Figures 3(a)—3(c) show n, and n2 as a function of velocity
for several values of S and a full strength back pump
(P= 1 }. In these plots, the width of the thermal distribu-
tion is ku =100I, the probe detuning is 5=0, the
ground-state splitting is N2&=150I the detuning of the

pump from the 2~3 transition is hz = 10I, and
a =»- =—' i =1 2.Pl

One sees that for increasing transit times (increasing
saturation), the populations become more distorted. The
holes in the n2 distribution and the peaks in the n, distri-
bution are at kv =+10r, corresponding to those atoms
that are Doppler shifted into resonance with radiation
driving the 2~3 transition, and have been pumped out

I I I I

f
I I I I

i
I I I I

i
I I I I 0 006 I I I I

i
I I I I

i

I I I I
i

I I I I

0.005
S=0.1

(a) 0.005—

0.004

n,

———ng 0.004—

0
~&

0.003
Q0

0.002 0.002—

0.001 0.001—

0
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I

0
kv/I

100 200

/

0
-200 -100 0
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100 200
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i
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i
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i

I I I I
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C400
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of level 2 into level 1. The forward pump and the back
pump are resonant with different velocity classes since
they are traveling in opposite directions, as can be seen in
the expressions for R; and R;, Eqs. (2.31). The atoms at
kv =+10I are resonant with the forward pump and
probe and the atoms at kv = —10I are resonant with the
back pump. The small peaks in the wings of the n2 dis-
tribution and holes in the n& distribution correspond to
those atoms Doppler shifted into resonance with radia-
tion driving the 1~3 transition and have been pumped
from level 1 to level 2. These peaks occur at kv = —160I
for the forward pump and probe and at kv =+160I for
the back pump. The asymmetry in these curves is due to
the fact that the forward pump and the probe are reso-
nant with the same atoms (when 5=0), so that those
atoms get excited at twice the rate of those that are reso-
nant with the back pump.

For larger transit times (larger S), the resonances in
the distributions become "saturation broadened. " In the

l

fully saturated system (y, ~O,S~~ ), Fig. 3(c), the dis-
tributions are independent of the field intensity, as can be
seen from Eqs. (2.38). In each velocity class, the sublevel
populations have been altered in such a way that the rate
that zeroth-order or spatially averaged population is
transferred from level 2 to level 1 by excitation and spon-
taneous emission is equal to the rate that spatially aver-

aged population is transferred from level l to level 2. One
can define this condition as "full saturation of the popula-
tion "T.his condition is directly related to the disappear-
ance of the narrow resonance from the ND4%M line
shape, as is shown below.

D. Four-wave mixing signal

One can now evaluate the polarization and obtain the
ND4WM signal. Using Eq. (2.37) for the pI, ', the polar-
ization, Eq. (2.28},can be expressed as

P( —k, Q —5)=—EfEsE' d~ iy, —5
a; Z +I, z lr —5

(2.39)

where a;, b, are giv"en in Eq. (2.27), Z(p) is the plasma dispersion function [12] defined by

X

Z(p)= — —f dx, Im(IM) &0,—oo @+X
(2.40)

&&, &=fp + oo 1 1 + 1
n (v, )dv, ,

i ( 5,——5+kv, )+I /2 i ( 6 +5—kv, ) + I /2 —i ( b, —kv, ) + I'/2 (2.41)

where we have used the fact (consistent with the calcula-
tions done here) that (au } « (6, ) . Figure 4(a) shows a
plot of the ND4WM signal [modulus squared of Eq.
(2.39)] as a function of 5/I, for an unsaturated system,

l

S =0.1. The back pump has the same intensity as the
forward pump (P= 1 ). The detunings, the thermal width,
and the branching ratios are the same as previously:
a, = —150r, a,=10r, ku =100I, a;=p;= —„i =1,2.
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The angle between the pump and the probe is 8=10
rad, so a.u =I /10.

Figure 4(a) shows a sharp peak (the narrow resonance)
on top of a broad pedestal at 5=0. The pedestal has a
half width at half maximum (HWHM) of I . The width
of the sharp peak is due to the residual Doppler broaden-
ing (or the grating dephasing rate) and is of order 1 /10.

Plots of the ND4WM signal for larger values of S are
nearly identical to Fig. 4(a), except that the height of the
peak decreases with increasing saturation. The atoms
that contribute most strongly to the signal are those that
are resonant with the forward pump and probe and those
that are resonant with the back pump. As shown in the
figures for the populations, Figs. 3(a)—3(c), the population
of the resonant atoms decreases as the saturation in-
creases. This is reflected in the fact that the signal peak

decreases with increasing saturation, such that the peak
of the fully saturated signal (S~ ec ) is 10 that of the
unsaturated signal. The signal strength decreases due to
a decrease in resonant population, but the shape of the
signal, i.e., the height and width of the narrow peak com-
pared to the broad pedestal, does not change for reasons
to be discussed below. Figure 4(b) is a plot of the signal
from a fully saturated system. The value of S =10 is
chosen to illustrate the response of a fully saturated sys-
tem. In practice, however, it is difficult to satisfy inequal-
ity (2.8) for the parameters of Figs. 4(b) and 5, since
values I /y, & 10 are implied.

When the intensity of the back probe is decreased,
however, the narrow resonance does disappear in the ful-

ly saturated system. This is demonstrated in Figs.
5(a)—5(c), which show the ND4WM signal for decreasing
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values of P. The same absolute scale is used in each of
the figures, which is the same scale used in Fig. 4(b}. The
parameters are the same as those in Fig. 4(b), with the ex-
ception of P. In this case, the signal is the intensity of the
phase-conjugate wave divided by the intensity of the back
pump.

III. CLOSING BY SATURATION

In the following, the reason for this disappearance of
the narrow resonance from the ND4WM line shape is
discussed. First, a general condition for the disappear-
ance of the narrow resonance is obtained, and then it is
shown that this condition is satisfied when the back pump
is weak (P «1). It is shown that fulfillment of the condi-
tion is related to the degree of saturation the system un-
dergoes, and is therefore called closing by saturation.

It is shown below that the narrow resonance disap-
pears if

rate between ground-state sublevels is zero, it directly fol-
lows that the spatially averaged rate at which population
is excited from level 2 to level 3 is equal to the spatially
averaged rate that level 2 is repopulated by spontaneous
emission from level 3. This condition defines fully sa-
turated populations.

Full saturation of the gratings is defined as that condi-
tion for which the rate that atoms are excited into the
level 3 grating from level 2 is equal to the rate that the
level 2 grating is repopulated due to spontaneous emis-
sion from the level 3 grating. Saturation of the popula-
tions is defined in terms of the spatially averaged popula-
tions, while saturation of the gratings is defined in terms
of the modulated part of the populations.

In the following it is demonstrated that Eq. (3.1) is
indeed satisfied and thus the narrow resonance disappears
from the ND4WM spectrum when the gratings are fully
saturated. It follows from Eq. (2.18) and Eq. (2.21) that
the narrow resonance disappears if the term multiplying
[i(5—vv„)+y, ] in Eq. (2.21) for pz(

—
p&( vanishes,

i.e., if

I2
pq(+ p3( 0 (3.1) rxx$ &p =rzXX "&P (3.2)

where pf~ is the level i grating amplitude formed by the
forward pump and probe, given by Eqs. (2.13) and (2.16),
respectively, and rz/r is the fraction of atoms in the ex-
cited state that decays to level 2. If Eq. (3.1) is satisfied,
then the level 2 (and level 1) grating is "filled in" due to
spontaneous emission at the same rate that the excited-
state grating decays; there is no "residual" ground-state
grating. The depth of modulation and the phase of the
excited-state grating is such that the portion of the
excited-state grating that decays to level 2 just "fills" the
level 2 grating. Thus the level 2 grating decays at the
spontaneous emission rate, and the narrow resonance
does not appear in the ND4WM line shape. If Eq. (3.1)
holds then there is a similar relation for p11. Equation
(3.1) can be satisfied only when S~ 00. As indicated ear-
lier, when S~ oo the spatially averaged populations are
always saturated. In the following, it is shown that there
is a distinction between saturation of the spatially aver-
aged populations and saturation of the gratings. It is satu-
ration of the gratings that is implied in Eq. (3.1).

The populations are fully saturated if the spatial aver-
age of the number of atoms per unit time that are
transferred from level 2 to level 1 by excitation and spon-
taneous emission is equal to the number of atoms per unit
time that are transferred from level 1 to level 2, such that
the spatial average of the net population transfer rate is
zero. The population of a velocity class in level 2 that is
close to resonance is decreased by optical pumping, while
the population of the same velocity class in level 1 is far
from resonance and will be increased by optical pumping.
This is clearly shown in Figs. 3(a}—3(c}. If S~DD, the
resonant population of level 2 has decreased and the same
velocity class in level 1 has increased to such an extent
that the spatial average of the net population transfer rate
between the sublevels is zero. Saturation of the spatially
averaged populations always occurs when S~ 0o.

If the spatial average of the net population transfer

—I R2P22+I 2R1P1 =0.(0) (0)— (3.4)

It follows from Eqs. (2.33) that Eq. (3.4) is satisfied in the
limit of strong saturation by any of the incident fields
(R; »y, ), where R; is given by Eq. (2.30). On the other
hand, Eq. (3.2), the condition for saturation of the grat-
ing, is generally not satisfied even if R, )&y, . The
zeroth-order populations do not adjust themselves to al-
low for saturation of the gratings. To examine this in
more detail, we consider the limit when ~5 —au

~
&& I and

~Xf ~

=
~X; ~, such that

XfX&'S, = ,'(Rf+Rt') = ,'R,f&, -——
where R; and R~ are the excitation rates from level i to
level 3 due to the forward pump and the probe, respec-
tively, given by Eqs. (2.31), and —,'R f~pI,

' is the rate that
population is excited into the level 3 gratings from level i.
One can write Eq. (3.2) as

—I R f~p' '+ I R f~p' =0
1 2 P22 2 1 P11 (3.5)

Comparing Eq. (3.4) with Eq. (3.5), one can see that the
grating will saturate along with the zeroth-order popula-
tions if R; =R,. or R; ~R;. Several examples for which

On the other hand, it follows immediately from Eqs.
(2.13) and (2.16) that

I2
pf8+ r pfH

5 + [ r xfx3

+ r~fX&'S,pID'] . (3.3)

Clearly, if Eq. (3.2) holds so does Eq. (3.1), confirming
our hypothesis concerning the filling in of the gratings.

It is interesting to compare the conditions for satura-
tion of the zeroth-order (unmodulated) populations and
saturation of the gratings. Using Eqs. (2.29) one finds
that the condition for saturation of the zeroth-order pop-
ulations is
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these conditions hold are given below.
The effect of the back pump differs principally from

that of the forward pump in that it is resonant with a
different velocity class. If the velocity selectivity of the
excitation rates is removed, then the back pump does not
affect the zeroth-order velocity distributions and the grat-
ings saturate when the populations saturate. One way this
can occur is if the atomic thermal width is very small
(ku « I ). Another way to remove the velocity selectivi-
ty is to have collisions that thermalize the distributions.
This situation is treated in a planned future article where
the disappearance of the narrow resonance in a ND4WM
experiment [1] is explained in terms of this effect.

Finally, if the back pump intensity is much less than
the forward pump intensity P «1, then the effect of the
back pump on the zeroth-order populations is
significantly reduced. With P« 1, R; =Ri~ and the grat-
ings fully saturate when the populations are fully saturat-

ed. This is demonstrated in Figs. 5(a)—5(c). The height
of the narrow peak decreases relative to the background
as P decreases. Figures 6(a)—6(c) demonstrate the effect
of the back pump on the population distributions by
showing n& and nz for a saturated system, for various
values of P. The values of the other parameters are the
same as those in Figs. 3(a)—3(c). As P decreases, the n

&

and n2 distributions become approximately independent
of P indicating that the back pump has little influence on
the sublevel populations for most velocity classes for
small values of P.

IV. CONCLUSION

The basic ideas of closing by saturation have been
developed here. It has been shown that when the grat-
ings are saturated, there is no "residual" ground-state
grating, and the narrow resonance does not appear in the

0.006 I I I I

j
I I I I

)
I I I I

)
I I I I

0006 I I I I
i

I I I I
i

I I I I
i

I I I I

0.005—
S=10

P=O.
0.005—

S=10

P=0.

~ 0.004

~ 0.003

5 0.002

—-n

c 0.0040
~M

Q~~0.003

5 0.002

—n 1

0.001— 0.001—

0
-200 -100 0

kv/I'
100 200

0
-200 -100 0

kv/r
100 200

I I
]

I I I I
[

I I I I
[

I I I I

S=i
0.005—

P=O.

g 0.004
0

~0 0.003

y 0.002

0
-200 100 2000

kv/r
FIT&. 6. Around-state population densities as a function of 5/I in the large saturation limit for ku /I =100, 5/I =0, &~/I = &0,

b, /I = —150, and S = 105. (a) @=0.5. (b) P=0. 1. (c) @=0.001.



622 GEOvvaEY L. ROGERS AND P. R. BERMAN 50

ND4WM line shape. The connection with a closed two-
level system is as follows. In a closed two-level system, in
each velocity class, the number of atoms per unit time ex-
cited out of the ground state is equal to the number of
atoms per unit time repopulating the ground state by
spontaneous emission. In such a case there is no residual
ground-state grating. In a multilevel atom, this condition
must be satisfied by each of the sublevels individually.
Moreover, it must be satisfied not only by the spatially
averaged populations but by the grating amplitudes as
well. In the multilevel atom, this condition can be
satisfied only if the populations have been altered by opti-
cal pumping. Saturation of the populations and satura-
tion of the gratings both depend critically on the size, in
each velocity subclass, of the sublevel populations. The
spatially averaged populations always saturate for
S~ a&, but whether the gratings formed by the forward
pump and probe saturate in this limit depends on the
effect of the back pump. If the back pump influences the
population distributions, the gratings do not saturate.
Therefore one expects the appearance of the narrow reso-
nance in the ND4WM spectrum in systems where the
back pump does influence the sublevel population distri-
butions, and its disappearance in systems in which the
back pump does not affect the population distributions.

The qualitative features of the role played by velocity-
selective optical pumping are illustrated in the three-level
model adopted in this work. This has been confirmed by
calculations carried out for the actual level schemes of
sodium atoms, using incident fields all having the same
polarization [13]. The qualitative features of the line
shapes with sodium as the active atom are similar to
those for the three-level atoms considered in this work.

The idea of closing by saturation is used in a forthcom-
ing article to interpret a ND4WM experiment [1],where
the narrow resonance disappears when the active atoms
are immersed in a high-pressure buffer gas. The buffer
gas increases the diffusive transit time of the atoms
through the interaction region, allowing significant opti-
cal pumping to develop, and also destroys the velocity
selectivity of the ground-state optical pumping by col-
lisional redistribution. As a result, the back pump does
not affect the velocity distributions. Therefore the system
is able to close by saturation, and the narrow resonance
does not appear.
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